Files
blender/intern/cycles/kernel/util/differential.h
Brecht Van Lommel 9cfc7967dd Cycles: use SPDX license headers
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
  to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.

Ref D14069, T95597
2022-02-11 17:47:34 +01:00

154 lines
4.5 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
CCL_NAMESPACE_BEGIN
/* See "Tracing Ray Differentials", Homan Igehy, 1999. */
ccl_device void differential_transfer(ccl_private differential3 *surface_dP,
const differential3 ray_dP,
float3 ray_D,
const differential3 ray_dD,
float3 surface_Ng,
float ray_t)
{
/* ray differential transfer through homogeneous medium, to
* compute dPdx/dy at a shading point from the incoming ray */
float3 tmp = ray_D / dot(ray_D, surface_Ng);
float3 tmpx = ray_dP.dx + ray_t * ray_dD.dx;
float3 tmpy = ray_dP.dy + ray_t * ray_dD.dy;
surface_dP->dx = tmpx - dot(tmpx, surface_Ng) * tmp;
surface_dP->dy = tmpy - dot(tmpy, surface_Ng) * tmp;
}
ccl_device void differential_incoming(ccl_private differential3 *dI, const differential3 dD)
{
/* compute dIdx/dy at a shading point, we just need to negate the
* differential of the ray direction */
dI->dx = -dD.dx;
dI->dy = -dD.dy;
}
ccl_device void differential_dudv(ccl_private differential *du,
ccl_private differential *dv,
float3 dPdu,
float3 dPdv,
differential3 dP,
float3 Ng)
{
/* now we have dPdx/dy from the ray differential transfer, and dPdu/dv
* from the primitive, we can compute dudx/dy and dvdx/dy. these are
* mainly used for differentials of arbitrary mesh attributes. */
/* find most stable axis to project to 2D */
float xn = fabsf(Ng.x);
float yn = fabsf(Ng.y);
float zn = fabsf(Ng.z);
if (zn < xn || zn < yn) {
if (yn < xn || yn < zn) {
dPdu.x = dPdu.y;
dPdv.x = dPdv.y;
dP.dx.x = dP.dx.y;
dP.dy.x = dP.dy.y;
}
dPdu.y = dPdu.z;
dPdv.y = dPdv.z;
dP.dx.y = dP.dx.z;
dP.dy.y = dP.dy.z;
}
/* using Cramer's rule, we solve for dudx and dvdx in a 2x2 linear system,
* and the same for dudy and dvdy. the denominator is the same for both
* solutions, so we compute it only once.
*
* dP.dx = dPdu * dudx + dPdv * dvdx;
* dP.dy = dPdu * dudy + dPdv * dvdy; */
float det = (dPdu.x * dPdv.y - dPdv.x * dPdu.y);
if (det != 0.0f)
det = 1.0f / det;
du->dx = (dP.dx.x * dPdv.y - dP.dx.y * dPdv.x) * det;
dv->dx = (dP.dx.y * dPdu.x - dP.dx.x * dPdu.y) * det;
du->dy = (dP.dy.x * dPdv.y - dP.dy.y * dPdv.x) * det;
dv->dy = (dP.dy.y * dPdu.x - dP.dy.x * dPdu.y) * det;
}
ccl_device differential differential_zero()
{
differential d;
d.dx = 0.0f;
d.dy = 0.0f;
return d;
}
ccl_device differential3 differential3_zero()
{
differential3 d;
d.dx = zero_float3();
d.dy = zero_float3();
return d;
}
/* Compact ray differentials that are just a scale to reduce memory usage and
* access cost in GPU.
*
* See above for more accurate reference implementations.
*
* TODO: also store the more compact version in ShaderData and recompute where
* needed? */
ccl_device_forceinline float differential_zero_compact()
{
return 0.0f;
}
ccl_device_forceinline float differential_make_compact(const differential3 D)
{
return 0.5f * (len(D.dx) + len(D.dy));
}
ccl_device_forceinline void differential_transfer_compact(ccl_private differential3 *surface_dP,
const float ray_dP,
const float3 /* ray_D */,
const float ray_dD,
const float3 surface_Ng,
const float ray_t)
{
/* ray differential transfer through homogeneous medium, to
* compute dPdx/dy at a shading point from the incoming ray */
float scale = ray_dP + ray_t * ray_dD;
float3 dx, dy;
make_orthonormals(surface_Ng, &dx, &dy);
surface_dP->dx = dx * scale;
surface_dP->dy = dy * scale;
}
ccl_device_forceinline void differential_incoming_compact(ccl_private differential3 *dI,
const float3 D,
const float dD)
{
/* compute dIdx/dy at a shading point, we just need to negate the
* differential of the ray direction */
float3 dx, dy;
make_orthonormals(D, &dx, &dy);
dI->dx = dD * dx;
dI->dy = dD * dy;
}
CCL_NAMESPACE_END