Files
blender/source/blender/compositor/operations/COM_GlareFogGlowOperation.cpp
2012-11-04 10:20:16 +00:00

407 lines
12 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include "COM_GlareFogGlowOperation.h"
#include "MEM_guardedalloc.h"
/*
* 2D Fast Hartley Transform, used for convolution
*/
typedef float fREAL;
// returns next highest power of 2 of x, as well it's log2 in L2
static unsigned int nextPow2(unsigned int x, unsigned int *L2)
{
unsigned int pw, x_notpow2 = x & (x - 1);
*L2 = 0;
while (x >>= 1) ++(*L2);
pw = 1 << (*L2);
if (x_notpow2) { (*L2)++; pw <<= 1; }
return pw;
}
//------------------------------------------------------------------------------
// from FXT library by Joerg Arndt, faster in order bitreversal
// use: r = revbin_upd(r, h) where h = N>>1
static unsigned int revbin_upd(unsigned int r, unsigned int h)
{
while (!((r ^= h) & h)) h >>= 1;
return r;
}
//------------------------------------------------------------------------------
static void FHT(fREAL *data, unsigned int M, unsigned int inverse)
{
double tt, fc, dc, fs, ds, a = M_PI;
fREAL t1, t2;
int n2, bd, bl, istep, k, len = 1 << M, n = 1;
int i, j = 0;
unsigned int Nh = len >> 1;
for (i = 1; i < (len - 1); ++i) {
j = revbin_upd(j, Nh);
if (j > i) {
t1 = data[i];
data[i] = data[j];
data[j] = t1;
}
}
do {
fREAL *data_n = &data[n];
istep = n << 1;
for (k = 0; k < len; k += istep) {
t1 = data_n[k];
data_n[k] = data[k] - t1;
data[k] += t1;
}
n2 = n >> 1;
if (n > 2) {
fc = dc = cos(a);
fs = ds = sqrt(1.0 - fc * fc); //sin(a);
bd = n - 2;
for (bl = 1; bl < n2; bl++) {
fREAL *data_nbd = &data_n[bd];
fREAL *data_bd = &data[bd];
for (k = bl; k < len; k += istep) {
t1 = fc * (double)data_n[k] + fs * (double)data_nbd[k];
t2 = fs * (double)data_n[k] - fc * (double)data_nbd[k];
data_n[k] = data[k] - t1;
data_nbd[k] = data_bd[k] - t2;
data[k] += t1;
data_bd[k] += t2;
}
tt = fc * dc - fs * ds;
fs = fs * dc + fc * ds;
fc = tt;
bd -= 2;
}
}
if (n > 1) {
for (k = n2; k < len; k += istep) {
t1 = data_n[k];
data_n[k] = data[k] - t1;
data[k] += t1;
}
}
n = istep;
a *= 0.5;
} while (n < len);
if (inverse) {
fREAL sc = (fREAL)1 / (fREAL)len;
for (k = 0; k < len; ++k)
data[k] *= sc;
}
}
//------------------------------------------------------------------------------
/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
* nzp -> the row where zero pad data starts,
* inverse -> see above */
static void FHT2D(fREAL *data, unsigned int Mx, unsigned int My,
unsigned int nzp, unsigned int inverse)
{
unsigned int i, j, Nx, Ny, maxy;
fREAL t;
Nx = 1 << Mx;
Ny = 1 << My;
// rows (forward transform skips 0 pad data)
maxy = inverse ? Ny : nzp;
for (j = 0; j < maxy; ++j)
FHT(&data[Nx * j], Mx, inverse);
// transpose data
if (Nx == Ny) { // square
for (j = 0; j < Ny; ++j)
for (i = j + 1; i < Nx; ++i) {
unsigned int op = i + (j << Mx), np = j + (i << My);
t = data[op], data[op] = data[np], data[np] = t;
}
}
else { // rectangular
unsigned int k, Nym = Ny - 1, stm = 1 << (Mx + My);
for (i = 0; stm > 0; i++) {
#define PRED(k) (((k & Nym) << Mx) + (k >> My))
for (j = PRED(i); j > i; j = PRED(j)) ;
if (j < i) continue;
for (k = i, j = PRED(i); j != i; k = j, j = PRED(j), stm--) {
t = data[j], data[j] = data[k], data[k] = t;
}
#undef PRED
stm--;
}
}
// swap Mx/My & Nx/Ny
i = Nx, Nx = Ny, Ny = i;
i = Mx, Mx = My, My = i;
// now columns == transposed rows
for (j = 0; j < Ny; ++j)
FHT(&data[Nx * j], Mx, inverse);
// finalize
for (j = 0; j <= (Ny >> 1); j++) {
unsigned int jm = (Ny - j) & (Ny - 1);
unsigned int ji = j << Mx;
unsigned int jmi = jm << Mx;
for (i = 0; i <= (Nx >> 1); i++) {
unsigned int im = (Nx - i) & (Nx - 1);
fREAL A = data[ji + i];
fREAL B = data[jmi + i];
fREAL C = data[ji + im];
fREAL D = data[jmi + im];
fREAL E = (fREAL)0.5 * ((A + D) - (B + C));
data[ji + i] = A - E;
data[jmi + i] = B + E;
data[ji + im] = C + E;
data[jmi + im] = D - E;
}
}
}
//------------------------------------------------------------------------------
/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
static void fht_convolve(fREAL *d1, fREAL *d2, unsigned int M, unsigned int N)
{
fREAL a, b;
unsigned int i, j, k, L, mj, mL;
unsigned int m = 1 << M, n = 1 << N;
unsigned int m2 = 1 << (M - 1), n2 = 1 << (N - 1);
unsigned int mn2 = m << (N - 1);
d1[0] *= d2[0];
d1[mn2] *= d2[mn2];
d1[m2] *= d2[m2];
d1[m2 + mn2] *= d2[m2 + mn2];
for (i = 1; i < m2; i++) {
k = m - i;
a = d1[i] * d2[i] - d1[k] * d2[k];
b = d1[k] * d2[i] + d1[i] * d2[k];
d1[i] = (b + a) * (fREAL)0.5;
d1[k] = (b - a) * (fREAL)0.5;
a = d1[i + mn2] * d2[i + mn2] - d1[k + mn2] * d2[k + mn2];
b = d1[k + mn2] * d2[i + mn2] + d1[i + mn2] * d2[k + mn2];
d1[i + mn2] = (b + a) * (fREAL)0.5;
d1[k + mn2] = (b - a) * (fREAL)0.5;
}
for (j = 1; j < n2; j++) {
L = n - j;
mj = j << M;
mL = L << M;
a = d1[mj] * d2[mj] - d1[mL] * d2[mL];
b = d1[mL] * d2[mj] + d1[mj] * d2[mL];
d1[mj] = (b + a) * (fREAL)0.5;
d1[mL] = (b - a) * (fREAL)0.5;
a = d1[m2 + mj] * d2[m2 + mj] - d1[m2 + mL] * d2[m2 + mL];
b = d1[m2 + mL] * d2[m2 + mj] + d1[m2 + mj] * d2[m2 + mL];
d1[m2 + mj] = (b + a) * (fREAL)0.5;
d1[m2 + mL] = (b - a) * (fREAL)0.5;
}
for (i = 1; i < m2; i++) {
k = m - i;
for (j = 1; j < n2; j++) {
L = n - j;
mj = j << M;
mL = L << M;
a = d1[i + mj] * d2[i + mj] - d1[k + mL] * d2[k + mL];
b = d1[k + mL] * d2[i + mj] + d1[i + mj] * d2[k + mL];
d1[i + mj] = (b + a) * (fREAL)0.5;
d1[k + mL] = (b - a) * (fREAL)0.5;
a = d1[i + mL] * d2[i + mL] - d1[k + mj] * d2[k + mj];
b = d1[k + mj] * d2[i + mL] + d1[i + mL] * d2[k + mj];
d1[i + mL] = (b + a) * (fREAL)0.5;
d1[k + mj] = (b - a) * (fREAL)0.5;
}
}
}
//------------------------------------------------------------------------------
static void convolve(float *dst, MemoryBuffer *in1, MemoryBuffer *in2)
{
fREAL *data1, *data2, *fp;
unsigned int w2, h2, hw, hh, log2_w, log2_h;
fRGB wt, *colp;
int x, y, ch;
int xbl, ybl, nxb, nyb, xbsz, ybsz;
int in2done = FALSE;
const unsigned int kernelWidth = in2->getWidth();
const unsigned int kernelHeight = in2->getHeight();
const unsigned int imageWidth = in1->getWidth();
const unsigned int imageHeight = in1->getHeight();
float *kernelBuffer = in2->getBuffer();
float *imageBuffer = in1->getBuffer();
MemoryBuffer *rdst = new MemoryBuffer(NULL, in1->getRect());
memset(rdst->getBuffer(), 0, rdst->getWidth() * rdst->getHeight() * COM_NUMBER_OF_CHANNELS * sizeof(float));
// convolution result width & height
w2 = 2 * kernelWidth - 1;
h2 = 2 * kernelHeight - 1;
// FFT pow2 required size & log2
w2 = nextPow2(w2, &log2_w);
h2 = nextPow2(h2, &log2_h);
// alloc space
data1 = (fREAL *)MEM_callocN(3 * w2 * h2 * sizeof(fREAL), "convolve_fast FHT data1");
data2 = (fREAL *)MEM_callocN(w2 * h2 * sizeof(fREAL), "convolve_fast FHT data2");
// normalize convolutor
wt[0] = wt[1] = wt[2] = 0.f;
for (y = 0; y < kernelHeight; y++) {
colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUMBER_OF_CHANNELS];
for (x = 0; x < kernelWidth; x++)
add_v3_v3(wt, colp[x]);
}
if (wt[0] != 0.f) wt[0] = 1.f / wt[0];
if (wt[1] != 0.f) wt[1] = 1.f / wt[1];
if (wt[2] != 0.f) wt[2] = 1.f / wt[2];
for (y = 0; y < kernelHeight; y++) {
colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUMBER_OF_CHANNELS];
for (x = 0; x < kernelWidth; x++)
mul_v3_v3(colp[x], wt);
}
// copy image data, unpacking interleaved RGBA into separate channels
// only need to calc data1 once
// block add-overlap
hw = kernelWidth >> 1;
hh = kernelHeight >> 1;
xbsz = (w2 + 1) - kernelWidth;
ybsz = (h2 + 1) - kernelHeight;
nxb = imageWidth / xbsz;
if (imageWidth % xbsz) nxb++;
nyb = imageHeight / ybsz;
if (imageHeight % ybsz) nyb++;
for (ybl = 0; ybl < nyb; ybl++) {
for (xbl = 0; xbl < nxb; xbl++) {
// each channel one by one
for (ch = 0; ch < 3; ch++) {
fREAL *data1ch = &data1[ch * w2 * h2];
// only need to calc fht data from in2 once, can re-use for every block
if (!in2done) {
// in2, channel ch -> data1
for (y = 0; y < kernelHeight; y++) {
fp = &data1ch[y * w2];
colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUMBER_OF_CHANNELS];
for (x = 0; x < kernelWidth; x++)
fp[x] = colp[x][ch];
}
}
// in1, channel ch -> data2
memset(data2, 0, w2 * h2 * sizeof(fREAL));
for (y = 0; y < ybsz; y++) {
int yy = ybl * ybsz + y;
if (yy >= imageHeight) continue;
fp = &data2[y * w2];
colp = (fRGB *)&imageBuffer[yy * imageWidth * COM_NUMBER_OF_CHANNELS];
for (x = 0; x < xbsz; x++) {
int xx = xbl * xbsz + x;
if (xx >= imageWidth) continue;
fp[x] = colp[xx][ch];
}
}
// forward FHT
// zero pad data start is different for each == height+1
if (!in2done) FHT2D(data1ch, log2_w, log2_h, kernelHeight + 1, 0);
FHT2D(data2, log2_w, log2_h, kernelHeight + 1, 0);
// FHT2D transposed data, row/col now swapped
// convolve & inverse FHT
fht_convolve(data2, data1ch, log2_h, log2_w);
FHT2D(data2, log2_h, log2_w, 0, 1);
// data again transposed, so in order again
// overlap-add result
for (y = 0; y < (int)h2; y++) {
const int yy = ybl * ybsz + y - hh;
if ((yy < 0) || (yy >= imageHeight)) continue;
fp = &data2[y * w2];
colp = (fRGB *)&rdst->getBuffer()[yy * imageWidth * COM_NUMBER_OF_CHANNELS];
for (x = 0; x < (int)w2; x++) {
const int xx = xbl * xbsz + x - hw;
if ((xx < 0) || (xx >= imageWidth)) continue;
colp[xx][ch] += fp[x];
}
}
}
in2done = TRUE;
}
}
MEM_freeN(data2);
MEM_freeN(data1);
memcpy(dst, rdst->getBuffer(), sizeof(float) * imageWidth * imageHeight * COM_NUMBER_OF_CHANNELS);
delete(rdst);
}
void GlareFogGlowOperation::generateGlare(float *data, MemoryBuffer *inputTile, NodeGlare *settings)
{
int x, y;
float scale, u, v, r, w, d;
fRGB fcol;
MemoryBuffer *ckrn;
unsigned int sz = 1 << settings->size;
const float cs_r = 1.f, cs_g = 1.f, cs_b = 1.f;
// temp. src image
// make the convolution kernel
rcti kernelRect;
BLI_rcti_init(&kernelRect, 0, sz, 0, sz);
ckrn = new MemoryBuffer(NULL, &kernelRect);
scale = 0.25f * sqrtf((float)(sz * sz));
for (y = 0; y < sz; ++y) {
v = 2.f * (y / (float)sz) - 1.0f;
for (x = 0; x < sz; ++x) {
u = 2.f * (x / (float)sz) - 1.0f;
r = (u * u + v * v) * scale;
d = -sqrtf(sqrtf(sqrtf(r))) * 9.0f;
fcol[0] = expf(d * cs_r), fcol[1] = expf(d * cs_g), fcol[2] = expf(d * cs_b);
// linear window good enough here, visual result counts, not scientific analysis
//w = (1.f-fabs(u))*(1.f-fabs(v));
// actually, Hanning window is ok, cos^2 for some reason is slower
w = (0.5f + 0.5f * cosf(u * (float)M_PI)) * (0.5f + 0.5f * cosf(v * (float)M_PI));
mul_v3_fl(fcol, w);
ckrn->writePixel(x, y, fcol);
}
}
convolve(data, inputTile, ckrn);
delete ckrn;
}