
* Replace license text in headers with SPDX identifiers. * Remove specific license info from outdated readme.txt, instead leave details to the source files. * Add list of SPDX license identifiers used, and corresponding license texts. * Update copyright dates while we're at it. Ref D14069, T95597
163 lines
4.6 KiB
C
163 lines
4.6 KiB
C
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/sample/jitter.h"
|
|
#include "util/hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
|
|
* this single threaded on a CPU for repeatable results. */
|
|
//#define __DEBUG_CORRELATION__
|
|
|
|
/* High Dimensional Sobol.
|
|
*
|
|
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
|
|
* to classic Van der Corput and Sobol sequences. */
|
|
|
|
#ifdef __SOBOL__
|
|
|
|
/* Skip initial numbers that for some dimensions have clear patterns that
|
|
* don't cover the entire sample space. Ideally we would have a better
|
|
* progressive pattern that doesn't suffer from this problem, because even
|
|
* with this offset some dimensions are quite poor.
|
|
*/
|
|
# define SOBOL_SKIP 64
|
|
|
|
ccl_device uint sobol_dimension(KernelGlobals kg, int index, int dimension)
|
|
{
|
|
uint result = 0;
|
|
uint i = index + SOBOL_SKIP;
|
|
for (int j = 0, x; (x = find_first_set(i)); i >>= x) {
|
|
j += x;
|
|
result ^= __float_as_uint(kernel_tex_fetch(__sample_pattern_lut, 32 * dimension + j - 1));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* __SOBOL__ */
|
|
|
|
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return (float)drand48();
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
return pmj_sample_1D(kg, sample, rng_hash, dimension);
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol sequence value using direction vectors. */
|
|
uint result = sobol_dimension(kg, sample, dimension);
|
|
float r = (float)result * (1.0f / (float)0xFFFFFFFF);
|
|
|
|
/* Cranly-Patterson rotation using rng seed */
|
|
float shift;
|
|
|
|
/* Hash rng with dimension to solve correlation issues.
|
|
* See T38710, T50116.
|
|
*/
|
|
uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
|
|
shift = tmp_rng * (kernel_data.integrator.scrambling_distance / (float)0xFFFFFFFF);
|
|
|
|
return r + shift - floorf(r + shift);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_forceinline void path_rng_2D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension,
|
|
ccl_private float *fx,
|
|
ccl_private float *fy)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
*fx = (float)drand48();
|
|
*fy = (float)drand48();
|
|
return;
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
pmj_sample_2D(kg, sample, rng_hash, dimension, fx, fy);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol. */
|
|
*fx = path_rng_1D(kg, rng_hash, sample, dimension);
|
|
*fy = path_rng_1D(kg, rng_hash, sample, dimension + 1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* 1D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqint1(uint n)
|
|
{
|
|
n = (n << 13U) ^ n;
|
|
n = n * (n * n * 15731U + 789221U) + 1376312589U;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* 2D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqnt2d(const uint x, const uint y)
|
|
{
|
|
const uint qx = 1103515245U * ((x >> 1U) ^ (y));
|
|
const uint qy = 1103515245U * ((y >> 1U) ^ (x));
|
|
const uint n = 1103515245U * ((qx) ^ (qy >> 3U));
|
|
|
|
return n;
|
|
}
|
|
|
|
ccl_device_inline uint path_rng_hash_init(KernelGlobals kg,
|
|
const int sample,
|
|
const int x,
|
|
const int y)
|
|
{
|
|
const uint rng_hash = hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
|
|
|
|
#ifdef __DEBUG_CORRELATION__
|
|
srand48(rng_hash + sample);
|
|
#else
|
|
(void)sample;
|
|
#endif
|
|
|
|
return rng_hash;
|
|
}
|
|
|
|
ccl_device_inline bool sample_is_even(int pattern, int sample)
|
|
{
|
|
if (pattern == SAMPLING_PATTERN_PMJ) {
|
|
/* See Section 10.2.1, "Progressive Multi-Jittered Sample Sequences", Christensen et al.
|
|
* We can use this to get divide sample sequence into two classes for easier variance
|
|
* estimation. */
|
|
return popcount(uint(sample) & 0xaaaaaaaa) & 1;
|
|
}
|
|
else {
|
|
/* TODO(Stefan): Are there reliable ways of dividing CMJ and Sobol into two classes? */
|
|
return sample & 0x1;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|