Files
blender/intern/cycles/kernel/sample/pattern.h
Brecht Van Lommel 9cfc7967dd Cycles: use SPDX license headers
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
  to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.

Ref D14069, T95597
2022-02-11 17:47:34 +01:00

163 lines
4.6 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/sample/jitter.h"
#include "util/hash.h"
CCL_NAMESPACE_BEGIN
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
* this single threaded on a CPU for repeatable results. */
//#define __DEBUG_CORRELATION__
/* High Dimensional Sobol.
*
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
* to classic Van der Corput and Sobol sequences. */
#ifdef __SOBOL__
/* Skip initial numbers that for some dimensions have clear patterns that
* don't cover the entire sample space. Ideally we would have a better
* progressive pattern that doesn't suffer from this problem, because even
* with this offset some dimensions are quite poor.
*/
# define SOBOL_SKIP 64
ccl_device uint sobol_dimension(KernelGlobals kg, int index, int dimension)
{
uint result = 0;
uint i = index + SOBOL_SKIP;
for (int j = 0, x; (x = find_first_set(i)); i >>= x) {
j += x;
result ^= __float_as_uint(kernel_tex_fetch(__sample_pattern_lut, 32 * dimension + j - 1));
}
return result;
}
#endif /* __SOBOL__ */
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
uint rng_hash,
int sample,
int dimension)
{
#ifdef __DEBUG_CORRELATION__
return (float)drand48();
#endif
#ifdef __SOBOL__
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
#endif
{
return pmj_sample_1D(kg, sample, rng_hash, dimension);
}
#ifdef __SOBOL__
/* Sobol sequence value using direction vectors. */
uint result = sobol_dimension(kg, sample, dimension);
float r = (float)result * (1.0f / (float)0xFFFFFFFF);
/* Cranly-Patterson rotation using rng seed */
float shift;
/* Hash rng with dimension to solve correlation issues.
* See T38710, T50116.
*/
uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
shift = tmp_rng * (kernel_data.integrator.scrambling_distance / (float)0xFFFFFFFF);
return r + shift - floorf(r + shift);
#endif
}
ccl_device_forceinline void path_rng_2D(KernelGlobals kg,
uint rng_hash,
int sample,
int dimension,
ccl_private float *fx,
ccl_private float *fy)
{
#ifdef __DEBUG_CORRELATION__
*fx = (float)drand48();
*fy = (float)drand48();
return;
#endif
#ifdef __SOBOL__
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
#endif
{
pmj_sample_2D(kg, sample, rng_hash, dimension, fx, fy);
return;
}
#ifdef __SOBOL__
/* Sobol. */
*fx = path_rng_1D(kg, rng_hash, sample, dimension);
*fy = path_rng_1D(kg, rng_hash, sample, dimension + 1);
#endif
}
/**
* 1D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
* http://www.jcgt.org/published/0009/03/02/paper.pdf
*/
ccl_device_inline uint hash_iqint1(uint n)
{
n = (n << 13U) ^ n;
n = n * (n * n * 15731U + 789221U) + 1376312589U;
return n;
}
/**
* 2D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
* http://www.jcgt.org/published/0009/03/02/paper.pdf
*/
ccl_device_inline uint hash_iqnt2d(const uint x, const uint y)
{
const uint qx = 1103515245U * ((x >> 1U) ^ (y));
const uint qy = 1103515245U * ((y >> 1U) ^ (x));
const uint n = 1103515245U * ((qx) ^ (qy >> 3U));
return n;
}
ccl_device_inline uint path_rng_hash_init(KernelGlobals kg,
const int sample,
const int x,
const int y)
{
const uint rng_hash = hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
#ifdef __DEBUG_CORRELATION__
srand48(rng_hash + sample);
#else
(void)sample;
#endif
return rng_hash;
}
ccl_device_inline bool sample_is_even(int pattern, int sample)
{
if (pattern == SAMPLING_PATTERN_PMJ) {
/* See Section 10.2.1, "Progressive Multi-Jittered Sample Sequences", Christensen et al.
* We can use this to get divide sample sequence into two classes for easier variance
* estimation. */
return popcount(uint(sample) & 0xaaaaaaaa) & 1;
}
else {
/* TODO(Stefan): Are there reliable ways of dividing CMJ and Sobol into two classes? */
return sample & 0x1;
}
}
CCL_NAMESPACE_END