Files
blender/source/blender/editors/transform/transform.c
Campbell Barton 74f77a2956 This reverts commit d1526da787.
If tweaking is done by accident, user better increase threshold in preferences.
2014-05-19 21:34:57 +10:00

7692 lines
194 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/transform/transform.c
* \ingroup edtransform
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mask_types.h"
#include "DNA_movieclip_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "BLI_utildefines.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_listbase.h"
#include "BLI_string.h"
#include "BLI_ghash.h"
#include "BKE_nla.h"
#include "BKE_editmesh_bvh.h"
#include "BKE_context.h"
#include "BKE_constraint.h"
#include "BKE_particle.h"
#include "BKE_unit.h"
#include "BKE_mask.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "ED_image.h"
#include "ED_keyframing.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_markers.h"
#include "ED_view3d.h"
#include "ED_mesh.h"
#include "ED_clip.h"
#include "ED_node.h"
#include "WM_types.h"
#include "WM_api.h"
#include "UI_view2d.h"
#include "UI_interface_icons.h"
#include "UI_resources.h"
#include "RNA_access.h"
#include "BLF_api.h"
#include "BLF_translation.h"
#include "transform.h"
#define MAX_INFO_LEN 256
static void drawTransformApply(const struct bContext *C, ARegion *ar, void *arg);
static int doEdgeSlide(TransInfo *t, float perc);
static int doVertSlide(TransInfo *t, float perc);
static void drawEdgeSlide(const struct bContext *C, TransInfo *t);
static void drawVertSlide(const struct bContext *C, TransInfo *t);
static void len_v3_ensure(float v[3], const float length);
static void postInputRotation(TransInfo *t, float values[3]);
/* Transform Callbacks */
static void initBend(TransInfo *t);
static eRedrawFlag handleEventBend(TransInfo *t, const struct wmEvent *event);
static void Bend(TransInfo *t, const int mval[2]);
static void initShear(TransInfo *t);
static eRedrawFlag handleEventShear(TransInfo *t, const struct wmEvent *event);
static void applyShear(TransInfo *t, const int mval[2]);
static void initResize(TransInfo *t);
static void applyResize(TransInfo *t, const int mval[2]);
static void initSkinResize(TransInfo *t);
static void applySkinResize(TransInfo *t, const int mval[2]);
static void initTranslation(TransInfo *t);
static void applyTranslation(TransInfo *t, const int mval[2]);
static void initToSphere(TransInfo *t);
static void applyToSphere(TransInfo *t, const int mval[2]);
static void initRotation(TransInfo *t);
static void applyRotation(TransInfo *t, const int mval[2]);
static void initShrinkFatten(TransInfo *t);
static void applyShrinkFatten(TransInfo *t, const int mval[2]);
static void initTilt(TransInfo *t);
static void applyTilt(TransInfo *t, const int mval[2]);
static void initCurveShrinkFatten(TransInfo *t);
static void applyCurveShrinkFatten(TransInfo *t, const int mval[2]);
static void initMaskShrinkFatten(TransInfo *t);
static void applyMaskShrinkFatten(TransInfo *t, const int mval[2]);
static void initTrackball(TransInfo *t);
static void applyTrackball(TransInfo *t, const int mval[2]);
static void initPushPull(TransInfo *t);
static void applyPushPull(TransInfo *t, const int mval[2]);
static void initBevelWeight(TransInfo *t);
static void applyBevelWeight(TransInfo *t, const int mval[2]);
static void initCrease(TransInfo *t);
static void applyCrease(TransInfo *t, const int mval[2]);
static void initBoneSize(TransInfo *t);
static void applyBoneSize(TransInfo *t, const int mval[2]);
static void initBoneEnvelope(TransInfo *t);
static void applyBoneEnvelope(TransInfo *t, const int mval[2]);
static void initBoneRoll(TransInfo *t);
static void applyBoneRoll(TransInfo *t, const int mval[2]);
static void initEdgeSlide(TransInfo *t);
static eRedrawFlag handleEventEdgeSlide(TransInfo *t, const struct wmEvent *event);
static void applyEdgeSlide(TransInfo *t, const int mval[2]);
static void initVertSlide(TransInfo *t);
static eRedrawFlag handleEventVertSlide(TransInfo *t, const struct wmEvent *event);
static void applyVertSlide(TransInfo *t, const int mval[2]);
static void initTimeTranslate(TransInfo *t);
static void applyTimeTranslate(TransInfo *t, const int mval[2]);
static void initTimeSlide(TransInfo *t);
static void applyTimeSlide(TransInfo *t, const int mval[2]);
static void initTimeScale(TransInfo *t);
static void applyTimeScale(TransInfo *t, const int mval[2]);
static void initBakeTime(TransInfo *t);
static void applyBakeTime(TransInfo *t, const int mval[2]);
static void initMirror(TransInfo *t);
static void applyMirror(TransInfo *t, const int mval[2]);
static void initAlign(TransInfo *t);
static void applyAlign(TransInfo *t, const int mval[2]);
static void initSeqSlide(TransInfo *t);
static void applySeqSlide(TransInfo *t, const int mval[2]);
/* end transform callbacks */
static bool transdata_check_local_center(TransInfo *t, short around)
{
return ((around == V3D_LOCAL) && (
(t->flag & (T_OBJECT | T_POSE)) ||
(t->obedit && ELEM4(t->obedit->type, OB_MESH, OB_CURVE, OB_MBALL, OB_ARMATURE)) ||
(t->spacetype == SPACE_IPO) ||
(t->options & (CTX_MOVIECLIP | CTX_MASK)))
);
}
/* ************************** SPACE DEPENDANT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D && t->ar && t->ar->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = t->ar->regiondata;
copy_m4_m4(t->viewmat, rv3d->viewmat);
copy_m4_m4(t->viewinv, rv3d->viewinv);
copy_m4_m4(t->persmat, rv3d->persmat);
copy_m4_m4(t->persinv, rv3d->persinv);
t->persp = rv3d->persp;
}
else {
unit_m4(t->viewmat);
unit_m4(t->viewinv);
unit_m4(t->persmat);
unit_m4(t->persinv);
t->persp = RV3D_ORTHO;
}
calculateCenter2D(t);
}
static void convertViewVec2D(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx, divy;
divx = BLI_rcti_size_x(&v2d->mask);
divy = BLI_rcti_size_y(&v2d->mask);
r_vec[0] = BLI_rctf_size_x(&v2d->cur) * dx / divx;
r_vec[1] = BLI_rctf_size_y(&v2d->cur) * dy / divy;
r_vec[2] = 0.0f;
}
static void convertViewVec2D_mask(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx, divy;
float mulx, muly;
divx = BLI_rcti_size_x(&v2d->mask);
divy = BLI_rcti_size_y(&v2d->mask);
mulx = BLI_rctf_size_x(&v2d->cur);
muly = BLI_rctf_size_y(&v2d->cur);
/* difference with convertViewVec2D */
/* clamp w/h, mask only */
if (mulx / divx < muly / divy) {
divy = divx;
muly = mulx;
}
else {
divx = divy;
mulx = muly;
}
/* end difference */
r_vec[0] = mulx * dx / divx;
r_vec[1] = muly * dy / divy;
r_vec[2] = 0.0f;
}
void convertViewVec(TransInfo *t, float r_vec[3], int dx, int dy)
{
if ((t->spacetype == SPACE_VIEW3D) && (t->ar->regiontype == RGN_TYPE_WINDOW)) {
const float mval_f[2] = {(float)dx, (float)dy};
ED_view3d_win_to_delta(t->ar, mval_f, r_vec, t->zfac);
}
else if (t->spacetype == SPACE_IMAGE) {
float aspx, aspy;
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
ED_space_image_get_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
ED_space_image_get_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
r_vec[0] *= aspx;
r_vec[1] *= aspy;
}
else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
convertViewVec2D(t->view, r_vec, dx, dy);
}
else if (ELEM(t->spacetype, SPACE_NODE, SPACE_SEQ)) {
convertViewVec2D(&t->ar->v2d, r_vec, dx, dy);
}
else if (t->spacetype == SPACE_CLIP) {
float aspx, aspy;
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
}
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(t->sa->spacedata.first, &aspx, &aspy);
}
else if (t->options & CTX_MASK) {
/* TODO - NOT WORKING, this isnt so bad since its only display aspect */
ED_space_clip_get_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
else {
/* should never happen, quiet warnings */
BLI_assert(0);
aspx = aspy = 1.0f;
}
r_vec[0] *= aspx;
r_vec[1] *= aspy;
}
else {
printf("%s: called in an invalid context\n", __func__);
zero_v3(r_vec);
}
}
void projectIntViewEx(TransInfo *t, const float vec[3], int adr[2], const eV3DProjTest flag)
{
if (t->spacetype == SPACE_VIEW3D) {
if (t->ar->regiontype == RGN_TYPE_WINDOW) {
if (ED_view3d_project_int_global(t->ar, vec, adr, flag) != V3D_PROJ_RET_OK) {
adr[0] = (int)2140000000.0f; /* this is what was done in 2.64, perhaps we can be smarter? */
adr[1] = (int)2140000000.0f;
}
}
}
else if (t->spacetype == SPACE_IMAGE) {
SpaceImage *sima = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
/* not working quite right, TODO (see below too) */
float aspx, aspy;
float v[2];
ED_space_image_get_aspect(sima, &aspx, &aspy);
copy_v2_v2(v, vec);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
BKE_mask_coord_to_image(sima->image, &sima->iuser, v, v);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
ED_image_point_pos__reverse(sima, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else {
float aspx, aspy, v[2];
ED_space_image_get_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
v[0] = vec[0] / aspx;
v[1] = vec[1] / aspy;
UI_view2d_view_to_region(t->view, v[0], v[1], &adr[0], &adr[1]);
}
}
else if (t->spacetype == SPACE_ACTION) {
int out[2] = {0, 0};
#if 0
SpaceAction *sact = t->sa->spacedata.first;
if (sact->flag & SACTION_DRAWTIME) {
//vec[0] = vec[0]/((t->scene->r.frs_sec / t->scene->r.frs_sec_base));
/* same as below */
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
}
else
#endif
{
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
}
adr[0] = out[0];
adr[1] = out[1];
}
else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_SEQ) { /* XXX not tested yet, but should work */
int out[2] = {0, 0};
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &out[0], &out[1]);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
MovieClip *clip = ED_space_clip_get_clip(sc);
if (clip) {
/* not working quite right, TODO (see above too) */
float aspx, aspy;
float v[2];
ED_space_clip_get_aspect(sc, &aspx, &aspy);
copy_v2_v2(v, vec);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
BKE_mask_coord_to_movieclip(sc->clip, &sc->user, v, v);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
ED_clip_point_stable_pos__reverse(sc, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else {
adr[0] = 0;
adr[1] = 0;
}
}
else if (t->options & CTX_MOVIECLIP) {
float v[2], aspx, aspy;
copy_v2_v2(v, vec);
ED_space_clip_get_aspect_dimension_aware(t->sa->spacedata.first, &aspx, &aspy);
v[0] /= aspx;
v[1] /= aspy;
UI_view2d_view_to_region(t->view, v[0], v[1], &adr[0], &adr[1]);
}
else {
BLI_assert(0);
}
}
else if (t->spacetype == SPACE_NODE) {
UI_view2d_view_to_region((View2D *)t->view, vec[0], vec[1], &adr[0], &adr[1]);
}
}
void projectIntView(TransInfo *t, const float vec[3], int adr[2])
{
projectIntViewEx(t, vec, adr, V3D_PROJ_TEST_NOP);
}
void projectFloatViewEx(TransInfo *t, const float vec[3], float adr[2], const eV3DProjTest flag)
{
switch (t->spacetype) {
case SPACE_VIEW3D:
{
if (t->ar->regiontype == RGN_TYPE_WINDOW) {
/* allow points behind the view [#33643] */
if (ED_view3d_project_float_global(t->ar, vec, adr, flag) != V3D_PROJ_RET_OK) {
/* XXX, 2.64 and prior did this, weak! */
adr[0] = t->ar->winx / 2.0f;
adr[1] = t->ar->winy / 2.0f;
}
return;
}
break;
}
default:
{
int a[2] = {0, 0};
projectIntView(t, vec, a);
adr[0] = a[0];
adr[1] = a[1];
break;
}
}
}
void projectFloatView(TransInfo *t, const float vec[3], float adr[2])
{
projectFloatViewEx(t, vec, adr, V3D_PROJ_TEST_NOP);
}
void applyAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION)) {
SpaceImage *sima = t->sa->spacedata.first;
float aspx, aspy;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] *= width;
vec[1] *= height;
}
ED_space_image_get_uv_aspect(sima, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
SpaceClip *sc = t->sa->spacedata.first;
float aspx, aspy;
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(sc, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
else if (t->options & CTX_MASK) {
ED_space_clip_get_aspect(sc, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
}
}
}
void removeAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION)) {
SpaceImage *sima = t->sa->spacedata.first;
float aspx, aspy;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] /= width;
vec[1] /= height;
}
ED_space_image_get_uv_aspect(sima, &aspx, &aspy);
vec[0] *= aspx;
vec[1] *= aspy;
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
SpaceClip *sc = t->sa->spacedata.first;
float aspx = 1.0f, aspy = 1.0f;
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(sc, &aspx, &aspy);
}
else if (t->options & CTX_MASK) {
ED_space_clip_get_aspect(sc, &aspx, &aspy);
}
vec[0] *= aspx;
vec[1] *= aspy;
}
}
}
static void viewRedrawForce(const bContext *C, TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D) {
/* Do we need more refined tags? */
if (t->flag & T_POSE)
WM_event_add_notifier(C, NC_OBJECT | ND_POSE, NULL);
else
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
/* for realtime animation record - send notifiers recognised by animation editors */
// XXX: is this notifier a lame duck?
if ((t->animtimer) && IS_AUTOKEY_ON(t->scene))
WM_event_add_notifier(C, NC_OBJECT | ND_KEYS, NULL);
}
else if (t->spacetype == SPACE_ACTION) {
//SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_IPO) {
//SpaceIpo *sipo = (SpaceIpo *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NLA) {
WM_event_add_notifier(C, NC_ANIMATION | ND_NLA | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NODE) {
//ED_area_tag_redraw(t->sa);
WM_event_add_notifier(C, NC_SPACE | ND_SPACE_NODE_VIEW, NULL);
}
else if (t->spacetype == SPACE_SEQ) {
WM_event_add_notifier(C, NC_SCENE | ND_SEQUENCER, NULL);
}
else if (t->spacetype == SPACE_IMAGE) {
if (t->options & CTX_MASK) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
else {
// XXX how to deal with lock?
SpaceImage *sima = (SpaceImage *)t->sa->spacedata.first;
if (sima->lock) WM_event_add_notifier(C, NC_GEOM | ND_DATA, t->obedit->data);
else ED_area_tag_redraw(t->sa);
}
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = (SpaceClip *)t->sa->spacedata.first;
if (ED_space_clip_check_show_trackedit(sc)) {
MovieClip *clip = ED_space_clip_get_clip(sc);
/* objects could be parented to tracking data, so send this for viewport refresh */
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
WM_event_add_notifier(C, NC_MOVIECLIP | NA_EDITED, clip);
}
else if (ED_space_clip_check_show_maskedit(sc)) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
}
}
static void viewRedrawPost(bContext *C, TransInfo *t)
{
ED_area_headerprint(t->sa, NULL);
if (t->spacetype == SPACE_VIEW3D) {
/* if autokeying is enabled, send notifiers that keyframes were added */
if (IS_AUTOKEY_ON(t->scene))
WM_main_add_notifier(NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
/* redraw UV editor */
if (t->mode == TFM_EDGE_SLIDE && (t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT))
WM_event_add_notifier(C, NC_GEOM | ND_DATA, NULL);
/* XXX temp, first hack to get auto-render in compositor work (ton) */
WM_event_add_notifier(C, NC_SCENE | ND_TRANSFORM_DONE, CTX_data_scene(C));
}
#if 0 // TRANSFORM_FIX_ME
if (t->spacetype == SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (t->spacetype == SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (ELEM3(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_IPO)) {
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWACTION, 0);
allqueue(REDRAWNLA, 0);
allqueue(REDRAWIPO, 0);
allqueue(REDRAWTIME, 0);
allqueue(REDRAWBUTSOBJECT, 0);
}
scrarea_queue_headredraw(curarea);
#endif
}
/* ************************** TRANSFORMATIONS **************************** */
static void view_editmove(unsigned short UNUSED(event))
{
#if 0 // TRANSFORM_FIX_ME
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch (event) {
case WHEELUPMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD2);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD4);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD8);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD6);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
#endif
}
/* ************************************************* */
/* NOTE: these defines are saved in keymap files, do not change values but just add new ones */
#define TFM_MODAL_CANCEL 1
#define TFM_MODAL_CONFIRM 2
#define TFM_MODAL_TRANSLATE 3
#define TFM_MODAL_ROTATE 4
#define TFM_MODAL_RESIZE 5
#define TFM_MODAL_SNAP_INV_ON 6
#define TFM_MODAL_SNAP_INV_OFF 7
#define TFM_MODAL_SNAP_TOGGLE 8
#define TFM_MODAL_AXIS_X 9
#define TFM_MODAL_AXIS_Y 10
#define TFM_MODAL_AXIS_Z 11
#define TFM_MODAL_PLANE_X 12
#define TFM_MODAL_PLANE_Y 13
#define TFM_MODAL_PLANE_Z 14
#define TFM_MODAL_CONS_OFF 15
#define TFM_MODAL_ADD_SNAP 16
#define TFM_MODAL_REMOVE_SNAP 17
/* 18 and 19 used by numinput, defined in transform.h
* */
#define TFM_MODAL_PROPSIZE_UP 20
#define TFM_MODAL_PROPSIZE_DOWN 21
#define TFM_MODAL_AUTOIK_LEN_INC 22
#define TFM_MODAL_AUTOIK_LEN_DEC 23
#define TFM_MODAL_EDGESLIDE_UP 24
#define TFM_MODAL_EDGESLIDE_DOWN 25
/* for analog input, like trackpad */
#define TFM_MODAL_PROPSIZE 26
/* called in transform_ops.c, on each regeneration of keymaps */
wmKeyMap *transform_modal_keymap(wmKeyConfig *keyconf)
{
static EnumPropertyItem modal_items[] = {
{TFM_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""},
{TFM_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""},
{TFM_MODAL_TRANSLATE, "TRANSLATE", 0, "Translate", ""},
{TFM_MODAL_ROTATE, "ROTATE", 0, "Rotate", ""},
{TFM_MODAL_RESIZE, "RESIZE", 0, "Resize", ""},
{TFM_MODAL_SNAP_INV_ON, "SNAP_INV_ON", 0, "Invert Snap On", ""},
{TFM_MODAL_SNAP_INV_OFF, "SNAP_INV_OFF", 0, "Invert Snap Off", ""},
{TFM_MODAL_SNAP_TOGGLE, "SNAP_TOGGLE", 0, "Snap Toggle", ""},
{TFM_MODAL_AXIS_X, "AXIS_X", 0, "Orientation X axis", ""},
{TFM_MODAL_AXIS_Y, "AXIS_Y", 0, "Orientation Y axis", ""},
{TFM_MODAL_AXIS_Z, "AXIS_Z", 0, "Orientation Z axis", ""},
{TFM_MODAL_PLANE_X, "PLANE_X", 0, "Orientation X plane", ""},
{TFM_MODAL_PLANE_Y, "PLANE_Y", 0, "Orientation Y plane", ""},
{TFM_MODAL_PLANE_Z, "PLANE_Z", 0, "Orientation Z plane", ""},
{TFM_MODAL_CONS_OFF, "CONS_OFF", 0, "Remove Constraints", ""},
{TFM_MODAL_ADD_SNAP, "ADD_SNAP", 0, "Add Snap Point", ""},
{TFM_MODAL_REMOVE_SNAP, "REMOVE_SNAP", 0, "Remove Last Snap Point", ""},
{NUM_MODAL_INCREMENT_UP, "INCREMENT_UP", 0, "Numinput Increment Up", ""},
{NUM_MODAL_INCREMENT_DOWN, "INCREMENT_DOWN", 0, "Numinput Increment Down", ""},
{TFM_MODAL_PROPSIZE_UP, "PROPORTIONAL_SIZE_UP", 0, "Increase Proportional Influence", ""},
{TFM_MODAL_PROPSIZE_DOWN, "PROPORTIONAL_SIZE_DOWN", 0, "Decrease Proportional Influence", ""},
{TFM_MODAL_AUTOIK_LEN_INC, "AUTOIK_CHAIN_LEN_UP", 0, "Increase Max AutoIK Chain Length", ""},
{TFM_MODAL_AUTOIK_LEN_DEC, "AUTOIK_CHAIN_LEN_DOWN", 0, "Decrease Max AutoIK Chain Length", ""},
{TFM_MODAL_EDGESLIDE_UP, "EDGESLIDE_EDGE_NEXT", 0, "Select next Edge Slide Edge", ""},
{TFM_MODAL_EDGESLIDE_DOWN, "EDGESLIDE_PREV_NEXT", 0, "Select previous Edge Slide Edge", ""},
{TFM_MODAL_PROPSIZE, "PROPORTIONAL_SIZE", 0, "Adjust Proportional Influence", ""},
{0, NULL, 0, NULL, NULL}
};
wmKeyMap *keymap = WM_modalkeymap_get(keyconf, "Transform Modal Map");
/* this function is called for each spacetype, only needs to add map once */
if (keymap && keymap->modal_items) return NULL;
keymap = WM_modalkeymap_add(keyconf, "Transform Modal Map", modal_items);
/* items for modal map */
WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CANCEL);
WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, GKEY, KM_PRESS, 0, 0, TFM_MODAL_TRANSLATE);
WM_modalkeymap_add_item(keymap, RKEY, KM_PRESS, 0, 0, TFM_MODAL_ROTATE);
WM_modalkeymap_add_item(keymap, SKEY, KM_PRESS, 0, 0, TFM_MODAL_RESIZE);
WM_modalkeymap_add_item(keymap, TABKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_SNAP_TOGGLE);
WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON);
WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF);
WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON);
WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF);
WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, 0, 0, TFM_MODAL_ADD_SNAP);
WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, KM_ALT, 0, TFM_MODAL_REMOVE_SNAP);
WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP);
WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN);
WM_modalkeymap_add_item(keymap, MOUSEPAN, 0, 0, 0, TFM_MODAL_PROPSIZE);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, KM_ALT, 0, TFM_MODAL_EDGESLIDE_UP);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, KM_ALT, 0, TFM_MODAL_EDGESLIDE_DOWN);
WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC);
WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC);
return keymap;
}
static void transform_event_xyz_constraint(TransInfo *t, short key_type, char cmode)
{
if (!(t->flag & T_NO_CONSTRAINT)) {
int constraint_axis, constraint_plane;
int edit_2d = (t->flag & T_2D_EDIT);
const char *msg1 = "", *msg2 = "", *msg3 = "";
char axis;
/* Initialize */
switch (key_type) {
case XKEY:
msg1 = IFACE_("along X");
msg2 = IFACE_("along %s X");
msg3 = IFACE_("locking %s X");
axis = 'X';
constraint_axis = CON_AXIS0;
break;
case YKEY:
msg1 = IFACE_("along Y");
msg2 = IFACE_("along %s Y");
msg3 = IFACE_("locking %s Y");
axis = 'Y';
constraint_axis = CON_AXIS1;
break;
case ZKEY:
msg1 = IFACE_("along Z");
msg2 = IFACE_("along %s Z");
msg3 = IFACE_("locking %s Z");
axis = 'Z';
constraint_axis = CON_AXIS2;
break;
default:
/* Invalid key */
return;
}
constraint_plane = ((CON_AXIS0 | CON_AXIS1 | CON_AXIS2) & (~constraint_axis));
if (edit_2d && (key_type != ZKEY)) {
if (cmode == axis) {
stopConstraint(t);
}
else {
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_axis, msg1);
}
}
else if (!edit_2d) {
if (cmode == axis) {
if (t->con.orientation != V3D_MANIP_GLOBAL) {
stopConstraint(t);
}
else {
short orientation = (t->current_orientation != V3D_MANIP_GLOBAL ?
t->current_orientation : V3D_MANIP_LOCAL);
if (!(t->modifiers & MOD_CONSTRAINT_PLANE))
setUserConstraint(t, orientation, constraint_axis, msg2);
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, orientation, constraint_plane, msg3);
}
}
else {
if (!(t->modifiers & MOD_CONSTRAINT_PLANE))
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_axis, msg2);
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_plane, msg3);
}
}
t->redraw |= TREDRAW_HARD;
}
}
int transformEvent(TransInfo *t, const wmEvent *event)
{
char cmode = constraintModeToChar(t);
bool handled = false;
t->redraw |= handleMouseInput(t, &t->mouse, event);
/* Handle modal numinput events first, if already activated. */
if (((event->val == KM_PRESS) || (event->type == EVT_MODAL_MAP)) &&
hasNumInput(&t->num) && handleNumInput(t->context, &(t->num), event))
{
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (event->type == MOUSEMOVE) {
if (t->modifiers & MOD_CONSTRAINT_SELECT)
t->con.mode |= CON_SELECT;
copy_v2_v2_int(t->mval, event->mval);
// t->redraw |= TREDRAW_SOFT; /* Use this for soft redraw. Might cause flicker in object mode */
t->redraw |= TREDRAW_HARD;
if (t->state == TRANS_STARTING) {
t->state = TRANS_RUNNING;
}
applyMouseInput(t, &t->mouse, t->mval, t->values);
// Snapping mouse move events
t->redraw |= handleSnapping(t, event);
handled = true;
}
/* handle modal keymap first */
else if (event->type == EVT_MODAL_MAP) {
switch (event->val) {
case TFM_MODAL_CANCEL:
t->state = TRANS_CANCEL;
handled = true;
break;
case TFM_MODAL_CONFIRM:
t->state = TRANS_CONFIRM;
handled = true;
break;
case TFM_MODAL_TRANSLATE:
/* only switch when... */
if (ELEM5(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_EDGE_SLIDE, TFM_VERT_SLIDE)) {
resetTransModal(t);
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
WM_event_add_mousemove(t->context);
handled = true;
}
else if (t->mode == TFM_SEQ_SLIDE) {
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
else {
if (t->obedit && t->obedit->type == OB_MESH) {
if ((t->mode == TFM_TRANSLATION) && (t->spacetype == SPACE_VIEW3D)) {
resetTransModal(t);
resetTransRestrictions(t);
restoreTransObjects(t);
/* first try edge slide */
initEdgeSlide(t);
/* if that fails, do vertex slide */
if (t->state == TRANS_CANCEL) {
t->state = TRANS_STARTING;
initVertSlide(t);
}
/* vert slide can fail on unconnected vertices (rare but possible) */
if (t->state == TRANS_CANCEL) {
t->state = TRANS_STARTING;
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
WM_event_add_mousemove(t->context);
}
}
else if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
if (t->mode == TFM_TRANSLATION) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
}
break;
case TFM_MODAL_ROTATE:
/* only switch when... */
if (!(t->options & CTX_TEXTURE) && !(t->options & (CTX_MOVIECLIP | CTX_MASK))) {
if (ELEM6(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION, TFM_EDGE_SLIDE, TFM_VERT_SLIDE)) {
resetTransModal(t);
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case TFM_MODAL_RESIZE:
/* only switch when... */
if (ELEM5(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL, TFM_EDGE_SLIDE, TFM_VERT_SLIDE)) {
/* Scale isn't normally very useful after extrude along normals, see T39756 */
if ((t->con.mode & CON_APPLY) && (t->con.orientation == V3D_MANIP_NORMAL)) {
stopConstraint(t);
}
resetTransModal(t);
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (t->mode == TFM_SHRINKFATTEN) {
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
else if (t->mode == TFM_RESIZE) {
if (t->options & CTX_MOVIECLIP) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case TFM_MODAL_SNAP_INV_ON:
t->modifiers |= MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_SNAP_INV_OFF:
t->modifiers &= ~MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_SNAP_TOGGLE:
t->modifiers ^= MOD_SNAP;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_AXIS_X:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
if (cmode == 'X') {
stopConstraint(t);
}
else {
if (t->flag & T_2D_EDIT) {
setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0), IFACE_("along X"));
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0), IFACE_("along %s X"));
}
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AXIS_Y:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
if (cmode == 'Y') {
stopConstraint(t);
}
else {
if (t->flag & T_2D_EDIT) {
setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1), IFACE_("along Y"));
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS1), IFACE_("along %s Y"));
}
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AXIS_Z:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Z') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS2), IFACE_("along %s Z"));
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_X:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'X') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS1 | CON_AXIS2), IFACE_("locking %s X"));
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_Y:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Y') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0 | CON_AXIS2), IFACE_("locking %s Y"));
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PLANE_Z:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Z') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0 | CON_AXIS1), IFACE_("locking %s Z"));
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_CONS_OFF:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
stopConstraint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_ADD_SNAP:
addSnapPoint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_REMOVE_SNAP:
removeSnapPoint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_PROPSIZE:
/* MOUSEPAN usage... */
if (t->flag & T_PROP_EDIT) {
float fac = 1.0f + 0.005f *(event->y - event->prevy);
t->prop_size *= fac;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO)
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->far);
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PROPSIZE_UP:
if (t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO)
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->far);
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_PROPSIZE_DOWN:
if (t->flag & T_PROP_EDIT) {
t->prop_size *= 0.90909090f;
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_EDGESLIDE_UP:
case TFM_MODAL_EDGESLIDE_DOWN:
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case TFM_MODAL_AUTOIK_LEN_INC:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case TFM_MODAL_AUTOIK_LEN_DEC:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
default:
break;
}
}
/* else do non-mapped events */
else if (event->val == KM_PRESS) {
switch (event->type) {
case RIGHTMOUSE:
t->state = TRANS_CANCEL;
handled = true;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers |= MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case SPACEKEY:
t->state = TRANS_CONFIRM;
handled = true;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
/* exception for switching to dolly, or trackball, in camera view */
if (t->flag & T_CAMERA) {
if (t->mode == TFM_TRANSLATION)
setLocalConstraint(t, (CON_AXIS2), IFACE_("along local Z"));
else if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
}
else {
t->modifiers |= MOD_CONSTRAINT_SELECT;
if (t->con.mode & CON_APPLY) {
stopConstraint(t);
}
else {
if (event->shift) {
initSelectConstraint(t, t->spacemtx);
}
else {
/* bit hackish... but it prevents mmb select to print the orientation from menu */
float mati[3][3];
strcpy(t->spacename, "global");
unit_m3(mati);
initSelectConstraint(t, mati);
}
postSelectConstraint(t);
}
}
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case ESCKEY:
t->state = TRANS_CANCEL;
handled = true;
break;
case PADENTER:
case RETKEY:
t->state = TRANS_CONFIRM;
handled = true;
break;
case GKEY:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransModal(t);
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case SKEY:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransModal(t);
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case RKEY:
/* only switch when... */
if (!(t->options & CTX_TEXTURE)) {
if (ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransModal(t);
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case CKEY:
if (event->alt) {
if (!(t->options & CTX_NO_PET)) {
t->flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(t);
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
}
else {
if (!(t->flag & T_NO_CONSTRAINT)) {
stopConstraint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
}
break;
case XKEY:
case YKEY:
case ZKEY:
if (!(t->flag & T_NO_CONSTRAINT)) {
transform_event_xyz_constraint(t, event->type, cmode);
handled = true;
}
break;
case OKEY:
if (t->flag & T_PROP_EDIT && event->shift) {
t->prop_mode = (t->prop_mode + 1) % PROP_MODE_MAX;
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case PADPLUSKEY:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO)
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->far);
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
}
else {
view_editmove(event->type);
}
t->redraw = TREDRAW_HARD;
handled = true;
break;
case PADMINUS:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 0.90909090f;
calculatePropRatio(t);
t->redraw = TREDRAW_HARD;
handled = true;
}
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
}
else {
view_editmove(event->type);
}
t->redraw = TREDRAW_HARD;
handled = true;
break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (ELEM(t->spacetype, SPACE_SEQ, SPACE_VIEW3D)) {
t->flag |= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
default:
break;
}
/* Snapping key events */
t->redraw |= handleSnapping(t, event);
}
else if (event->val == KM_RELEASE) {
switch (event->type) {
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers &= ~MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
handled = true;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
t->modifiers &= ~MOD_CONSTRAINT_SELECT;
postSelectConstraint(t);
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (ELEM(t->spacetype, SPACE_SEQ, SPACE_VIEW3D)) {
t->flag &= ~T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
handled = true;
}
break;
default:
break;
}
/* confirm transform if launch key is released after mouse move */
if (t->flag & T_RELEASE_CONFIRM) {
/* XXX Keyrepeat bug in Xorg messes this up, will test when fixed */
if (event->type == t->launch_event && (t->launch_event == LEFTMOUSE || t->launch_event == RIGHTMOUSE)) {
t->state = TRANS_CONFIRM;
}
}
}
/* Per transform event, if present */
if (t->handleEvent &&
(!handled ||
/* Needed for vertex slide, see [#38756] */
(event->type == MOUSEMOVE)))
{
t->redraw |= t->handleEvent(t, event);
}
/* Try to init modal numinput now, if possible. */
if (!(handled || t->redraw) && ((event->val == KM_PRESS) || (event->type == EVT_MODAL_MAP)) &&
handleNumInput(t->context, &(t->num), event))
{
t->redraw |= TREDRAW_HARD;
handled = true;
}
if (handled || t->redraw) {
return 0;
}
else {
return OPERATOR_PASS_THROUGH;
}
}
bool calculateTransformCenter(bContext *C, int centerMode, float cent3d[3], float cent2d[2])
{
TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data");
bool success;
t->state = TRANS_RUNNING;
/* avoid calculating PET */
t->options = CTX_NO_PET;
t->mode = TFM_DUMMY;
initTransInfo(C, t, NULL, NULL);
/* avoid doing connectivity lookups (when V3D_LOCAL is set) */
t->around = V3D_CENTER;
createTransData(C, t); // make TransData structs from selection
t->around = centerMode; // override userdefined mode
if (t->total == 0) {
success = false;
}
else {
success = true;
calculateCenter(t);
if (cent2d) {
copy_v2_v2(cent2d, t->center2d);
}
if (cent3d) {
// Copy center from constraint center. Transform center can be local
copy_v3_v3(cent3d, t->con.center);
}
}
/* aftertrans does insert keyframes, and clears base flags; doesn't read transdata */
special_aftertrans_update(C, t);
postTrans(C, t);
MEM_freeN(t);
return success;
}
typedef enum {
UP,
DOWN,
LEFT,
RIGHT
} ArrowDirection;
static void drawArrow(ArrowDirection d, short offset, short length, short size)
{
switch (d) {
case LEFT:
offset = -offset;
length = -length;
size = -size;
/* fall-through */
case RIGHT:
glBegin(GL_LINES);
glVertex2s(offset, 0);
glVertex2s(offset + length, 0);
glVertex2s(offset + length, 0);
glVertex2s(offset + length - size, -size);
glVertex2s(offset + length, 0);
glVertex2s(offset + length - size, size);
glEnd();
break;
case DOWN:
offset = -offset;
length = -length;
size = -size;
/* fall-through */
case UP:
glBegin(GL_LINES);
glVertex2s(0, offset);
glVertex2s(0, offset + length);
glVertex2s(0, offset + length);
glVertex2s(-size, offset + length - size);
glVertex2s(0, offset + length);
glVertex2s(size, offset + length - size);
glEnd();
break;
}
}
static void drawArrowHead(ArrowDirection d, short size)
{
switch (d) {
case LEFT:
size = -size;
/* fall-through */
case RIGHT:
glBegin(GL_LINES);
glVertex2s(0, 0);
glVertex2s(-size, -size);
glVertex2s(0, 0);
glVertex2s(-size, size);
glEnd();
break;
case DOWN:
size = -size;
/* fall-through */
case UP:
glBegin(GL_LINES);
glVertex2s(0, 0);
glVertex2s(-size, -size);
glVertex2s(0, 0);
glVertex2s(size, -size);
glEnd();
break;
}
}
static void drawArc(float size, float angle_start, float angle_end, int segments)
{
float delta = (angle_end - angle_start) / segments;
float angle;
int a;
glBegin(GL_LINE_STRIP);
for (angle = angle_start, a = 0; a < segments; angle += delta, a++) {
glVertex2f(cosf(angle) * size, sinf(angle) * size);
}
glVertex2f(cosf(angle_end) * size, sinf(angle_end) * size);
glEnd();
}
static int helpline_poll(bContext *C)
{
ARegion *ar = CTX_wm_region(C);
if (ar && ar->regiontype == RGN_TYPE_WINDOW)
return 1;
return 0;
}
static void drawHelpline(bContext *UNUSED(C), int x, int y, void *customdata)
{
TransInfo *t = (TransInfo *)customdata;
if (t->helpline != HLP_NONE && !(t->flag & T_USES_MANIPULATOR)) {
float vecrot[3], cent[2];
int mval[2];
mval[0] = x;
mval[1] = y;
copy_v3_v3(vecrot, t->center);
if (t->flag & T_EDIT) {
Object *ob = t->obedit;
if (ob) mul_m4_v3(ob->obmat, vecrot);
}
else if (t->flag & T_POSE) {
Object *ob = t->poseobj;
if (ob) mul_m4_v3(ob->obmat, vecrot);
}
projectFloatViewEx(t, vecrot, cent, V3D_PROJ_TEST_CLIP_ZERO);
glPushMatrix();
switch (t->helpline) {
case HLP_SPRING:
UI_ThemeColor(TH_VIEW_OVERLAY);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2iv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(mval[0], mval[1], 0);
glRotatef(-RAD2DEGF(atan2f(cent[0] - t->mval[0], cent[1] - t->mval[1])), 0, 0, 1);
setlinestyle(0);
glLineWidth(3.0);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_HARROW:
UI_ThemeColor(TH_VIEW_OVERLAY);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_VARROW:
UI_ThemeColor(TH_VIEW_OVERLAY);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_ANGLE:
{
float dx = t->mval[0] - cent[0], dy = t->mval[1] - cent[1];
float angle = atan2f(dy, dx);
float dist = sqrtf(dx * dx + dy * dy);
float delta_angle = min_ff(15.0f / dist, (float)M_PI / 4.0f);
float spacing_angle = min_ff(5.0f / dist, (float)M_PI / 12.0f);
UI_ThemeColor(TH_VIEW_OVERLAY);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2iv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(cent[0] - t->mval[0] + mval[0], cent[1] - t->mval[1] + mval[1], 0);
setlinestyle(0);
glLineWidth(3.0);
drawArc(dist, angle - delta_angle, angle - spacing_angle, 10);
drawArc(dist, angle + spacing_angle, angle + delta_angle, 10);
glPushMatrix();
glTranslatef(cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0);
glRotatef(RAD2DEGF(angle - delta_angle), 0, 0, 1);
drawArrowHead(DOWN, 5);
glPopMatrix();
glTranslatef(cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0);
glRotatef(RAD2DEGF(angle + delta_angle), 0, 0, 1);
drawArrowHead(UP, 5);
glLineWidth(1.0);
break;
}
case HLP_TRACKBALL:
{
unsigned char col[3], col2[3];
UI_GetThemeColor3ubv(TH_GRID, col);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
UI_make_axis_color(col, col2, 'X');
glColor3ubv((GLubyte *)col2);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
UI_make_axis_color(col, col2, 'Y');
glColor3ubv((GLubyte *)col2);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
}
}
glPopMatrix();
}
}
static void drawTransformView(const struct bContext *C, ARegion *UNUSED(ar), void *arg)
{
TransInfo *t = arg;
drawConstraint(t);
drawPropCircle(C, t);
drawSnapping(C, t);
/* edge slide, vert slide */
drawEdgeSlide(C, t);
drawVertSlide(C, t);
}
/* just draw a little warning message in the top-right corner of the viewport to warn that autokeying is enabled */
static void drawAutoKeyWarning(TransInfo *UNUSED(t), ARegion *ar)
{
rcti rect;
const char *printable = IFACE_("Auto Keying On");
float printable_size[2];
int xco, yco;
ED_region_visible_rect(ar, &rect);
BLF_width_and_height_default(printable, BLF_DRAW_STR_DUMMY_MAX, &printable_size[0], &printable_size[1]);
xco = rect.xmax - (int)printable_size[0] - 10;
yco = rect.ymax - (int)printable_size[1] - 10;
/* warning text (to clarify meaning of overlays)
* - original color was red to match the icon, but that clashes badly with a less nasty border
*/
UI_ThemeColorShade(TH_TEXT_HI, -50);
#ifdef WITH_INTERNATIONAL
BLF_draw_default(xco, ar->winy - 17, 0.0f, printable, BLF_DRAW_STR_DUMMY_MAX);
#else
BLF_draw_default_ascii(xco, ar->winy - 17, 0.0f, printable, BLF_DRAW_STR_DUMMY_MAX);
#endif
/* autokey recording icon... */
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
xco -= (ICON_DEFAULT_WIDTH + 2);
UI_icon_draw(xco, yco, ICON_REC);
glDisable(GL_BLEND);
}
static void drawTransformPixel(const struct bContext *UNUSED(C), ARegion *ar, void *arg)
{
TransInfo *t = arg;
Scene *scene = t->scene;
Object *ob = OBACT;
/* draw autokeyframing hint in the corner
* - only draw if enabled (advanced users may be distracted/annoyed),
* for objects that will be autokeyframed (no point ohterwise),
* AND only for the active region (as showing all is too overwhelming)
*/
if ((U.autokey_flag & AUTOKEY_FLAG_NOWARNING) == 0) {
if (ar == t->ar) {
if (t->flag & (T_OBJECT | T_POSE)) {
if (ob && autokeyframe_cfra_can_key(scene, &ob->id)) {
drawAutoKeyWarning(t, ar);
}
}
}
}
}
void saveTransform(bContext *C, TransInfo *t, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
int constraint_axis[3] = {0, 0, 0};
int proportional = 0;
PropertyRNA *prop;
// Save back mode in case we're in the generic operator
if ((prop = RNA_struct_find_property(op->ptr, "mode"))) {
RNA_property_enum_set(op->ptr, prop, t->mode);
}
if ((prop = RNA_struct_find_property(op->ptr, "value"))) {
const float *values = (t->flag & T_AUTOVALUES) ? t->auto_values : t->values;
if (RNA_property_array_check(prop)) {
RNA_property_float_set_array(op->ptr, prop, values);
}
else {
RNA_property_float_set(op->ptr, prop, values[0]);
}
}
/* convert flag to enum */
switch (t->flag & T_PROP_EDIT_ALL) {
case T_PROP_EDIT:
proportional = PROP_EDIT_ON;
break;
case (T_PROP_EDIT | T_PROP_CONNECTED):
proportional = PROP_EDIT_CONNECTED;
break;
case (T_PROP_EDIT | T_PROP_PROJECTED):
proportional = PROP_EDIT_PROJECTED;
break;
default:
proportional = PROP_EDIT_OFF;
break;
}
// If modal, save settings back in scene if not set as operator argument
if (t->flag & T_MODAL) {
/* save settings if not set in operator */
/* skip saving proportional edit if it was not actually used */
if (!(t->options & CTX_NO_PET)) {
if ((prop = RNA_struct_find_property(op->ptr, "proportional")) &&
!RNA_property_is_set(op->ptr, prop))
{
if (t->obedit)
ts->proportional = proportional;
else if (t->options & CTX_MASK)
ts->proportional_mask = (proportional != PROP_EDIT_OFF);
else
ts->proportional_objects = (proportional != PROP_EDIT_OFF);
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_size")) &&
!RNA_property_is_set(op->ptr, prop))
{
ts->proportional_size = t->prop_size;
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_edit_falloff")) &&
!RNA_property_is_set(op->ptr, prop))
{
ts->prop_mode = t->prop_mode;
}
}
/* do we check for parameter? */
if (t->modifiers & MOD_SNAP) {
ts->snap_flag |= SCE_SNAP;
}
else {
ts->snap_flag &= ~SCE_SNAP;
}
if (t->spacetype == SPACE_VIEW3D) {
if ((prop = RNA_struct_find_property(op->ptr, "constraint_orientation")) &&
!RNA_property_is_set(op->ptr, prop))
{
View3D *v3d = t->view;
v3d->twmode = t->current_orientation;
}
}
}
if (RNA_struct_find_property(op->ptr, "proportional")) {
RNA_enum_set(op->ptr, "proportional", proportional);
RNA_enum_set(op->ptr, "proportional_edit_falloff", t->prop_mode);
RNA_float_set(op->ptr, "proportional_size", t->prop_size);
}
if ((prop = RNA_struct_find_property(op->ptr, "axis"))) {
RNA_property_float_set_array(op->ptr, prop, t->axis);
}
if ((prop = RNA_struct_find_property(op->ptr, "mirror"))) {
RNA_property_boolean_set(op->ptr, prop, t->flag & T_MIRROR);
}
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis"))) {
/* constraint orientation can be global, event if user selects something else
* so use the orientation in the constraint if set
* */
if (t->con.mode & CON_APPLY) {
RNA_enum_set(op->ptr, "constraint_orientation", t->con.orientation);
}
else {
RNA_enum_set(op->ptr, "constraint_orientation", t->current_orientation);
}
if (t->con.mode & CON_APPLY) {
if (t->con.mode & CON_AXIS0) {
constraint_axis[0] = 1;
}
if (t->con.mode & CON_AXIS1) {
constraint_axis[1] = 1;
}
if (t->con.mode & CON_AXIS2) {
constraint_axis[2] = 1;
}
}
RNA_property_boolean_set_array(op->ptr, prop, constraint_axis);
}
}
/* note: caller needs to free 't' on a 0 return */
bool initTransform(bContext *C, TransInfo *t, wmOperator *op, const wmEvent *event, int mode)
{
int options = 0;
PropertyRNA *prop;
t->context = C;
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
t->state = TRANS_STARTING;
if ((prop = RNA_struct_find_property(op->ptr, "texture_space")) && RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
options |= CTX_TEXTURE;
}
}
t->options = options;
t->mode = mode;
t->launch_event = event ? event->type : -1;
if (t->launch_event == EVT_TWEAK_R) {
t->launch_event = RIGHTMOUSE;
}
else if (t->launch_event == EVT_TWEAK_L) {
t->launch_event = LEFTMOUSE;
}
// XXX Remove this when wm_operator_call_internal doesn't use window->eventstate (which can have type = 0)
// For manipulator only, so assume LEFTMOUSE
if (t->launch_event == 0) {
t->launch_event = LEFTMOUSE;
}
initTransInfo(C, t, op, event);
if (t->spacetype == SPACE_VIEW3D) {
//calc_manipulator_stats(curarea);
initTransformOrientation(C, t);
t->draw_handle_apply = ED_region_draw_cb_activate(t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_IMAGE) {
unit_m3(t->spacemtx);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
//t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_CLIP) {
unit_m3(t->spacemtx);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_NODE) {
unit_m3(t->spacemtx);
/*t->draw_handle_apply = ED_region_draw_cb_activate(t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW);*/
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else
unit_m3(t->spacemtx);
createTransData(C, t); // make TransData structs from selection
if (t->total == 0) {
postTrans(C, t);
return 0;
}
if (event) {
/* keymap for shortcut header prints */
t->keymap = WM_keymap_active(CTX_wm_manager(C), op->type->modalkeymap);
/* Stupid code to have Ctrl-Click on manipulator work ok
*
* do this only for translation/rotation/resize due to only this
* moded are available from manipulator and doing such check could
* lead to keymap conflicts for other modes (see #31584)
*/
if (ELEM3(mode, TFM_TRANSLATION, TFM_ROTATION, TFM_RESIZE)) {
wmKeyMapItem *kmi;
for (kmi = t->keymap->items.first; kmi; kmi = kmi->next) {
if (kmi->propvalue == TFM_MODAL_SNAP_INV_ON && kmi->val == KM_PRESS) {
if ((ELEM(kmi->type, LEFTCTRLKEY, RIGHTCTRLKEY) && event->ctrl) ||
(ELEM(kmi->type, LEFTSHIFTKEY, RIGHTSHIFTKEY) && event->shift) ||
(ELEM(kmi->type, LEFTALTKEY, RIGHTALTKEY) && event->alt) ||
((kmi->type == OSKEY) && event->oskey) )
{
t->modifiers |= MOD_SNAP_INVERT;
}
break;
}
}
}
}
initSnapping(t, op); // Initialize snapping data AFTER mode flags
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
/* EVIL3: extend mode for animation editors also switches modes... but is best way to avoid duplicate code */
mode = t->mode;
calculatePropRatio(t);
calculateCenter(t);
initMouseInput(t, &t->mouse, t->center2d, t->imval);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_SKIN_RESIZE:
initSkinResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
initShear(t);
break;
case TFM_BEND:
initBend(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_MASK_SHRINKFATTEN:
initMaskShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE:
{ /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
bArmature *arm = t->poseobj->data;
if (arm->drawtype == ARM_ENVELOPE)
initBoneEnvelope(t);
else
initBoneSize(t);
break;
}
case TFM_BONE_ENVELOPE:
initBoneEnvelope(t);
break;
case TFM_EDGE_SLIDE:
initEdgeSlide(t);
break;
case TFM_VERT_SLIDE:
initVertSlide(t);
break;
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_DUPLICATE:
/* same as TFM_TIME_EXTEND, but we need the mode info for later
* so that duplicate-culling will work properly
*/
if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA))
initTranslation(t);
else
initTimeTranslate(t);
t->mode = mode;
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA))
initTranslation(t);
else
initTimeTranslate(t);
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
case TFM_SEQ_SLIDE:
initSeqSlide(t);
break;
}
if (t->state == TRANS_CANCEL) {
postTrans(C, t);
return 0;
}
/* overwrite initial values if operator supplied a non-null vector */
if ((prop = RNA_struct_find_property(op->ptr, "value")) && RNA_property_is_set(op->ptr, prop)) {
float values[4] = {0}; /* in case value isn't length 4, avoid uninitialized memory */
if (RNA_property_array_check(prop)) {
RNA_float_get_array(op->ptr, "value", values);
}
else {
values[0] = RNA_float_get(op->ptr, "value");
}
copy_v4_v4(t->values, values);
copy_v4_v4(t->auto_values, values);
t->flag |= T_AUTOVALUES;
}
/* Transformation axis from operator */
if ((prop = RNA_struct_find_property(op->ptr, "axis")) && RNA_property_is_set(op->ptr, prop)) {
RNA_property_float_get_array(op->ptr, prop, t->axis);
normalize_v3(t->axis);
copy_v3_v3(t->axis_orig, t->axis);
}
/* Constraint init from operator */
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis")) && RNA_property_is_set(op->ptr, prop)) {
int constraint_axis[3];
RNA_property_boolean_get_array(op->ptr, prop, constraint_axis);
if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2]) {
t->con.mode |= CON_APPLY;
if (constraint_axis[0]) {
t->con.mode |= CON_AXIS0;
}
if (constraint_axis[1]) {
t->con.mode |= CON_AXIS1;
}
if (constraint_axis[2]) {
t->con.mode |= CON_AXIS2;
}
setUserConstraint(t, t->current_orientation, t->con.mode, "%s");
}
}
t->context = NULL;
return 1;
}
void transformApply(bContext *C, TransInfo *t)
{
t->context = C;
if ((t->redraw & TREDRAW_HARD) || (t->draw_handle_apply == NULL && (t->redraw & TREDRAW_SOFT))) {
selectConstraint(t);
if (t->transform) {
t->transform(t, t->mval); // calls recalcData()
viewRedrawForce(C, t);
}
t->redraw = TREDRAW_NOTHING;
}
else if (t->redraw & TREDRAW_SOFT) {
viewRedrawForce(C, t);
}
/* If auto confirm is on, break after one pass */
if (t->options & CTX_AUTOCONFIRM) {
t->state = TRANS_CONFIRM;
}
t->context = NULL;
}
static void drawTransformApply(const bContext *C, ARegion *UNUSED(ar), void *arg)
{
TransInfo *t = arg;
if (t->redraw & TREDRAW_SOFT) {
t->redraw |= TREDRAW_HARD;
transformApply((bContext *)C, t);
}
}
int transformEnd(bContext *C, TransInfo *t)
{
int exit_code = OPERATOR_RUNNING_MODAL;
t->context = C;
if (t->state != TRANS_STARTING && t->state != TRANS_RUNNING) {
/* handle restoring objects */
if (t->state == TRANS_CANCEL) {
/* exception, edge slide transformed UVs too */
if (t->mode == TFM_EDGE_SLIDE)
doEdgeSlide(t, 0.0f);
exit_code = OPERATOR_CANCELLED;
restoreTransObjects(t); // calls recalcData()
}
else {
exit_code = OPERATOR_FINISHED;
}
/* aftertrans does insert keyframes, and clears base flags; doesn't read transdata */
special_aftertrans_update(C, t);
/* free data */
postTrans(C, t);
/* send events out for redraws */
viewRedrawPost(C, t);
viewRedrawForce(C, t);
}
t->context = NULL;
return exit_code;
}
/* ************************** TRANSFORM LOCKS **************************** */
static void protectedTransBits(short protectflag, float vec[3])
{
if (protectflag & OB_LOCK_LOCX)
vec[0] = 0.0f;
if (protectflag & OB_LOCK_LOCY)
vec[1] = 0.0f;
if (protectflag & OB_LOCK_LOCZ)
vec[2] = 0.0f;
}
static void protectedSizeBits(short protectflag, float size[3])
{
if (protectflag & OB_LOCK_SCALEX)
size[0] = 1.0f;
if (protectflag & OB_LOCK_SCALEY)
size[1] = 1.0f;
if (protectflag & OB_LOCK_SCALEZ)
size[2] = 1.0f;
}
static void protectedRotateBits(short protectflag, float eul[3], const float oldeul[3])
{
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
}
/* this function only does the delta rotation */
/* axis-angle is usually internally stored as quats... */
static void protectedAxisAngleBits(short protectflag, float axis[3], float *angle, float oldAxis[3], float oldAngle)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* axis-angle getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
*angle = oldAngle;
if (protectflag & OB_LOCK_ROTX)
axis[0] = oldAxis[0];
if (protectflag & OB_LOCK_ROTY)
axis[1] = oldAxis[1];
if (protectflag & OB_LOCK_ROTZ)
axis[2] = oldAxis[2];
}
else {
/* axis-angle get limited with euler... */
float eul[3], oldeul[3];
axis_angle_to_eulO(eul, EULER_ORDER_DEFAULT, axis, *angle);
axis_angle_to_eulO(oldeul, EULER_ORDER_DEFAULT, oldAxis, oldAngle);
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
eulO_to_axis_angle(axis, angle, eul, EULER_ORDER_DEFAULT);
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
}
/* this function only does the delta rotation */
static void protectedQuaternionBits(short protectflag, float quat[4], const float oldquat[4])
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* quaternions getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
quat[0] = oldquat[0];
if (protectflag & OB_LOCK_ROTX)
quat[1] = oldquat[1];
if (protectflag & OB_LOCK_ROTY)
quat[2] = oldquat[2];
if (protectflag & OB_LOCK_ROTZ)
quat[3] = oldquat[3];
}
else {
/* quaternions get limited with euler... (compatibility mode) */
float eul[3], oldeul[3], nquat[4], noldquat[4];
float qlen;
qlen = normalize_qt_qt(nquat, quat);
normalize_qt_qt(noldquat, oldquat);
quat_to_eul(eul, nquat);
quat_to_eul(oldeul, noldquat);
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
eul_to_quat(quat, eul);
/* restore original quat size */
mul_qt_fl(quat, qlen);
/* quaternions flip w sign to accumulate rotations correctly */
if ((nquat[0] < 0.0f && quat[0] > 0.0f) ||
(nquat[0] > 0.0f && quat[0] < 0.0f))
{
mul_qt_fl(quat, -1.0f);
}
}
}
/* ******************* TRANSFORM LIMITS ********************** */
static void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *ctiLoc = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_LOCLIMIT);
bConstraintTypeInfo *ctiDist = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_DISTLIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float ctime = (float)(t->scene->r.cfra);
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
unit_m4(cob.matrix);
copy_v3_v3(cob.matrix[3], td->loc);
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
bConstraintTypeInfo *cti = NULL;
ListBase targets = {NULL, NULL};
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) continue;
if (con->enforce == 0.0f) continue;
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data = con->data;
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
cti = ctiLoc;
}
else if (con->type == CONSTRAINT_TYPE_DISTLIMIT) {
bDistLimitConstraint *data = con->data;
if ((data->flag & LIMITDIST_TRANSFORM) == 0)
continue;
cti = ctiDist;
}
if (cti) {
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* get constraint targets if needed */
BKE_constraint_targets_for_solving_get(con, &cob, &targets, ctime);
/* do constraint */
cti->evaluate_constraint(con, &cob, &targets);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
/* free targets list */
BLI_freelistN(&targets);
}
}
/* copy results from cob->matrix */
copy_v3_v3(td->loc, cob.matrix[3]);
}
}
static void constraintob_from_transdata(bConstraintOb *cob, TransData *td)
{
/* Make a temporary bConstraintOb for use by limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(cob, 0, sizeof(bConstraintOb));
if (td->ext) {
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
/* objects and bones do normalization first too, otherwise
* we don't necessarily end up with a rotation matrix, and
* then conversion back to quat gives a different result */
float quat[4];
normalize_qt_qt(quat, td->ext->quat);
quat_to_mat4(cob->matrix, quat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
axis_angle_to_mat4(cob->matrix, &td->ext->quat[1], td->ext->quat[0]);
}
else {
/* eulers */
eulO_to_mat4(cob->matrix, td->ext->rot, td->ext->rotOrder);
}
}
}
static void constraintRotLim(TransInfo *UNUSED(t), TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
bool do_limit = false;
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
/* skip incompatable spacetypes */
if (!ELEM(con->ownspace, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL))
continue;
/* only do conversion if necessary, to preserve quats and eulers */
if (do_limit == false) {
constraintob_from_transdata(&cob, td);
do_limit = true;
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
if (do_limit) {
/* copy results from cob->matrix */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
mat4_to_quat(td->ext->quat, cob.matrix);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
mat4_to_axis_angle(&td->ext->quat[1], &td->ext->quat[0], cob.matrix);
}
else {
/* eulers */
mat4_to_eulO(td->ext->rot, td->ext->rotOrder, cob.matrix);
}
}
}
}
static void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float size_sign[3], size_abs[3];
int i;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
/* separate out sign to apply back later */
for (i = 0; i < 3; i++) {
size_sign[i] = signf(td->ext->size[i]);
size_abs[i] = fabsf(td->ext->size[i]);
}
size_to_mat4(cob.matrix, size_abs);
}
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
/* copy results from cob->matrix */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
/* extrace scale from matrix and apply back sign */
mat4_to_size(td->ext->size, cob.matrix);
mul_v3_v3(td->ext->size, size_sign);
}
}
}
/* -------------------------------------------------------------------- */
/* Transform (Bend) */
/** \name Transform Bend
* \{ */
struct BendCustomData {
float warp_sta[3];
float warp_end[3];
float warp_nor[3];
float warp_tan[3];
/* for applying the mouse distance */
float warp_init_dist;
};
static void initBend(TransInfo *t)
{
const float mval_fl[2] = {UNPACK2(t->mval)};
const float *curs;
float tvec[3];
struct BendCustomData *data;
t->mode = TFM_BEND;
t->transform = Bend;
t->handleEvent = handleEventBend;
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE_SPRING);
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->num.unit_type[1] = B_UNIT_LENGTH;
t->flag |= T_NO_CONSTRAINT;
//copy_v3_v3(t->center, ED_view3d_cursor3d_get(t->scene, t->view));
calculateCenterCursor(t, t->center);
t->val = 0.0f;
data = MEM_callocN(sizeof(*data), __func__);
curs = ED_view3d_cursor3d_get(t->scene, t->view);
copy_v3_v3(data->warp_sta, curs);
ED_view3d_win_to_3d(t->ar, curs, mval_fl, data->warp_end);
copy_v3_v3(data->warp_nor, t->viewinv[2]);
if (t->flag & T_EDIT) {
sub_v3_v3(data->warp_sta, t->obedit->obmat[3]);
sub_v3_v3(data->warp_end, t->obedit->obmat[3]);
}
normalize_v3(data->warp_nor);
/* tangent */
sub_v3_v3v3(tvec, data->warp_end, data->warp_sta);
cross_v3_v3v3(data->warp_tan, tvec, data->warp_nor);
normalize_v3(data->warp_tan);
data->warp_init_dist = len_v3v3(data->warp_end, data->warp_sta);
t->customData = data;
}
static eRedrawFlag handleEventBend(TransInfo *UNUSED(t), const wmEvent *event)
{
eRedrawFlag status = TREDRAW_NOTHING;
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
status = TREDRAW_HARD;
}
return status;
}
static void Bend(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float vec[3];
float pivot[3];
float warp_end_radius[3];
int i;
char str[MAX_INFO_LEN];
const struct BendCustomData *data = t->customData;
const bool is_clamp = (t->flag & T_ALT_TRANSFORM) == 0;
union {
struct { float angle, scale; };
float vector[2];
} values;
/* amount of radians for bend */
copy_v2_v2(values.vector, t->values);
#if 0
snapGrid(t, angle_rad);
#else
/* hrmf, snapping radius is using 'angle' steps, need to convert to something else
* this isnt essential but nicer to give reasonable snapping values for radius */
if (t->tsnap.mode == SCE_SNAP_MODE_INCREMENT) {
const float radius_snap = 0.1f;
const float snap_hack = (t->snap[1] * data->warp_init_dist) / radius_snap;
values.scale *= snap_hack;
snapGridIncrement(t, values.vector);
values.scale /= snap_hack;
}
#endif
if (applyNumInput(&t->num, values.vector)) {
values.scale = values.scale / data->warp_init_dist;
}
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN * 2];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bend Angle: %s Radius: %s Alt, Clamp %s"),
&c[0], &c[NUM_STR_REP_LEN],
WM_bool_as_string(is_clamp));
}
else {
/* default header print */
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bend Angle: %.3f Radius: %.4f, Alt, Clamp %s"),
RAD2DEGF(values.angle), values.scale * data->warp_init_dist,
WM_bool_as_string(is_clamp));
}
copy_v2_v2(t->values, values.vector);
values.angle *= -1.0f;
values.scale *= data->warp_init_dist;
/* calc 'data->warp_end' from 'data->warp_end_init' */
copy_v3_v3(warp_end_radius, data->warp_end);
dist_ensure_v3_v3fl(warp_end_radius, data->warp_sta, values.scale);
/* done */
/* calculate pivot */
copy_v3_v3(pivot, data->warp_sta);
if (values.angle > 0.0f) {
madd_v3_v3fl(pivot, data->warp_tan, -values.scale * shell_angle_to_dist((float)M_PI_2 - values.angle));
}
else {
madd_v3_v3fl(pivot, data->warp_tan, +values.scale * shell_angle_to_dist((float)M_PI_2 + values.angle));
}
for (i = 0; i < t->total; i++, td++) {
float mat[3][3];
float delta[3];
float fac, fac_scaled;
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (UNLIKELY(values.angle == 0.0f)) {
copy_v3_v3(td->loc, td->iloc);
continue;
}
copy_v3_v3(vec, td->iloc);
mul_m3_v3(td->mtx, vec);
fac = line_point_factor_v3(vec, data->warp_sta, warp_end_radius);
if (is_clamp) {
CLAMP(fac, 0.0f, 1.0f);
}
fac_scaled = fac * td->factor;
axis_angle_normalized_to_mat3(mat, data->warp_nor, values.angle * fac_scaled);
interp_v3_v3v3(delta, data->warp_sta, warp_end_radius, fac_scaled);
sub_v3_v3(delta, data->warp_sta);
/* delta is subtracted, rotation adds back this offset */
sub_v3_v3(vec, delta);
sub_v3_v3(vec, pivot);
mul_m3_v3(mat, vec);
add_v3_v3(vec, pivot);
mul_m3_v3(td->smtx, vec);
copy_v3_v3(td->loc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Shear) */
/** \name Transform Shear
* \{ */
static void postInputShear(TransInfo *UNUSED(t), float values[3])
{
mul_v3_fl(values, 0.05f);
}
static void initShear(TransInfo *t)
{
t->mode = TFM_SHEAR;
t->transform = applyShear;
t->handleEvent = handleEventShear;
setInputPostFct(&t->mouse, postInputShear);
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE; /* Don't think we have any unit here? */
t->flag |= T_NO_CONSTRAINT;
}
static eRedrawFlag handleEventShear(TransInfo *t, const wmEvent *event)
{
eRedrawFlag status = TREDRAW_NOTHING;
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
// Use customData pointer to signal Shear direction
if (t->customData == NULL) {
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->customData = (void *)1;
}
else {
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->customData = NULL;
}
status = TREDRAW_HARD;
}
else if (event->type == XKEY && event->val == KM_PRESS) {
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->customData = NULL;
status = TREDRAW_HARD;
}
else if (event->type == YKEY && event->val == KM_PRESS) {
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->customData = (void *)1;
status = TREDRAW_HARD;
}
return status;
}
static void applyShear(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3];
float value;
int i;
char str[MAX_INFO_LEN];
copy_m3_m4(persmat, t->viewmat);
invert_m3_m3(persinv, persmat);
value = t->values[0];
snapGridIncrement(t, &value);
applyNumInput(&t->num, &value);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Shear: %s %s"), c, t->proptext);
}
else {
/* default header print */
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Shear: %.3f %s (Press X or Y to set shear axis)"), value, t->proptext);
}
t->values[0] = value;
unit_m3(smat);
// Custom data signals shear direction
if (t->customData == NULL)
smat[1][0] = value;
else
smat[0][1] = value;
mul_m3_m3m3(tmat, smat, persmat);
mul_m3_m3m3(totmat, persinv, tmat);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->obedit) {
float mat3[3][3];
mul_m3_m3m3(mat3, totmat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, mat3);
}
else {
copy_m3_m3(tmat, totmat);
}
sub_v3_v3v3(vec, td->center, t->center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, t->center);
sub_v3_v3(vec, td->center);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Resize) */
/** \name Transform Resize
* \{ */
static void initResize(TransInfo *t)
{
t->mode = TFM_RESIZE;
t->transform = applyResize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.val_flag[0] |= NUM_NO_ZERO;
t->num.val_flag[1] |= NUM_NO_ZERO;
t->num.val_flag[2] |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void headerResize(TransInfo *t, float vec[3], char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
size_t ofs = 0;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Scale: %s%s %s"),
&tvec[0], t->con.text, t->proptext);
break;
case 1:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Scale: %s : %s%s %s"),
&tvec[0], &tvec[NUM_STR_REP_LEN], t->con.text, t->proptext);
break;
case 2:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Scale: %s : %s : %s%s %s"), &tvec[0],
&tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
break;
}
}
else {
if (t->flag & T_2D_EDIT) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Scale X: %s Y: %s%s %s"),
&tvec[0], &tvec[NUM_STR_REP_LEN], t->con.text, t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Scale X: %s Y: %s Z: %s%s %s"),
&tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
}
/* FLT_EPSILON is too small [#29633], 0.0000001f starts to flip */
#define TX_FLIP_EPS 0.00001f
BLI_INLINE int tx_sign(const float a)
{
return (a < -TX_FLIP_EPS ? 1 : a > TX_FLIP_EPS ? 2 : 3);
}
BLI_INLINE int tx_vec_sign_flip(const float a[3], const float b[3])
{
return ((tx_sign(a[0]) & tx_sign(b[0])) == 0 ||
(tx_sign(a[1]) & tx_sign(b[1])) == 0 ||
(tx_sign(a[2]) & tx_sign(b[2])) == 0);
}
/* smat is reference matrix, only scaled */
static void TransMat3ToSize(float mat[3][3], float smat[3][3], float size[3])
{
float vec[3];
copy_v3_v3(vec, mat[0]);
size[0] = normalize_v3(vec);
copy_v3_v3(vec, mat[1]);
size[1] = normalize_v3(vec);
copy_v3_v3(vec, mat[2]);
size[2] = normalize_v3(vec);
/* first tried with dotproduct... but the sign flip is crucial */
if (tx_vec_sign_flip(mat[0], smat[0]) ) size[0] = -size[0];
if (tx_vec_sign_flip(mat[1], smat[1]) ) size[1] = -size[1];
if (tx_vec_sign_flip(mat[2], smat[2]) ) size[2] = -size[2];
}
static void ElementResize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, t->around)) {
copy_v3_v3(center, td->center);
}
else if (t->options & CTX_MOVIECLIP) {
if (td->flag & TD_INDIVIDUAL_SCALE) {
copy_v3_v3(center, td->center);
}
else {
copy_v3_v3(center, t->center);
}
}
else {
copy_v3_v3(center, t->center);
}
if (td->ext) {
float fsize[3];
if (t->flag & (T_OBJECT | T_TEXTURE | T_POSE)) {
float obsizemat[3][3];
/* Reorient the size mat to fit the oriented object. */
mul_m3_m3m3(obsizemat, tmat, td->axismtx);
/* print_m3("obsizemat", obsizemat); */
TransMat3ToSize(obsizemat, td->axismtx, fsize);
/* print_v3("fsize", fsize); */
}
else {
mat3_to_size(fsize, tmat);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't resize objects itself */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
*td->val = td->ival * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
*td->val = td->ival;
td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor);
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS)
sub_v3_v3v3(vec, td->iloc, center);
else
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
if (t->flag & T_POINTS)
sub_v3_v3(vec, td->iloc);
else
sub_v3_v3(vec, td->center);
mul_v3_fl(vec, td->factor);
if (t->flag & (T_OBJECT | T_POSE)) {
mul_m3_v3(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
static void applyResize(TransInfo *t, const int mval[2])
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[MAX_INFO_LEN];
/* for manipulator, center handle, the scaling can't be done relative to center */
if ((t->flag & T_USES_MANIPULATOR) && t->con.mode == 0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1])) / 100.0f;
}
else {
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGridIncrement(t, size);
if (applyNumInput(&t->num, size)) {
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(size, t->auto_values);
}
copy_v3_v3(t->values, size);
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
/* evil hack - redo resize if cliping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) {
size_to_mat3(mat, size);
if (t->con.applySize)
t->con.applySize(t, NULL, mat);
for (i = 0, td = t->data; i < t->total; i++, td++)
ElementResize(t, td, mat);
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & T_PROP_EDIT_ALL) {
clipUVData(t);
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Skin) */
/** \name Transform Skin
* \{ */
static void initSkinResize(TransInfo *t)
{
t->mode = TFM_SKIN_RESIZE;
t->transform = applySkinResize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.val_flag[0] |= NUM_NO_ZERO;
t->num.val_flag[1] |= NUM_NO_ZERO;
t->num.val_flag[2] |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void applySkinResize(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[MAX_INFO_LEN];
ratio = t->values[0];
size[0] = size[1] = size[2] = ratio;
snapGridIncrement(t, size);
if (applyNumInput(&t->num, size)) {
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(size, t->auto_values);
}
copy_v3_v3(t->values, size);
size_to_mat3(mat, size);
headerResize(t, size, str);
for (i = 0, td = t->data; i < t->total; i++, td++) {
float tmat[3][3], smat[3][3];
float fsize[3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, NULL, tmat);
}
mat3_to_size(fsize, tmat);
td->val[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->val[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (ToSphere) */
/** \name Transform ToSphere
* \{ */
static void initToSphere(TransInfo *t)
{
TransData *td = t->data;
int i;
t->mode = TFM_TOSPHERE;
t->transform = applyToSphere;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.val_flag[0] |= NUM_NULL_ONE | NUM_NO_NEGATIVE;
t->flag |= T_NO_CONSTRAINT;
// Calculate average radius
for (i = 0; i < t->total; i++, td++) {
t->val += len_v3v3(t->center, td->iloc);
}
t->val /= (float)t->total;
}
static void applyToSphere(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float ratio, radius;
int i;
char str[MAX_INFO_LEN];
TransData *td = t->data;
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
if (ratio < 0)
ratio = 0.0f;
else if (ratio > 1)
ratio = 1.0f;
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("To Sphere: %s %s"), c, t->proptext);
}
else {
/* default header print */
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("To Sphere: %.4f %s"), ratio, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
float tratio;
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, td->iloc, t->center);
radius = normalize_v3(vec);
tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + t->val * tratio);
add_v3_v3v3(td->loc, t->center, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Rotation) */
/** \name Transform Rotation
* \{ */
static void postInputRotation(TransInfo *t, float values[3])
{
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, t->axis, values);
}
}
static void initRotation(TransInfo *t)
{
t->mode = TFM_ROTATION;
t->transform = applyRotation;
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
if (t->flag & T_2D_EDIT)
t->flag |= T_NO_CONSTRAINT;
negate_v3_v3(t->axis, t->viewinv[2]);
normalize_v3(t->axis);
copy_v3_v3(t->axis_orig, t->axis);
}
static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3], short around)
{
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
const float *center;
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, around)) {
center = td->center;
}
else {
center = t->center;
}
if (t->flag & T_POINTS) {
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(smat, vec);
add_v3_v3v3(td->loc, vec, center);
sub_v3_v3v3(vec, td->loc, td->iloc);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
if (td->flag & TD_USEQUAT) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
if (td->ext->quat) {
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->flag & T_POSE) {
float pmtx[3][3], imtx[3][3];
// Extract and invert armature object matrix
copy_m3_m4(pmtx, t->poseobj->obmat);
invert_m3_m3(imtx, pmtx);
if ((td->flag & TD_NO_LOC) == 0) {
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(mat, vec); // Applying rotation
mul_m3_v3(imtx, vec); // To Local space
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center); // Translation needed from the initial location
/* special exception, see TD_PBONE_LOCAL_MTX definition comments */
if (td->flag & TD_PBONE_LOCAL_MTX_P) {
/* do nothing */
}
else if (td->flag & TD_PBONE_LOCAL_MTX_C) {
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(td->ext->l_smtx, vec); // To Pose space (Local Location)
}
else {
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(td->smtx, vec); // To Pose space
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
/* MORE HACK: as in some cases the matrix to apply location and rot/scale is not the same,
* and ElementRotation() might be called in Translation context (with align snapping),
* we need to be sure to actually use the *rotation* matrix here...
* So no other way than storing it in some dedicated members of td->ext! */
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't rotate objects itself */
/* euler or quaternion/axis-angle? */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
mul_serie_m3(fmat, td->ext->r_mtx, mat, td->ext->r_smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->ext->r_mtx, mat, td->ext->r_smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float eulmat[3][3];
mul_m3_m3m3(totmat, mat, td->ext->r_mtx);
mul_m3_m3m3(smat, td->ext->r_smtx, totmat);
/* calculate the total rotatation in eulers */
copy_v3_v3(eul, td->ext->irot);
eulO_to_mat3(eulmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = bone rotation */
mul_m3_m3m3(fmat, smat, eulmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0) {
/* translation */
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(mat, vec);
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN) == 0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if ((td->ext->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) {
/* can be called for texture space translate for example, then opt out */
if (td->ext->quat) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float obmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */
eulO_to_mat3(obmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = object rotation */
mul_m3_m3m3(fmat, smat, obmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* correct back for delta rot */
sub_v3_v3v3(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
}
static void applyRotationValue(TransInfo *t, float angle, float axis[3])
{
TransData *td = t->data;
float mat[3][3];
int i;
axis_angle_normalized_to_mat3(mat, axis, angle);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->con.applyRot) {
t->con.applyRot(t, td, axis, NULL);
axis_angle_normalized_to_mat3(mat, axis, angle * td->factor);
}
else if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(mat, axis, angle * td->factor);
}
ElementRotation(t, td, mat, t->around);
}
}
static void applyRotation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
size_t ofs = 0;
float final;
final = t->values[0];
snapGridIncrement(t, &final);
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, t->axis, NULL);
}
else {
/* reset axis if constraint is not set */
copy_v3_v3(t->axis, t->axis_orig);
}
applySnapping(t, &final);
if (applyNumInput(&t->num, &final)) {
/* Clamp between -PI and PI */
final = angle_wrap_rad(final);
}
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Rot: %s %s %s"), &c[0], t->con.text, t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Rot: %.2f%s %s"),
RAD2DEGF(final), t->con.text, t->proptext);
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
t->values[0] = final;
applyRotationValue(t, final, t->axis);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Rotation - Trackball) */
/** \name Transform Rotation - Trackball
* \{ */
static void initTrackball(TransInfo *t)
{
t->mode = TFM_TRACKBALL;
t->transform = applyTrackball;
initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL);
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->num.unit_type[1] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT;
}
static void applyTrackballValue(TransInfo *t, const float axis1[3], const float axis2[3], float angles[2])
{
TransData *td = t->data;
float mat[3][3], smat[3][3], totmat[3][3];
int i;
axis_angle_normalized_to_mat3(smat, axis1, angles[0]);
axis_angle_normalized_to_mat3(totmat, axis2, angles[1]);
mul_m3_m3m3(mat, smat, totmat);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_PROP_EDIT) {
axis_angle_normalized_to_mat3(smat, axis1, td->factor * angles[0]);
axis_angle_normalized_to_mat3(totmat, axis2, td->factor * angles[1]);
mul_m3_m3m3(mat, smat, totmat);
}
ElementRotation(t, td, mat, t->around);
}
}
static void applyTrackball(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
size_t ofs = 0;
float axis1[3], axis2[3];
float mat[3][3], totmat[3][3], smat[3][3];
float phi[2];
copy_v3_v3(axis1, t->persinv[0]);
copy_v3_v3(axis2, t->persinv[1]);
normalize_v3(axis1);
normalize_v3(axis2);
phi[0] = t->values[0];
phi[1] = t->values[1];
snapGridIncrement(t, phi);
applyNumInput(&t->num, phi);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN * 2];
outputNumInput(&(t->num), c);
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Trackball: %s %s %s"),
&c[0], &c[NUM_STR_REP_LEN], t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Trackball: %.2f %.2f %s"),
RAD2DEGF(phi[0]), RAD2DEGF(phi[1]), t->proptext);
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
axis_angle_normalized_to_mat3(smat, axis1, phi[0]);
axis_angle_normalized_to_mat3(totmat, axis2, phi[1]);
mul_m3_m3m3(mat, smat, totmat);
// TRANSFORM_FIX_ME
//copy_m3_m3(t->mat, mat); // used in manipulator
applyTrackballValue(t, axis1, axis2, phi);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Translation) */
/** \name Transform Translation
* \{ */
static void initTranslation(TransInfo *t)
{
if (t->spacetype == SPACE_ACTION) {
/* this space uses time translate */
t->state = TRANS_CANCEL;
}
t->mode = TFM_TRANSLATION;
t->transform = applyTranslation;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = (t->flag & T_2D_EDIT) ? 1 : 2;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
if (t->spacetype == SPACE_VIEW3D) {
RegionView3D *rv3d = t->ar->regiondata;
if (rv3d) {
t->snap[0] = 0.0f;
t->snap[1] = rv3d->gridview * 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
}
else if (ELEM(t->spacetype, SPACE_IMAGE, SPACE_CLIP)) {
t->snap[0] = 0.0f;
t->snap[1] = 0.125f;
t->snap[2] = 0.0625f;
}
else if (t->spacetype == SPACE_NODE) {
t->snap[0] = 0.0f;
t->snap[1] = ED_node_grid_size() * NODE_GRID_STEPS;
t->snap[2] = ED_node_grid_size();
}
else {
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
if (t->spacetype == SPACE_VIEW3D) {
/* Handling units makes only sense in 3Dview... See T38877. */
t->num.unit_type[0] = B_UNIT_LENGTH;
t->num.unit_type[1] = B_UNIT_LENGTH;
t->num.unit_type[2] = B_UNIT_LENGTH;
}
else {
/* SPACE_IPO, SPACE_ACTION, etc. could use some time units, when we have them... */
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
}
static void headerTranslation(TransInfo *t, float vec[3], char str[MAX_INFO_LEN])
{
size_t ofs = 0;
char tvec[NUM_STR_REP_LEN * 3];
char distvec[NUM_STR_REP_LEN];
char autoik[NUM_STR_REP_LEN];
float dist;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
dist = len_v3(t->num.val);
}
else {
float dvec[3];
copy_v3_v3(dvec, vec);
applyAspectRatio(t, dvec);
dist = len_v3(vec);
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) {
const bool do_split = (t->scene->unit.flag & USER_UNIT_OPT_SPLIT) != 0;
int i;
for (i = 0; i < 3; i++) {
bUnit_AsString(&tvec[NUM_STR_REP_LEN * i], NUM_STR_REP_LEN, dvec[i] * t->scene->unit.scale_length,
4, t->scene->unit.system, B_UNIT_LENGTH, do_split, true);
}
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", dvec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", dvec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", dvec[2]);
}
}
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) {
const bool do_split = (t->scene->unit.flag & USER_UNIT_OPT_SPLIT) != 0;
bUnit_AsString(distvec, sizeof(distvec), dist * t->scene->unit.scale_length, 4, t->scene->unit.system,
B_UNIT_LENGTH, do_split, false);
}
else if (dist > 1e10f || dist < -1e10f) {
/* prevent string buffer overflow */
BLI_snprintf(distvec, NUM_STR_REP_LEN, "%.4e", dist);
}
else {
BLI_snprintf(distvec, NUM_STR_REP_LEN, "%.4f", dist);
}
if (t->flag & T_AUTOIK) {
short chainlen = t->settings->autoik_chainlen;
if (chainlen)
BLI_snprintf(autoik, NUM_STR_REP_LEN, IFACE_("AutoIK-Len: %d"), chainlen);
else
autoik[0] = '\0';
}
else
autoik[0] = '\0';
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "D: %s (%s)%s %s %s",
&tvec[0], distvec, t->con.text, t->proptext, autoik);
break;
case 1:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "D: %s D: %s (%s)%s %s %s",
&tvec[0], &tvec[NUM_STR_REP_LEN], distvec, t->con.text, t->proptext, autoik);
break;
case 2:
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "D: %s D: %s D: %s (%s)%s %s %s",
&tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], distvec,
t->con.text, t->proptext, autoik);
break;
}
}
else {
if (t->flag & T_2D_EDIT) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "Dx: %s Dy: %s (%s)%s %s",
&tvec[0], &tvec[NUM_STR_REP_LEN], distvec, t->con.text, t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "Dx: %s Dy: %s Dz: %s (%s)%s %s %s",
&tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], distvec, t->con.text,
t->proptext, autoik);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" Proportional size: %.2f"), t->prop_size);
}
}
static void applyTranslationValue(TransInfo *t, float vec[3])
{
TransData *td = t->data;
float tvec[3];
int i;
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* handle snapping rotation before doing the translation */
if (usingSnappingNormal(t)) {
if (validSnappingNormal(t)) {
const float *original_normal;
float axis[3];
float quat[4];
float mat[3][3];
float angle;
/* In pose mode, we want to align normals with Y axis of bones... */
if (t->flag & T_POSE)
original_normal = td->axismtx[1];
else
original_normal = td->axismtx[2];
cross_v3_v3v3(axis, original_normal, t->tsnap.snapNormal);
angle = saacos(dot_v3v3(original_normal, t->tsnap.snapNormal));
axis_angle_to_quat(quat, axis, angle);
quat_to_mat3(mat, quat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
else {
float mat[3][3];
unit_m3(mat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
}
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, td, vec, tvec, pvec);
}
else {
copy_v3_v3(tvec, vec);
}
mul_m3_v3(td->smtx, tvec);
mul_v3_fl(tvec, td->factor);
protectedTransBits(td->protectflag, tvec);
if (td->loc)
add_v3_v3v3(td->loc, td->iloc, tvec);
constraintTransLim(t, td);
}
}
/* uses t->vec to store actual translation in */
static void applyTranslation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
float tvec[3];
if (applyNumInput(&t->num, t->values)) {
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
t->con.applyVec(t, NULL, t->values, tvec, pvec);
copy_v3_v3(t->values, tvec);
headerTranslation(t, pvec, str);
}
else {
snapGridIncrement(t, t->values);
if (applyNumInput(&t->num, t->values)) {
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
headerTranslation(t, t->values, str);
}
applyTranslationValue(t, t->values);
/* evil hack - redo translation if clipping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 0)) {
applyTranslationValue(t, t->values);
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & T_PROP_EDIT_ALL) {
clipUVData(t);
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Shrink-Fatten) */
/** \name Transform Shrink-Fatten
* \{ */
static void initShrinkFatten(TransInfo *t)
{
// If not in mesh edit mode, fallback to Resize
if (t->obedit == NULL || t->obedit->type != OB_MESH) {
initResize(t);
}
else {
t->mode = TFM_SHRINKFATTEN;
t->transform = applyShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_LENGTH;
t->flag |= T_NO_CONSTRAINT;
}
}
static void applyShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float distance;
int i;
char str[MAX_INFO_LEN];
size_t ofs = 0;
TransData *td = t->data;
distance = -t->values[0];
snapGridIncrement(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
ofs += BLI_strncpy_rlen(str + ofs, IFACE_("Shrink/Fatten:"), MAX_INFO_LEN - ofs);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, " %s", c);
}
else {
/* default header print */
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, " %.4f", distance);
}
if (t->proptext[0]) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, " %s", t->proptext);
}
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, ", (");
if (t->keymap) {
wmKeyMapItem *kmi = WM_modalkeymap_find_propvalue(t->keymap, TFM_MODAL_RESIZE);
if (kmi) {
ofs += WM_keymap_item_to_string(kmi, str + ofs, MAX_INFO_LEN - ofs);
}
}
BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" or Alt) Even Thickness %s"),
WM_bool_as_string((t->flag & T_ALT_TRANSFORM) != 0));
/* done with header string */
t->values[0] = -distance;
for (i = 0; i < t->total; i++, td++) {
float tdistance; /* temp dist */
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* get the final offset */
tdistance = distance * td->factor;
if (td->ext && (t->flag & T_ALT_TRANSFORM)) {
tdistance *= td->ext->isize[0]; /* shell factor */
}
madd_v3_v3v3fl(td->loc, td->iloc, td->axismtx[2], tdistance);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Tilt) */
/** \name Transform Tilt
* \{ */
static void initTilt(TransInfo *t)
{
t->mode = TFM_TILT;
t->transform = applyTilt;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[2]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyTilt(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
int i;
char str[MAX_INFO_LEN];
float final;
final = t->values[0];
snapGridIncrement(t, &final);
applyNumInput(&t->num, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Tilt: %s° %s"), &c[0], t->proptext);
/* XXX For some reason, this seems needed for this op, else RNA prop is not updated... :/ */
t->values[0] = final;
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Tilt: %.2f° %s"), RAD2DEGF(final), t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Curve Shrink/Fatten) */
/** \name Transform Curve Shrink/Fatten
* \{ */
static void initCurveShrinkFatten(TransInfo *t)
{
t->mode = TFM_CURVE_SHRINKFATTEN;
t->transform = applyCurveShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
t->num.val_flag[0] |= NUM_NO_ZERO;
t->flag |= T_NO_CONSTRAINT;
}
static void applyCurveShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float ratio;
int i;
char str[MAX_INFO_LEN];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Shrink/Fatten: %s"), c);
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Shrink/Fatten: %3f"), ratio);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
if (*td->val <= 0.0f) *td->val = 0.001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Mask Shrink/Fatten) */
/** \name Transform Mask Shrink/Fatten
* \{ */
static void initMaskShrinkFatten(TransInfo *t)
{
t->mode = TFM_MASK_SHRINKFATTEN;
t->transform = applyMaskShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_ZERO;
t->num.val_flag[0] |= NUM_NO_ZERO;
t->flag |= T_NO_CONSTRAINT;
}
static void applyMaskShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float ratio;
int i;
bool initial_feather = false;
char str[MAX_INFO_LEN];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Feather Shrink/Fatten: %s"), c);
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Feather Shrink/Fatten: %3f"), ratio);
}
/* detect if no points have feather yet */
if (ratio > 1.0f) {
initial_feather = true;
for (td = t->data, i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->ival >= 0.001f)
initial_feather = false;
}
}
/* apply shrink/fatten */
for (td = t->data, i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
if (initial_feather)
*td->val = td->ival + (ratio - 1.0f) * 0.01f;
else
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
if (*td->val <= 0.0f) *td->val = 0.001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Push/Pull) */
/** \name Transform Push/Pull
* \{ */
static void initPushPull(TransInfo *t)
{
t->mode = TFM_PUSHPULL;
t->transform = applyPushPull;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_LENGTH;
}
static void applyPushPull(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3], axis[3];
float distance;
int i;
char str[MAX_INFO_LEN];
TransData *td = t->data;
distance = t->values[0];
snapGridIncrement(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Push/Pull: %s%s %s"), c, t->con.text, t->proptext);
}
else {
/* default header print */
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Push/Pull: %.4f%s %s"), distance, t->con.text, t->proptext);
}
t->values[0] = distance;
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, axis, NULL);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, t->center, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, td, axis, NULL);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(vec, dvec);
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3(vec);
mul_v3_fl(vec, distance);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bevel Weight) */
/** \name Transform Bevel Weight
* \{ */
static void initBevelWeight(TransInfo *t)
{
t->mode = TFM_BWEIGHT;
t->transform = applyBevelWeight;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBevelWeight(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float weight;
int i;
char str[MAX_INFO_LEN];
weight = t->values[0];
weight -= 1.0f;
if (weight > 1.0f) weight = 1.0f;
snapGridIncrement(t, &weight);
applyNumInput(&t->num, &weight);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (weight >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bevel Weight: +%s %s"), c, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bevel Weight: %s %s"), c, t->proptext);
}
else {
/* default header print */
if (weight >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bevel Weight: +%.3f %s"), weight, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Bevel Weight: %.3f %s"), weight, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Crease) */
/** \name Transform Crease
* \{ */
static void initCrease(TransInfo *t)
{
t->mode = TFM_CREASE;
t->transform = applyCrease;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyCrease(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float crease;
int i;
char str[MAX_INFO_LEN];
crease = t->values[0];
crease -= 1.0f;
if (crease > 1.0f) crease = 1.0f;
snapGridIncrement(t, &crease);
applyNumInput(&t->num, &crease);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (crease >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Crease: +%s %s"), c, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Crease: %s %s"), c, t->proptext);
}
else {
/* default header print */
if (crease >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Crease: +%.3f %s"), crease, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Crease: %.3f %s"), crease, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (EditBone (B-bone) width scaling) */
/** \name Transform B-bone width scaling
* \{ */
static void initBoneSize(TransInfo *t)
{
t->mode = TFM_BONESIZE;
t->transform = applyBoneSize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->idx_max = 2;
t->num.idx_max = 2;
t->num.val_flag[0] |= NUM_NULL_ONE;
t->num.val_flag[1] |= NUM_NULL_ONE;
t->num.val_flag[2] |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
t->num.unit_type[2] = B_UNIT_NONE;
}
static void headerBoneSize(TransInfo *t, float vec[3], char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
/* hmm... perhaps the y-axis values don't need to be shown? */
if (t->con.mode & CON_APPLY) {
if (t->num.idx_max == 0)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("ScaleB: %s%s %s"), &tvec[0], t->con.text, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("ScaleB: %s : %s : %s%s %s"),
&tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("ScaleB X: %s Y: %s Z: %s%s %s"),
&tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
}
}
static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* we've tucked the scale in loc */
oldy = td->iloc[1];
size_to_mat3(sizemat, td->iloc);
mul_m3_m3m3(tmat, tmat, sizemat);
mat3_to_size(td->loc, tmat);
td->loc[1] = oldy;
}
static void applyBoneSize(TransInfo *t, const int mval[2])
{
TransData *td = t->data;
float size[3], mat[3][3];
float ratio;
int i;
char str[MAX_INFO_LEN];
// TRANSFORM_FIX_ME MOVE TO MOUSE INPUT
/* for manipulator, center handle, the scaling can't be done relative to center */
if ((t->flag & T_USES_MANIPULATOR) && t->con.mode == 0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1])) / 100.0f;
}
else {
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGridIncrement(t, size);
if (applyNumInput(&t->num, size)) {
constraintNumInput(t, size);
}
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerBoneSize(t, size, str);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementBoneSize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bone Envelope) */
/** \name Transform Bone Envelope
* \{ */
static void initBoneEnvelope(TransInfo *t)
{
t->mode = TFM_BONE_ENVELOPE;
t->transform = applyBoneEnvelope;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBoneEnvelope(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float ratio;
int i;
char str[MAX_INFO_LEN];
ratio = t->values[0];
snapGridIncrement(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Envelope: %s"), c);
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Envelope: %3f"), ratio);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
/* if the old/original value was 0.0f, then just use ratio */
if (td->ival)
*td->val = td->ival * ratio;
else
*td->val = ratio;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Edge Slide) */
/** \name Transform Edge Slide
* \{ */
static BMEdge *get_other_edge(BMVert *v, BMEdge *e)
{
BMIter iter;
BMEdge *e_iter;
BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e_iter, BM_ELEM_SELECT) && e_iter != e) {
return e_iter;
}
}
return NULL;
}
/* interpoaltes along a line made up of 2 segments (used for edge slide) */
static void interp_line_v3_v3v3v3(float p[3], const float v1[3], const float v2[3], const float v3[3], const float t)
{
float t_mid, t_delta;
/* could be pre-calculated */
t_mid = line_point_factor_v3(v2, v1, v3);
t_delta = t - t_mid;
if (fabsf(t_delta) < FLT_EPSILON) {
copy_v3_v3(p, v2);
}
else if (t_delta < 0.0f) {
interp_v3_v3v3(p, v1, v2, t / t_mid);
}
else {
interp_v3_v3v3(p, v2, v3, (t - t_mid) / (1.0f - t_mid));
}
}
static void len_v3_ensure(float v[3], const float length)
{
normalize_v3(v);
mul_v3_fl(v, length);
}
/**
* Find the closest point on the ngon on the opposite side.
* used to set the edge slide distance for ngons.
*/
static bool bm_loop_calc_opposite_co(BMLoop *l_tmp,
const float plane_no[3],
float r_co[3])
{
/* skip adjacent edges */
BMLoop *l_first = l_tmp->next;
BMLoop *l_last = l_tmp->prev;
BMLoop *l_iter;
float dist = FLT_MAX;
l_iter = l_first;
do {
float tvec[3];
if (isect_line_plane_v3(tvec,
l_iter->v->co, l_iter->next->v->co,
l_tmp->v->co, plane_no))
{
const float fac = line_point_factor_v3(tvec, l_iter->v->co, l_iter->next->v->co);
/* allow some overlap to avoid missing the intersection because of float precision */
if ((fac > -FLT_EPSILON) && (fac < 1.0f + FLT_EPSILON)) {
/* likelihood of multiple intersections per ngon is quite low,
* it would have to loop back on its self, but better support it
* so check for the closest opposite edge */
const float tdist = len_v3v3(l_tmp->v->co, tvec);
if (tdist < dist) {
copy_v3_v3(r_co, tvec);
dist = tdist;
}
}
}
} while ((l_iter = l_iter->next) != l_last);
return (dist != FLT_MAX);
}
/**
* Given 2 edges and a loop, step over the loops
* and calculate a direction to slide along.
*
* \param r_slide_vec the direction to slide,
* the length of the vector defines the slide distance.
*/
static BMLoop *get_next_loop(BMVert *v, BMLoop *l,
BMEdge *e_prev, BMEdge *e_next, float r_slide_vec[3])
{
BMLoop *l_first;
float vec_accum[3] = {0.0f, 0.0f, 0.0f};
float vec_accum_len = 0.0f;
int i = 0;
BLI_assert(BM_edge_share_vert(e_prev, e_next) == v);
BLI_assert(BM_vert_in_edge(l->e, v));
l_first = l;
do {
l = BM_loop_other_edge_loop(l, v);
if (l->e == e_next) {
if (i) {
len_v3_ensure(vec_accum, vec_accum_len / (float)i);
}
else {
/* When there is no edge to slide along,
* we must slide along the vector defined by the face we're attach to */
BMLoop *l_tmp = BM_face_vert_share_loop(l_first->f, v);
BLI_assert(ELEM(l_tmp->e, e_prev, e_next) && ELEM(l_tmp->prev->e, e_prev, e_next));
if (l_tmp->f->len == 4) {
/* we could use code below, but in this case
* sliding diagonally across the quad works well */
sub_v3_v3v3(vec_accum, l_tmp->next->next->v->co, v->co);
}
else {
float tdir[3];
BM_loop_calc_face_direction(l_tmp, tdir);
cross_v3_v3v3(vec_accum, l_tmp->f->no, tdir);
#if 0
/* rough guess, we can do better! */
len_v3_ensure(vec_accum, (BM_edge_calc_length(e_prev) + BM_edge_calc_length(e_next)) / 2.0f);
#else
/* be clever, check the opposite ngon edge to slide into.
* this gives best results */
{
float tvec[3];
float dist;
if (bm_loop_calc_opposite_co(l_tmp, tdir, tvec)) {
dist = len_v3v3(l_tmp->v->co, tvec);
}
else {
dist = (BM_edge_calc_length(e_prev) + BM_edge_calc_length(e_next)) / 2.0f;
}
len_v3_ensure(vec_accum, dist);
}
#endif
}
}
copy_v3_v3(r_slide_vec, vec_accum);
return l;
}
else {
/* accumulate the normalized edge vector,
* normalize so some edges don't skew the result */
float tvec[3];
sub_v3_v3v3(tvec, BM_edge_other_vert(l->e, v)->co, v->co);
vec_accum_len += normalize_v3(tvec);
add_v3_v3(vec_accum, tvec);
i += 1;
}
if (BM_loop_other_edge_loop(l, v)->e == e_next) {
if (i) {
len_v3_ensure(vec_accum, vec_accum_len / (float)i);
}
copy_v3_v3(r_slide_vec, vec_accum);
return BM_loop_other_edge_loop(l, v);
}
} while ((l != l->radial_next) &&
((l = l->radial_next) != l_first));
if (i) {
len_v3_ensure(vec_accum, vec_accum_len / (float)i);
}
copy_v3_v3(r_slide_vec, vec_accum);
return NULL;
}
static void calcNonProportionalEdgeSlide(TransInfo *t, EdgeSlideData *sld, const float mval[2])
{
TransDataEdgeSlideVert *sv = sld->sv;
if (sld->totsv > 0) {
ARegion *ar = t->ar;
RegionView3D *rv3d = NULL;
float projectMat[4][4];
int i = 0;
float v_proj[2];
float dist_sq = 0;
float dist_min_sq = FLT_MAX;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
rv3d = t->ar ? t->ar->regiondata : NULL;
}
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, t->obedit, projectMat);
}
for (i = 0; i < sld->totsv; i++, sv++) {
/* Set length */
sv->edge_len = len_v3v3(sv->dir_a, sv->dir_b);
ED_view3d_project_float_v2_m4(ar, sv->v->co, v_proj, projectMat);
dist_sq = len_squared_v2v2(mval, v_proj);
if (dist_sq < dist_min_sq) {
dist_min_sq = dist_sq;
sld->curr_sv_index = i;
}
}
}
else {
sld->curr_sv_index = 0;
}
}
static bool createEdgeSlideVerts(TransInfo *t)
{
BMEditMesh *em = BKE_editmesh_from_object(t->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMEdge *e;
BMVert *v;
TransDataEdgeSlideVert *sv_array;
int sv_tot;
BMBVHTree *btree;
int *sv_table; /* BMVert -> sv_array index */
EdgeSlideData *sld = MEM_callocN(sizeof(*sld), "sld");
View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
ARegion *ar = t->ar;
float projectMat[4][4];
float mval[2] = {(float)t->mval[0], (float)t->mval[1]};
float mval_start[2], mval_end[2];
float mval_dir[3], maxdist, (*loop_dir)[3], *loop_maxdist;
int numsel, i, j, loop_nr, l_nr;
int use_btree_disp;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
}
if ((t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT) &&
/* don't do this at all for non-basis shape keys, too easy to
* accidentally break uv maps or vertex colors then */
(bm->shapenr <= 1))
{
sld->use_origfaces = true;
}
else {
sld->use_origfaces = false;
}
sld->is_proportional = true;
sld->curr_sv_index = 0;
sld->flipped_vtx = false;
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, t->obedit, projectMat);
}
/*ensure valid selection*/
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BMIter iter2;
numsel = 0;
BM_ITER_ELEM (e, &iter2, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
/* BMESH_TODO: this is probably very evil,
* set v->e to a selected edge*/
v->e = e;
numsel++;
}
}
if (numsel == 0 || numsel > 2) {
MEM_freeN(sld);
return false; /* invalid edge selection */
}
}
}
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
/* note, any edge with loops can work, but we won't get predictable results, so bail out */
if (!BM_edge_is_manifold(e) && !BM_edge_is_boundary(e)) {
/* can edges with at least once face user */
MEM_freeN(sld);
return false;
}
}
}
sv_table = MEM_mallocN(sizeof(*sv_table) * bm->totvert, __func__);
j = 0;
BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_elem_flag_enable(v, BM_ELEM_TAG);
sv_table[i] = j;
j += 1;
}
else {
BM_elem_flag_disable(v, BM_ELEM_TAG);
sv_table[i] = -1;
}
BM_elem_index_set(v, i); /* set_inline */
}
bm->elem_index_dirty &= ~BM_VERT;
if (!j) {
MEM_freeN(sld);
MEM_freeN(sv_table);
return false;
}
sv_tot = j;
sv_array = MEM_callocN(sizeof(TransDataEdgeSlideVert) * sv_tot, "sv_array");
loop_nr = 0;
while (1) {
float vec_a[3], vec_b[3];
BMLoop *l_a, *l_b;
BMVert *v_first;
v = NULL;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_TAG))
break;
}
if (!v)
break;
if (!v->e)
continue;
v_first = v;
/*walk along the edge loop*/
e = v->e;
/*first, rewind*/
numsel = 0;
do {
e = get_other_edge(v, e);
if (!e) {
e = v->e;
break;
}
numsel += 1;
if (!BM_elem_flag_test(BM_edge_other_vert(e, v), BM_ELEM_TAG))
break;
v = BM_edge_other_vert(e, v);
} while (e != v_first->e);
BM_elem_flag_disable(v, BM_ELEM_TAG);
l_a = e->l;
l_b = e->l->radial_next;
/* regarding e_next, use get_next_loop()'s improved interpolation where possible */
{
BMEdge *e_next = get_other_edge(v, e);
if (e_next) {
get_next_loop(v, l_a, e, e_next, vec_a);
}
else {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a, v);
if (BM_vert_edge_count_nonwire(v) == 2)
get_next_loop(v, l_a, e, l_tmp->e, vec_a);
else
sub_v3_v3v3(vec_a, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
/* !BM_edge_is_boundary(e); */
if (l_b != l_a) {
BMEdge *e_next = get_other_edge(v, e);
if (e_next) {
get_next_loop(v, l_b, e, e_next, vec_b);
}
else {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b, v);
if (BM_vert_edge_count_nonwire(v) == 2)
get_next_loop(v, l_b, e, l_tmp->e, vec_b);
else
sub_v3_v3v3(vec_b, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
else {
l_b = NULL;
}
/*iterate over the loop*/
v_first = v;
do {
bool l_a_ok_prev;
bool l_b_ok_prev;
TransDataEdgeSlideVert *sv;
BMVert *v_prev;
BMEdge *e_prev;
/* XXX, 'sv' will initialize multiple times, this is suspicious. see [#34024] */
BLI_assert(v != NULL);
BLI_assert(sv_table[BM_elem_index_get(v)] != -1);
sv = &sv_array[sv_table[BM_elem_index_get(v)]];
sv->v = v;
copy_v3_v3(sv->v_co_orig, v->co);
sv->loop_nr = loop_nr;
if (l_a) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a, v);
sv->v_a = BM_edge_other_vert(l_tmp->e, v);
copy_v3_v3(sv->dir_a, vec_a);
}
if (l_b) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b, v);
sv->v_b = BM_edge_other_vert(l_tmp->e, v);
copy_v3_v3(sv->dir_b, vec_b);
}
v_prev = v;
v = BM_edge_other_vert(e, v);
e_prev = e;
e = get_other_edge(v, e);
if (!e) {
BLI_assert(v != NULL);
BLI_assert(sv_table[BM_elem_index_get(v)] != -1);
sv = &sv_array[sv_table[BM_elem_index_get(v)]];
sv->v = v;
copy_v3_v3(sv->v_co_orig, v->co);
sv->loop_nr = loop_nr;
if (l_a) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_a, v);
sv->v_a = BM_edge_other_vert(l_tmp->e, v);
if (BM_vert_edge_count_nonwire(v) == 2) {
get_next_loop(v, l_a, e_prev, l_tmp->e, sv->dir_a);
}
else {
sub_v3_v3v3(sv->dir_a, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
if (l_b) {
BMLoop *l_tmp = BM_loop_other_edge_loop(l_b, v);
sv->v_b = BM_edge_other_vert(l_tmp->e, v);
if (BM_vert_edge_count_nonwire(v) == 2) {
get_next_loop(v, l_b, e_prev, l_tmp->e, sv->dir_b);
}
else {
sub_v3_v3v3(sv->dir_b, BM_edge_other_vert(l_tmp->e, v)->co, v->co);
}
}
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v_prev, BM_ELEM_TAG);
break;
}
l_a_ok_prev = (l_a != NULL);
l_b_ok_prev = (l_b != NULL);
l_a = l_a ? get_next_loop(v, l_a, e_prev, e, vec_a) : NULL;
l_b = l_b ? get_next_loop(v, l_b, e_prev, e, vec_b) : NULL;
/* find the opposite loop if it was missing previously */
if (l_a == NULL && l_b && (l_b->radial_next != l_b)) l_a = l_b->radial_next;
else if (l_b == NULL && l_a && (l_a->radial_next != l_a)) l_b = l_a->radial_next;
/* if there are non-contiguous faces, we can still recover the loops of the new edges faces */
/* note!, the behavior in this case means edges may move in opposite directions,
* this could be made to work more usefully. */
if (!(l_a && l_b) && (e->l != NULL)) {
if (l_a_ok_prev) {
l_a = e->l;
if (l_a->radial_next != l_a) {
l_b = l_a->radial_next;
}
}
else if (l_b_ok_prev) {
l_b = e->l;
if (l_b->radial_next != l_b) {
l_a = l_b->radial_next;
}
}
}
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v_prev, BM_ELEM_TAG);
} while ((e != v_first->e) && (l_a || l_b));
loop_nr++;
}
/* use for visibility checks */
use_btree_disp = (v3d && t->obedit->dt > OB_WIRE && v3d->drawtype > OB_WIRE);
if (use_btree_disp) {
btree = BKE_bmbvh_new_from_editmesh(em, BMBVH_RESPECT_HIDDEN, NULL, false);
}
else {
btree = NULL;
}
/* EDBM_flag_disable_all(em, BM_ELEM_SELECT); */
sld->sv = sv_array;
sld->totsv = sv_tot;
/* find mouse vectors, the global one, and one per loop in case we have
* multiple loops selected, in case they are oriented different */
zero_v3(mval_dir);
maxdist = -1.0f;
loop_dir = MEM_callocN(sizeof(float) * 3 * loop_nr, "sv loop_dir");
loop_maxdist = MEM_mallocN(sizeof(float) * loop_nr, "sv loop_maxdist");
fill_vn_fl(loop_maxdist, loop_nr, -1.0f);
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
BMIter iter2;
BMEdge *e2;
float d;
/* search cross edges for visible edge to the mouse cursor,
* then use the shared vertex to calculate screen vector*/
for (i = 0; i < 2; i++) {
v = i ? e->v1 : e->v2;
BM_ITER_ELEM (e2, &iter2, v, BM_EDGES_OF_VERT) {
/* screen-space coords */
float sco_a[3], sco_b[3];
if (BM_elem_flag_test(e2, BM_ELEM_SELECT))
continue;
/* This test is only relevant if object is not wire-drawn! See [#32068]. */
if (use_btree_disp && !BMBVH_EdgeVisible(btree, e2, ar, v3d, t->obedit)) {
continue;
}
BLI_assert(sv_table[BM_elem_index_get(v)] != -1);
j = sv_table[BM_elem_index_get(v)];
if (sv_array[j].v_b) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].v_b->co, sco_b, projectMat);
}
else {
add_v3_v3v3(sco_b, v->co, sv_array[j].dir_b);
ED_view3d_project_float_v3_m4(ar, sco_b, sco_b, projectMat);
}
if (sv_array[j].v_a) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].v_a->co, sco_a, projectMat);
}
else {
add_v3_v3v3(sco_a, v->co, sv_array[j].dir_a);
ED_view3d_project_float_v3_m4(ar, sco_a, sco_a, projectMat);
}
/* global direction */
d = dist_to_line_segment_v2(mval, sco_b, sco_a);
if ((maxdist == -1.0f) ||
/* intentionally use 2d size on 3d vector */
(d < maxdist && (len_squared_v2v2(sco_b, sco_a) > 0.1f)))
{
maxdist = d;
sub_v3_v3v3(mval_dir, sco_b, sco_a);
}
/* per loop direction */
l_nr = sv_array[j].loop_nr;
if (loop_maxdist[l_nr] == -1.0f || d < loop_maxdist[l_nr]) {
loop_maxdist[l_nr] = d;
sub_v3_v3v3(loop_dir[l_nr], sco_b, sco_a);
}
}
}
}
}
/* possible all of the edge loops are pointing directly at the view */
if (UNLIKELY(len_squared_v2(mval_dir) < 0.1f)) {
mval_dir[0] = 0.0f;
mval_dir[1] = 100.0f;
}
bmesh_edit_begin(bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
if (sld->use_origfaces) {
sld->origfaces = BLI_ghash_ptr_new(__func__);
sld->bm_origfaces = BM_mesh_create(&bm_mesh_allocsize_default);
/* we need to have matching customdata */
BM_mesh_copy_init_customdata(sld->bm_origfaces, bm, NULL);
}
/*create copies of faces for customdata projection*/
sv_array = sld->sv;
for (i = 0; i < sld->totsv; i++, sv_array++) {
BMIter fiter;
BMFace *f;
if (sld->use_origfaces) {
BM_ITER_ELEM (f, &fiter, sv_array->v, BM_FACES_OF_VERT) {
if (!BLI_ghash_haskey(sld->origfaces, f)) {
BMFace *f_copy = BM_face_copy(sld->bm_origfaces, bm, f, true, true);
BLI_ghash_insert(sld->origfaces, f, f_copy);
}
}
}
/* switch a/b if loop direction is different from global direction */
l_nr = sv_array->loop_nr;
if (dot_v3v3(loop_dir[l_nr], mval_dir) < 0.0f) {
swap_v3_v3(sv_array->dir_a, sv_array->dir_b);
SWAP(BMVert *, sv_array->v_a, sv_array->v_b);
}
}
if (rv3d)
calcNonProportionalEdgeSlide(t, sld, mval);
sld->em = em;
/*zero out start*/
zero_v2(mval_start);
/*dir holds a vector along edge loop*/
copy_v2_v2(mval_end, mval_dir);
mul_v2_fl(mval_end, 0.5f);
sld->mval_start[0] = t->mval[0] + mval_start[0];
sld->mval_start[1] = t->mval[1] + mval_start[1];
sld->mval_end[0] = t->mval[0] + mval_end[0];
sld->mval_end[1] = t->mval[1] + mval_end[1];
sld->perc = 0.0f;
t->customData = sld;
MEM_freeN(sv_table);
if (btree) {
BKE_bmbvh_free(btree);
}
MEM_freeN(loop_dir);
MEM_freeN(loop_maxdist);
return true;
}
void projectEdgeSlideData(TransInfo *t, bool is_final)
{
EdgeSlideData *sld = t->customData;
TransDataEdgeSlideVert *sv;
BMEditMesh *em = sld->em;
int i;
if (sld->use_origfaces == false) {
return;
}
for (i = 0, sv = sld->sv; i < sld->totsv; sv++, i++) {
BMIter fiter;
BMLoop *l;
BM_ITER_ELEM (l, &fiter, sv->v, BM_LOOPS_OF_VERT) {
BMFace *f_copy; /* the copy of 'f' */
BMFace *f_copy_flip; /* the copy of 'f' or detect if we need to flip to the shorter side. */
f_copy = BLI_ghash_lookup(sld->origfaces, l->f);
/* project onto copied projection face */
f_copy_flip = f_copy;
if (BM_elem_flag_test(l->e, BM_ELEM_SELECT) || BM_elem_flag_test(l->prev->e, BM_ELEM_SELECT)) {
/* the loop is attached of the selected edges that are sliding */
BMLoop *l_ed_sel = l;
if (!BM_elem_flag_test(l->e, BM_ELEM_SELECT))
l_ed_sel = l_ed_sel->prev;
if (sld->perc < 0.0f) {
if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->v_b)) {
f_copy_flip = BLI_ghash_lookup(sld->origfaces, l_ed_sel->radial_next->f);
}
}
else if (sld->perc > 0.0f) {
if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->v_a)) {
f_copy_flip = BLI_ghash_lookup(sld->origfaces, l_ed_sel->radial_next->f);
}
}
BLI_assert(f_copy_flip != NULL);
if (!f_copy_flip) {
continue; /* shouldn't happen, but protection */
}
}
else {
/* the loop is attached to only one vertex and not a selected edge,
* this means we have to find a selected edges face going in the right direction
* to copy from else we get bad distortion see: [#31080] */
BMIter eiter;
BMEdge *e_sel;
BLI_assert(l->v == sv->v);
BM_ITER_ELEM (e_sel, &eiter, sv->v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e_sel, BM_ELEM_SELECT)) {
break;
}
}
if (e_sel) {
/* warning if the UV's are not contiguous, this will copy from the _wrong_ UVs
* in fact whenever the face being copied is not 'f_copy' this can happen,
* we could be a lot smarter about this but would need to deal with every UV channel or
* add a way to mask out lauers when calling #BM_loop_interp_from_face() */
/*
* + +----------------+
* \ | |
* (this) l_adj| |
* \ | |
* \| e_sel |
* +----------+----------------+ <- the edge we are sliding.
* /|sv->v |
* / | |
* (or) l_adj| |
* / | |
* + +----------------+
* (above)
* 'other connected loops', attached to sv->v slide faces.
*
* NOTE: The faces connected to the edge may not have contiguous UV's
* so step around the loops to find l_adj.
* However if the 'other loops' are not cotiguous it will still give problems.
*
* A full solution to this would have to store
* per-customdata-layer map of which loops are contiguous
* and take this into account when interpolating.
*
* NOTE: If l_adj's edge isnt manifold then use then
* interpolate the loop from its own face.
* Can happen when 'other connected loops' are disconnected from the face-fan.
*/
BMLoop *l_adj = NULL;
if (sld->perc < 0.0f) {
if (BM_vert_in_face(e_sel->l->f, sv->v_b)) {
l_adj = e_sel->l;
}
else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->v_b)) {
l_adj = e_sel->l->radial_next;
}
}
else if (sld->perc > 0.0f) {
if (BM_vert_in_face(e_sel->l->f, sv->v_a)) {
l_adj = e_sel->l;
}
else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->v_a)) {
l_adj = e_sel->l->radial_next;
}
}
/* step across to the face */
if (l_adj) {
l_adj = BM_loop_other_edge_loop(l_adj, sv->v);
if (!BM_edge_is_boundary(l_adj->e)) {
l_adj = l_adj->radial_next;
}
else {
/* disconnected face-fan, fallback to self */
l_adj = l;
}
f_copy_flip = BLI_ghash_lookup(sld->origfaces, l_adj->f);
}
}
}
/* only loop data, no vertex data since that contains shape keys,
* and we do not want to mess up other shape keys */
BM_loop_interp_from_face(em->bm, l, f_copy_flip, false, false);
if (is_final) {
BM_loop_interp_multires(em->bm, l, f_copy_flip);
if (f_copy != f_copy_flip) {
BM_loop_interp_multires(em->bm, l, f_copy);
}
}
/* make sure face-attributes are correct (e.g. MTexPoly) */
BM_elem_attrs_copy(sld->bm_origfaces, em->bm, f_copy, l->f);
}
}
}
void freeEdgeSlideTempFaces(EdgeSlideData *sld)
{
if (sld->use_origfaces) {
if (sld->bm_origfaces) {
BM_mesh_free(sld->bm_origfaces);
sld->bm_origfaces = NULL;
}
if (sld->origfaces) {
BLI_ghash_free(sld->origfaces, NULL, NULL);
sld->origfaces = NULL;
}
}
}
void freeEdgeSlideVerts(TransInfo *t)
{
EdgeSlideData *sld = t->customData;
if (!sld)
return;
freeEdgeSlideTempFaces(sld);
bmesh_edit_end(sld->em->bm, BMO_OPTYPE_FLAG_UNTAN_MULTIRES);
MEM_freeN(sld->sv);
MEM_freeN(sld);
t->customData = NULL;
recalcData(t);
}
static void initEdgeSlide(TransInfo *t)
{
EdgeSlideData *sld;
t->mode = TFM_EDGE_SLIDE;
t->transform = applyEdgeSlide;
t->handleEvent = handleEventEdgeSlide;
if (!createEdgeSlideVerts(t)) {
t->state = TRANS_CANCEL;
return;
}
sld = t->customData;
if (!sld)
return;
t->customFree = freeEdgeSlideVerts;
/* set custom point first if you want value to be initialized by init */
setCustomPoints(t, &t->mouse, sld->mval_end, sld->mval_start);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO_FLIP);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static eRedrawFlag handleEventEdgeSlide(struct TransInfo *t, const struct wmEvent *event)
{
if (t->mode == TFM_EDGE_SLIDE) {
EdgeSlideData *sld = t->customData;
if (sld) {
switch (event->type) {
case EKEY:
if (event->val == KM_PRESS) {
sld->is_proportional = !sld->is_proportional;
return TREDRAW_HARD;
}
break;
case FKEY:
{
if (event->val == KM_PRESS) {
if (sld->is_proportional == false) {
sld->flipped_vtx = !sld->flipped_vtx;
}
return TREDRAW_HARD;
}
break;
}
case EVT_MODAL_MAP:
{
switch (event->val) {
case TFM_MODAL_EDGESLIDE_DOWN:
{
sld->curr_sv_index = ((sld->curr_sv_index - 1) + sld->totsv) % sld->totsv;
break;
}
case TFM_MODAL_EDGESLIDE_UP:
{
sld->curr_sv_index = (sld->curr_sv_index + 1) % sld->totsv;
break;
}
}
break;
}
default:
break;
}
}
}
return TREDRAW_NOTHING;
}
static void drawEdgeSlide(const struct bContext *C, TransInfo *t)
{
if (t->mode == TFM_EDGE_SLIDE) {
EdgeSlideData *sld = (EdgeSlideData *)t->customData;
/* Non-Prop mode */
if (sld && sld->is_proportional == false) {
View3D *v3d = CTX_wm_view3d(C);
float co_a[3], co_b[3], co_mark[3];
TransDataEdgeSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
const float fac = (sld->perc + 1.0f) / 2.0f;
const float ctrl_size = UI_GetThemeValuef(TH_FACEDOT_SIZE) + 1.5f;
const float guide_size = ctrl_size - 0.5f;
const float line_size = UI_GetThemeValuef(TH_OUTLINE_WIDTH) + 0.5f;
const int alpha_shade = -30;
add_v3_v3v3(co_a, curr_sv->v_co_orig, curr_sv->dir_a);
add_v3_v3v3(co_b, curr_sv->v_co_orig, curr_sv->dir_b);
if (v3d && v3d->zbuf)
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPushAttrib(GL_CURRENT_BIT | GL_LINE_BIT | GL_POINT_BIT);
glPushMatrix();
glMultMatrixf(t->obedit->obmat);
glLineWidth(line_size);
UI_ThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
glBegin(GL_LINES);
if (curr_sv->v_a) {
glVertex3fv(curr_sv->v_a->co);
glVertex3fv(curr_sv->v_co_orig);
}
if (curr_sv->v_b) {
glVertex3fv(curr_sv->v_b->co);
glVertex3fv(curr_sv->v_co_orig);
}
bglEnd();
UI_ThemeColorShadeAlpha(TH_SELECT, -30, alpha_shade);
glPointSize(ctrl_size);
bglBegin(GL_POINTS);
if (sld->flipped_vtx) {
if (curr_sv->v_b) bglVertex3fv(curr_sv->v_b->co);
}
else {
if (curr_sv->v_a) bglVertex3fv(curr_sv->v_a->co);
}
bglEnd();
UI_ThemeColorShadeAlpha(TH_SELECT, 255, alpha_shade);
glPointSize(guide_size);
bglBegin(GL_POINTS);
#if 0
interp_v3_v3v3(co_mark, co_b, co_a, fac);
bglVertex3fv(co_mark);
#endif
interp_line_v3_v3v3v3(co_mark, co_b, curr_sv->v_co_orig, co_a, fac);
bglVertex3fv(co_mark);
bglEnd();
glPopMatrix();
glPopAttrib();
glDisable(GL_BLEND);
if (v3d && v3d->zbuf)
glEnable(GL_DEPTH_TEST);
}
}
}
static int doEdgeSlide(TransInfo *t, float perc)
{
EdgeSlideData *sld = t->customData;
TransDataEdgeSlideVert *svlist = sld->sv, *sv;
int i;
sld->perc = perc;
sv = svlist;
if (sld->is_proportional == true) {
for (i = 0; i < sld->totsv; i++, sv++) {
float vec[3];
if (perc > 0.0f) {
copy_v3_v3(vec, sv->dir_a);
mul_v3_fl(vec, perc);
add_v3_v3v3(sv->v->co, sv->v_co_orig, vec);
}
else {
copy_v3_v3(vec, sv->dir_b);
mul_v3_fl(vec, -perc);
add_v3_v3v3(sv->v->co, sv->v_co_orig, vec);
}
}
}
else {
/**
* Implementation note, non proportional mode ignores the starting positions and uses only the
* a/b verts, this could be changed/improved so the distance is still met but the verts are moved along
* their original path (which may not be straight), however how it works now is OK and matches 2.4x - Campbell
*
* \note len_v3v3(curr_sv->dir_a, curr_sv->dir_b)
* is the same as the distance between the original vert locations, same goes for the lines below.
*/
TransDataEdgeSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
const float curr_length_perc = curr_sv->edge_len * (((sld->flipped_vtx ? perc : -perc) + 1.0f) / 2.0f);
float co_a[3];
float co_b[3];
for (i = 0; i < sld->totsv; i++, sv++) {
if (sv->edge_len > FLT_EPSILON) {
const float fac = min_ff(sv->edge_len, curr_length_perc) / sv->edge_len;
add_v3_v3v3(co_a, sv->v_co_orig, sv->dir_a);
add_v3_v3v3(co_b, sv->v_co_orig, sv->dir_b);
if (sld->flipped_vtx) {
interp_line_v3_v3v3v3(sv->v->co, co_b, sv->v_co_orig, co_a, fac);
}
else {
interp_line_v3_v3v3v3(sv->v->co, co_a, sv->v_co_orig, co_b, fac);
}
}
}
}
projectEdgeSlideData(t, 0);
return 1;
}
static void applyEdgeSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
float final;
EdgeSlideData *sld = t->customData;
bool flipped = sld->flipped_vtx;
bool is_proportional = sld->is_proportional;
final = t->values[0];
snapGridIncrement(t, &final);
/* only do this so out of range values are not displayed */
CLAMP(final, -1.0f, 1.0f);
applyNumInput(&t->num, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (is_proportional) {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Edge Slide: %s (E)ven: %s"),
&c[0], WM_bool_as_string(!is_proportional));
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Edge Slide: %s (E)ven: %s, (F)lipped: %s"),
&c[0], WM_bool_as_string(!is_proportional), WM_bool_as_string(flipped));
}
}
else if (is_proportional) {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Edge Slide: %.4f (E)ven: %s"),
final, WM_bool_as_string(!is_proportional));
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Edge Slide: %.4f (E)ven: %s, (F)lipped: %s"),
final, WM_bool_as_string(!is_proportional), WM_bool_as_string(flipped));
}
CLAMP(final, -1.0f, 1.0f);
t->values[0] = final;
/* do stuff here */
doEdgeSlide(t, final);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Vert Slide) */
/** \name Transform Vert Slide
* \{ */
static void calcVertSlideCustomPoints(struct TransInfo *t)
{
VertSlideData *sld = t->customData;
TransDataVertSlideVert *sv = &sld->sv[sld->curr_sv_index];
const float *co_orig = sv->co_orig_2d;
const float *co_curr = sv->co_link_orig_2d[sv->co_link_curr];
const int mval_start[2] = {co_orig[0], co_orig[1]};
const int mval_end[2] = {co_curr[0], co_curr[1]};
if (sld->flipped_vtx && sld->is_proportional == false) {
setCustomPoints(t, &t->mouse, mval_start, mval_end);
}
else {
setCustomPoints(t, &t->mouse, mval_end, mval_start);
}
}
/**
* Run once when initializing vert slide to find the reference edge
*/
static void calcVertSlideMouseActiveVert(struct TransInfo *t, const int mval[2])
{
VertSlideData *sld = t->customData;
float mval_fl[2] = {UNPACK2(mval)};
TransDataVertSlideVert *sv;
/* set the vertex to use as a reference for the mouse direction 'curr_sv_index' */
float dist_sq = 0.0f;
float dist_min_sq = FLT_MAX;
int i;
for (i = 0, sv = sld->sv; i < sld->totsv; i++, sv++) {
dist_sq = len_squared_v2v2(mval_fl, sv->co_orig_2d);
if (dist_sq < dist_min_sq) {
dist_min_sq = dist_sq;
sld->curr_sv_index = i;
}
}
}
/**
* Run while moving the mouse to slide along the edge matching the mouse direction
*/
static void calcVertSlideMouseActiveEdges(struct TransInfo *t, const int mval[2])
{
VertSlideData *sld = t->customData;
float mval_fl[2] = {UNPACK2(mval)};
float dir[2];
TransDataVertSlideVert *sv;
int i;
/* first get the direction of the original vertex */
sub_v2_v2v2(dir, sld->sv[sld->curr_sv_index].co_orig_2d, mval_fl);
normalize_v2(dir);
for (i = 0, sv = sld->sv; i < sld->totsv; i++, sv++) {
if (sv->co_link_tot > 1) {
float dir_dot_best = -FLT_MAX;
int co_link_curr_best = -1;
int j;
for (j = 0; j < sv->co_link_tot; j++) {
float tdir[2];
float dir_dot;
sub_v2_v2v2(tdir, sv->co_orig_2d, sv->co_link_orig_2d[j]);
normalize_v2(tdir);
dir_dot = dot_v2v2(dir, tdir);
if (dir_dot > dir_dot_best) {
dir_dot_best = dir_dot;
co_link_curr_best = j;
}
}
if (co_link_curr_best != -1) {
sv->co_link_curr = co_link_curr_best;
}
}
}
}
static bool createVertSlideVerts(TransInfo *t)
{
BMEditMesh *em = BKE_editmesh_from_object(t->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMIter eiter;
BMEdge *e;
BMVert *v;
TransDataVertSlideVert *sv_array;
VertSlideData *sld = MEM_callocN(sizeof(*sld), "sld");
// View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
ARegion *ar = t->ar;
float projectMat[4][4];
int j;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
// v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = ar ? ar->regiondata : NULL;
}
sld->is_proportional = true;
sld->curr_sv_index = 0;
sld->flipped_vtx = false;
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, t->obedit, projectMat);
}
j = 0;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
bool ok = false;
if (BM_elem_flag_test(v, BM_ELEM_SELECT) && v->e) {
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
ok = true;
break;
}
}
}
if (ok) {
BM_elem_flag_enable(v, BM_ELEM_TAG);
j += 1;
}
else {
BM_elem_flag_disable(v, BM_ELEM_TAG);
}
}
if (!j) {
MEM_freeN(sld);
return false;
}
sv_array = MEM_callocN(sizeof(TransDataVertSlideVert) * j, "sv_array");
j = 0;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
int k;
sv_array[j].v = v;
copy_v3_v3(sv_array[j].co_orig_3d, v->co);
k = 0;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
k++;
}
}
sv_array[j].co_link_orig_3d = MEM_mallocN(sizeof(*sv_array[j].co_link_orig_3d) * k, __func__);
sv_array[j].co_link_orig_2d = MEM_mallocN(sizeof(*sv_array[j].co_link_orig_2d) * k, __func__);
sv_array[j].co_link_tot = k;
k = 0;
BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
if (!BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
BMVert *v_other = BM_edge_other_vert(e, v);
copy_v3_v3(sv_array[j].co_link_orig_3d[k], v_other->co);
if (ar) {
ED_view3d_project_float_v2_m4(ar,
sv_array[j].co_link_orig_3d[k],
sv_array[j].co_link_orig_2d[k],
projectMat);
}
else {
copy_v2_v2(sv_array[j].co_link_orig_2d[k],
sv_array[j].co_link_orig_3d[k]);
}
k++;
}
}
if (ar) {
ED_view3d_project_float_v2_m4(ar,
sv_array[j].co_orig_3d,
sv_array[j].co_orig_2d,
projectMat);
}
else {
copy_v2_v2(sv_array[j].co_orig_2d,
sv_array[j].co_orig_3d);
}
j++;
}
}
sld->sv = sv_array;
sld->totsv = j;
sld->em = em;
sld->perc = 0.0f;
t->customData = sld;
if (rv3d) {
calcVertSlideMouseActiveVert(t, t->mval);
calcVertSlideMouseActiveEdges(t, t->mval);
}
return true;
}
void freeVertSlideVerts(TransInfo *t)
{
VertSlideData *sld = t->customData;
if (!sld)
return;
if (sld->totsv > 0) {
TransDataVertSlideVert *sv = sld->sv;
int i = 0;
for (i = 0; i < sld->totsv; i++, sv++) {
MEM_freeN(sv->co_link_orig_2d);
MEM_freeN(sv->co_link_orig_3d);
}
}
MEM_freeN(sld->sv);
MEM_freeN(sld);
t->customData = NULL;
recalcData(t);
}
static void initVertSlide(TransInfo *t)
{
VertSlideData *sld;
t->mode = TFM_VERT_SLIDE;
t->transform = applyVertSlide;
t->handleEvent = handleEventVertSlide;
if (!createVertSlideVerts(t)) {
t->state = TRANS_CANCEL;
return;
}
sld = t->customData;
if (!sld)
return;
t->customFree = freeVertSlideVerts;
/* set custom point first if you want value to be initialized by init */
calcVertSlideCustomPoints(t);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static eRedrawFlag handleEventVertSlide(struct TransInfo *t, const struct wmEvent *event)
{
if (t->mode == TFM_VERT_SLIDE) {
VertSlideData *sld = t->customData;
if (sld) {
switch (event->type) {
case EKEY:
if (event->val == KM_PRESS) {
sld->is_proportional = !sld->is_proportional;
if (sld->flipped_vtx) {
calcVertSlideCustomPoints(t);
}
return TREDRAW_HARD;
}
break;
case FKEY:
{
if (event->val == KM_PRESS) {
sld->flipped_vtx = !sld->flipped_vtx;
calcVertSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
}
case CKEY:
{
/* use like a modifier key */
if (event->val == KM_PRESS) {
t->flag ^= T_ALT_TRANSFORM;
calcVertSlideCustomPoints(t);
return TREDRAW_HARD;
}
break;
}
#if 0
case EVT_MODAL_MAP:
{
switch (event->val) {
case TFM_MODAL_EDGESLIDE_DOWN:
{
sld->curr_sv_index = ((sld->curr_sv_index - 1) + sld->totsv) % sld->totsv;
break;
}
case TFM_MODAL_EDGESLIDE_UP:
{
sld->curr_sv_index = (sld->curr_sv_index + 1) % sld->totsv;
break;
}
}
}
#endif
case MOUSEMOVE:
{
/* don't recalculat the best edge */
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
if (is_clamp) {
calcVertSlideMouseActiveEdges(t, event->mval);
}
calcVertSlideCustomPoints(t);
break;
}
default:
break;
}
}
}
return TREDRAW_NOTHING;
}
static void drawVertSlide(const struct bContext *C, TransInfo *t)
{
if (t->mode == TFM_VERT_SLIDE) {
VertSlideData *sld = (VertSlideData *)t->customData;
/* Non-Prop mode */
if (sld) {
View3D *v3d = CTX_wm_view3d(C);
TransDataVertSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
TransDataVertSlideVert *sv;
const float ctrl_size = UI_GetThemeValuef(TH_FACEDOT_SIZE) + 1.5f;
const float line_size = UI_GetThemeValuef(TH_OUTLINE_WIDTH) + 0.5f;
const int alpha_shade = -160;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
int i;
if (v3d && v3d->zbuf)
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPushAttrib(GL_CURRENT_BIT | GL_LINE_BIT | GL_POINT_BIT);
glPushMatrix();
glMultMatrixf(t->obedit->obmat);
glLineWidth(line_size);
UI_ThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
glBegin(GL_LINES);
if (is_clamp) {
sv = sld->sv;
for (i = 0; i < sld->totsv; i++, sv++) {
glVertex3fv(sv->co_orig_3d);
glVertex3fv(sv->co_link_orig_3d[sv->co_link_curr]);
}
}
else {
sv = sld->sv;
for (i = 0; i < sld->totsv; i++, sv++) {
float a[3], b[3];
sub_v3_v3v3(a, sv->co_link_orig_3d[sv->co_link_curr], sv->co_orig_3d);
mul_v3_fl(a, 100.0f);
negate_v3_v3(b, a);
add_v3_v3(a, sv->co_orig_3d);
add_v3_v3(b, sv->co_orig_3d);
glVertex3fv(a);
glVertex3fv(b);
}
}
bglEnd();
glPointSize(ctrl_size);
bglBegin(GL_POINTS);
bglVertex3fv((sld->flipped_vtx && sld->is_proportional == false) ?
curr_sv->co_link_orig_3d[curr_sv->co_link_curr] :
curr_sv->co_orig_3d);
bglEnd();
glPopMatrix();
glPopAttrib();
glDisable(GL_BLEND);
if (v3d && v3d->zbuf)
glEnable(GL_DEPTH_TEST);
}
}
}
static int doVertSlide(TransInfo *t, float perc)
{
VertSlideData *sld = t->customData;
TransDataVertSlideVert *svlist = sld->sv, *sv;
int i;
sld->perc = perc;
sv = svlist;
if (sld->is_proportional == true) {
for (i = 0; i < sld->totsv; i++, sv++) {
interp_v3_v3v3(sv->v->co, sv->co_orig_3d, sv->co_link_orig_3d[sv->co_link_curr], perc);
}
}
else {
TransDataVertSlideVert *sv_curr = &sld->sv[sld->curr_sv_index];
const float edge_len_curr = len_v3v3(sv_curr->co_orig_3d, sv_curr->co_link_orig_3d[sv_curr->co_link_curr]);
const float tperc = perc * edge_len_curr;
for (i = 0; i < sld->totsv; i++, sv++) {
float edge_len;
float dir[3];
sub_v3_v3v3(dir, sv->co_link_orig_3d[sv->co_link_curr], sv->co_orig_3d);
edge_len = normalize_v3(dir);
if (edge_len > FLT_EPSILON) {
if (sld->flipped_vtx) {
madd_v3_v3v3fl(sv->v->co, sv->co_link_orig_3d[sv->co_link_curr], dir, -tperc);
}
else {
madd_v3_v3v3fl(sv->v->co, sv->co_orig_3d, dir, tperc);
}
}
else {
copy_v3_v3(sv->v->co, sv->co_orig_3d);
}
}
}
return 1;
}
static void applyVertSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
size_t ofs = 0;
float final;
VertSlideData *sld = t->customData;
const bool flipped = sld->flipped_vtx;
const bool is_proportional = sld->is_proportional;
const bool is_clamp = !(t->flag & T_ALT_TRANSFORM);
const bool is_constrained = !(is_clamp == false || hasNumInput(&t->num));
final = t->values[0];
snapGridIncrement(t, &final);
/* only do this so out of range values are not displayed */
if (is_constrained) {
CLAMP(final, 0.0f, 1.0f);
}
applyNumInput(&t->num, &final);
/* header string */
ofs += BLI_strncpy_rlen(str + ofs, IFACE_("Vert Slide: "), MAX_INFO_LEN - ofs);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
ofs += BLI_strncpy_rlen(str + ofs, &c[0], MAX_INFO_LEN - ofs);
}
else {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, "%.4f ", final);
}
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("(E)ven: %s, "), WM_bool_as_string(!is_proportional));
if (!is_proportional) {
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("(F)lipped: %s, "), WM_bool_as_string(flipped));
}
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Alt or (C)lamp: %s"), WM_bool_as_string(is_clamp));
/* done with header string */
/* do stuff here */
doVertSlide(t, final);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (EditBone Roll) */
/** \name Transform EditBone Roll
* \{ */
static void initBoneRoll(TransInfo *t)
{
t->mode = TFM_BONE_ROLL;
t->transform = applyBoneRoll;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = DEG2RAD(5.0);
t->snap[2] = DEG2RAD(1.0);
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
t->num.unit_type[0] = B_UNIT_ROTATION;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
static void applyBoneRoll(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
int i;
char str[MAX_INFO_LEN];
float final;
final = t->values[0];
snapGridIncrement(t, &final);
applyNumInput(&t->num, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Roll: %s"), &c[0]);
}
else {
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Roll: %.2f"), RAD2DEGF(final));
}
/* set roll values */
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
*(td->val) = td->ival - final;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Bake-Time) */
/** \name Transform Bake-Time
* \{ */
static void initBakeTime(TransInfo *t)
{
t->transform = applyBakeTime;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE; /* Don't think this uses units? */
}
static void applyBakeTime(TransInfo *t, const int mval[2])
{
TransData *td = t->data;
float time;
int i;
char str[MAX_INFO_LEN];
float fac = 0.1f;
if (t->mouse.precision) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
time = (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac;
time += 0.1f * ((float)(t->center2d[0] * fac - mval[0]) - time);
}
else {
time = (float)(t->center2d[0] - mval[0]) * fac;
}
snapGridIncrement(t, &time);
applyNumInput(&t->num, &time);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (time >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Time: +%s %s"), c, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Time: %s %s"), c, t->proptext);
}
else {
/* default header print */
if (time >= 0.0f)
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Time: +%.3f %s"), time, t->proptext);
else
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Time: %.3f %s"), time, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + time * td->factor;
if (td->ext->size && *td->val < *td->ext->size) *td->val = *td->ext->size;
if (td->ext->quat && *td->val > *td->ext->quat) *td->val = *td->ext->quat;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Mirror) */
/** \name Transform Mirror
* \{ */
static void initMirror(TransInfo *t)
{
t->transform = applyMirror;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->flag |= T_NULL_ONE;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
}
}
static void applyMirror(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float size[3], mat[3][3];
int i;
char str[MAX_INFO_LEN];
/*
* OPTIMIZATION:
* This still recalcs transformation on mouse move
* while it should only recalc on constraint change
* */
/* if an axis has been selected */
if (t->con.mode & CON_APPLY) {
size[0] = size[1] = size[2] = -1;
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("Mirror%s"), t->con.text);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
else {
size[0] = size[1] = size[2] = 1;
size_to_mat3(mat, size);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
if (t->flag & T_2D_EDIT)
ED_area_headerprint(t->sa, IFACE_("Select a mirror axis (X, Y)"));
else
ED_area_headerprint(t->sa, IFACE_("Select a mirror axis (X, Y, Z)"));
}
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Align) */
/** \name Transform Align
* \{ */
static void initAlign(TransInfo *t)
{
t->flag |= T_NO_CONSTRAINT;
t->transform = applyAlign;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
}
static void applyAlign(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float center[3];
int i;
/* saving original center */
copy_v3_v3(center, t->center);
for (i = 0; i < t->total; i++, td++) {
float mat[3][3], invmat[3][3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* around local centers */
if (t->flag & (T_OBJECT | T_POSE)) {
copy_v3_v3(t->center, td->center);
}
else {
if (t->settings->selectmode & SCE_SELECT_FACE) {
copy_v3_v3(t->center, td->center);
}
}
invert_m3_m3(invmat, td->axismtx);
mul_m3_m3m3(mat, t->spacemtx, invmat);
ElementRotation(t, td, mat, t->around);
}
/* restoring original center */
copy_v3_v3(t->center, center);
recalcData(t);
ED_area_headerprint(t->sa, IFACE_("Align"));
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Sequencer Slide) */
/** \name Transform Sequencer Slide
* \{ */
static void initSeqSlide(TransInfo *t)
{
t->transform = applySeqSlide;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = 1;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
t->snap[0] = 0.0f;
t->snap[1] = floor(t->scene->r.frs_sec / t->scene->r.frs_sec_base);
t->snap[2] = 10.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* Would be nice to have a time handling in units as well (supporting frames in addition to "natural" time...). */
t->num.unit_type[0] = B_UNIT_NONE;
t->num.unit_type[1] = B_UNIT_NONE;
}
static void headerSeqSlide(TransInfo *t, float val[2], char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
size_t ofs = 0;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.0f, %.0f", val[0], val[1]);
}
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_("Sequence Slide: %s%s, ("), &tvec[0], t->con.text);
if (t->keymap) {
wmKeyMapItem *kmi = WM_modalkeymap_find_propvalue(t->keymap, TFM_MODAL_TRANSLATE);
if (kmi) {
ofs += WM_keymap_item_to_string(kmi, str + ofs, MAX_INFO_LEN - ofs);
}
}
ofs += BLI_snprintf(str + ofs, MAX_INFO_LEN - ofs, IFACE_(" or Alt) Expand to fit %s"),
WM_bool_as_string((t->flag & T_ALT_TRANSFORM) != 0));
}
static void applySeqSlideValue(TransInfo *t, const float val[2])
{
TransData *td = t->data;
int i;
for (i = 0; i < t->total; i++, td++) {
float tvec[2];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
copy_v2_v2(tvec, val);
mul_v2_fl(tvec, td->factor);
td->loc[0] = td->iloc[0] + tvec[0];
td->loc[1] = td->iloc[1] + tvec[1];
}
}
static void applySeqSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
float tvec[3];
t->con.applyVec(t, NULL, t->values, tvec, pvec);
copy_v3_v3(t->values, tvec);
}
else {
snapGridIncrement(t, t->values);
applyNumInput(&t->num, t->values);
}
t->values[0] = floor(t->values[0] + 0.5f);
t->values[1] = floor(t->values[1] + 0.5f);
headerSeqSlide(t, t->values, str);
applySeqSlideValue(t, t->values);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Animation Editors - Transform Utils
*
* Special Helpers for Various Settings
*/
/** \name Animation Editor Utils
* \{ */
/* This function returns the snapping 'mode' for Animation Editors only
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*/
// XXX these modifier checks should be keymappable
static short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap = SACTSNAP_OFF;
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
if (saction)
autosnap = saction->autosnap;
}
else if (t->spacetype == SPACE_IPO) {
SpaceIpo *sipo = (SpaceIpo *)t->sa->spacedata.first;
if (sipo)
autosnap = sipo->autosnap;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla = (SpaceNla *)t->sa->spacedata.first;
if (snla)
autosnap = snla->autosnap;
}
else {
autosnap = SACTSNAP_OFF;
}
/* toggle autosnap on/off
* - when toggling on, prefer nearest frame over 1.0 frame increments
*/
if (t->modifiers & MOD_SNAP_INVERT) {
if (autosnap)
autosnap = SACTSNAP_OFF;
else
autosnap = SACTSNAP_FRAME;
}
return autosnap;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
static void doAnimEdit_SnapFrame(TransInfo *t, TransData *td, TransData2D *td2d, AnimData *adt, short autosnap)
{
/* snap key to nearest frame or second? */
if (ELEM(autosnap, SACTSNAP_FRAME, SACTSNAP_SECOND)) {
const Scene *scene = t->scene;
const double secf = FPS;
double val;
/* convert frame to nla-action time (if needed) */
if (adt)
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val = *(td->val);
/* do the snapping to nearest frame/second */
if (autosnap == SACTSNAP_FRAME) {
val = floorf(val + 0.5);
}
else if (autosnap == SACTSNAP_SECOND) {
val = (float)(floor((val / secf) + 0.5) * secf);
}
/* convert frame out of nla-action time */
if (adt)
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val) = val;
}
/* snap key to nearest marker? */
else if (autosnap == SACTSNAP_MARKER) {
float val;
/* convert frame to nla-action time (if needed) */
if (adt)
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val = *(td->val);
/* snap to nearest marker */
// TODO: need some more careful checks for where data comes from
val = (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val);
/* convert frame out of nla-action time */
if (adt)
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val) = val;
}
/* if the handles are to be moved too (as side-effect of keyframes moving, to keep the general effect)
* offset them by the same amount so that the general angles are maintained (i.e. won't change while
* handles are free-to-roam and keyframes are snap-locked)
*/
if ((td->flag & TD_MOVEHANDLE1) && td2d->h1) {
td2d->h1[0] = td2d->ih1[0] + *td->val - td->ival;
}
if ((td->flag & TD_MOVEHANDLE2) && td2d->h2) {
td2d->h2[0] = td2d->ih2[0] + *td->val - td->ival;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Translation) */
/** \name Transform Animation Translation
* \{ */
static void initTimeTranslate(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (!ELEM(t->spacetype, SPACE_ACTION, SPACE_SEQ)) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_TRANSLATE;
t->transform = applyTimeTranslate;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* No time unit supporting frames currently... */
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeTranslate(TransInfo *t, char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
/* if numeric input is active, use results from that, otherwise apply snapping to result */
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
const Scene *scene = t->scene;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
float val = t->values[0];
/* apply snapping + frame->seconds conversions */
if (autosnap == SACTSNAP_STEP) {
/* frame step */
val = floorf(val + 0.5f);
}
else if (autosnap == SACTSNAP_TSTEP) {
/* second step */
val = floorf((double)val / secf + 0.5);
}
else {
/* nearest frame/second/marker */
val = (float)((double)val / secf);
}
if (autosnap == SACTSNAP_FRAME)
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%d.00 (%.4f)", (int)val, val);
else
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", val);
}
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("DeltaX: %s"), &tvec[0]);
}
static void applyTimeTranslateValue(TransInfo *t, float UNUSED(sval))
{
TransData *td = t->data;
TransData2D *td2d = t->data2d;
Scene *scene = t->scene;
int i;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
float deltax, val /* , valprev */;
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0; i < t->total; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
/* valprev = *td->val; */ /* UNUSED */
/* check if any need to apply nla-mapping */
if (adt && (t->spacetype != SPACE_SEQ)) {
deltax = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
deltax = (float)(floor(((double)deltax / secf) + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
deltax = (float)(floor(deltax + 0.5f));
}
val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP);
val += deltax;
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
deltax = val = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
val = (float)(floor(((double)deltax / secf) + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
val = (float)(floor(val + 0.5f));
}
*(td->val) = td->ival + val;
}
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
static void applyTimeTranslate(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
char str[MAX_INFO_LEN];
/* calculate translation amount from mouse movement - in 'time-grid space' */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* we only need to calculate effect for time (applyTimeTranslate only needs that) */
t->values[0] = cval[0] - sval[0];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeTranslate(t, str);
applyTimeTranslateValue(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Time Slide) */
/** \name Transform Animation Time Slide
* \{ */
static void initTimeSlide(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
/* set flag for drawing stuff */
saction->flag |= SACTION_MOVING;
}
else {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SLIDE;
t->transform = applyTimeSlide;
t->flag |= T_FREE_CUSTOMDATA;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
/* No time unit supporting frames currently... */
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeSlide(TransInfo *t, float sval, char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
float cval = t->values[0];
float val;
val = 2.0f * (cval - sval) / (maxx - minx);
CLAMP(val, -1.0f, 1.0f);
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", val);
}
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("TimeSlide: %s"), &tvec[0]);
}
static void applyTimeSlideValue(TransInfo *t, float sval)
{
TransData *td = t->data;
int i;
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
/* set value for drawing black line */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
float cvalf = t->values[0];
saction->timeslide = cvalf;
}
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float cval = t->values[0];
/* apply NLA-mapping to necessary values */
if (adt)
cval = BKE_nla_tweakedit_remap(adt, cval, NLATIME_CONVERT_UNMAP);
/* only apply to data if in range */
if ((sval > minx) && (sval < maxx)) {
float cvalc = CLAMPIS(cval, minx, maxx);
float timefac;
/* left half? */
if (td->ival < sval) {
timefac = (sval - td->ival) / (sval - minx);
*(td->val) = cvalc - timefac * (cvalc - minx);
}
else {
timefac = (td->ival - sval) / (maxx - sval);
*(td->val) = cvalc + timefac * (maxx - cvalc);
}
}
}
}
static void applyTimeSlide(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
char str[MAX_INFO_LEN];
/* calculate mouse co-ordinates */
UI_view2d_region_to_view(v2d, mval[0], mval[1], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[1], &sval[0], &sval[1]);
/* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */
// XXX Need to be able to repeat this
t->values[0] = cval[0];
/* handle numeric-input stuff */
t->vec[0] = 2.0f * (cval[0] - sval[0]) / (maxx - minx);
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = (maxx - minx) * t->vec[0] / 2.0f + sval[0];
headerTimeSlide(t, sval[0], str);
applyTimeSlideValue(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* -------------------------------------------------------------------- */
/* Transform (Animation Time Scale) */
/** \name Transform Animation Time Scale
* \{ */
static void initTimeScale(TransInfo *t)
{
float center[2];
/* this tool is only really available in the Action Editor
* AND NLA Editor (for strip scaling)
*/
if (ELEM(t->spacetype, SPACE_ACTION, SPACE_NLA) == 0) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SCALE;
t->transform = applyTimeScale;
/* recalculate center2d to use CFRA and mouse Y, since that's
* what is used in time scale */
t->center[0] = t->scene->r.cfra;
projectFloatView(t, t->center, center);
center[1] = t->imval[1];
/* force a reinit with the center2d used here */
initMouseInput(t, &t->mouse, center, t->imval);
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.val_flag[0] |= NUM_NULL_ONE;
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
copy_v3_fl(t->num.val_inc, t->snap[1]);
t->num.unit_sys = t->scene->unit.system;
t->num.unit_type[0] = B_UNIT_NONE;
}
static void headerTimeScale(TransInfo *t, char str[MAX_INFO_LEN])
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num))
outputNumInput(&(t->num), tvec);
else
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", t->values[0]);
BLI_snprintf(str, MAX_INFO_LEN, IFACE_("ScaleX: %s"), &tvec[0]);
}
static void applyTimeScaleValue(TransInfo *t)
{
Scene *scene = t->scene;
TransData *td = t->data;
TransData2D *td2d = t->data2d;
int i;
const short autosnap = getAnimEdit_SnapMode(t);
const double secf = FPS;
for (i = 0; i < t->total; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float startx = CFRA;
float fac = t->values[0];
if (autosnap == SACTSNAP_TSTEP) {
fac = (float)(floor((double)fac / secf + 0.5) * secf);
}
else if (autosnap == SACTSNAP_STEP) {
fac = (float)(floor(fac + 0.5f));
}
/* check if any need to apply nla-mapping */
if (adt)
startx = BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP);
/* now, calculate the new value */
*(td->val) = ((td->ival - startx) * fac) + startx;
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
static void applyTimeScale(TransInfo *t, const int UNUSED(mval[2]))
{
char str[MAX_INFO_LEN];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeScale(t, str);
applyTimeScaleValue(t);
recalcData(t);
ED_area_headerprint(t->sa, str);
}
/** \} */
/* TODO, move to: transform_queries.c */
bool checkUseLocalCenter_GraphEdit(TransInfo *t)
{
return ((t->around == V3D_LOCAL) &&
!ELEM4(t->mode, TFM_TRANSLATION, TFM_TIME_TRANSLATE, TFM_TIME_SLIDE, TFM_TIME_DUPLICATE));
}
bool checkUseAxisMatrix(TransInfo *t)
{
/* currently only checks for editmode */
if (t->flag & T_EDIT) {
if ((t->around == V3D_LOCAL) && (ELEM4(t->obedit->type, OB_MESH, OB_CURVE, OB_MBALL, OB_ARMATURE))) {
/* not all editmode supports axis-matrix */
return true;
}
}
return false;
}
#undef MAX_INFO_LEN