Files
blender/intern/cycles/render/scene.cpp
Sergey Sharybin 8733d310e5 Cycles: Revert all host update specific changes
The approach didn't turn out to be that useful after all as there
are unavoidable dependencies of data from the device. For example,
to know whether object intersects volume or not it is required to
run displacement kernels.

The way of splitting host and device updates caused state where
some data is not yet available, causing confusion and leaving
code to be error-prone.
2021-10-25 09:27:21 +02:00

942 lines
28 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "bvh/bvh.h"
#include "device/device.h"
#include "render/alembic.h"
#include "render/background.h"
#include "render/bake.h"
#include "render/camera.h"
#include "render/curves.h"
#include "render/film.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/object.h"
#include "render/osl.h"
#include "render/particles.h"
#include "render/procedural.h"
#include "render/scene.h"
#include "render/session.h"
#include "render/shader.h"
#include "render/svm.h"
#include "render/tables.h"
#include "render/volume.h"
#include "util/util_foreach.h"
#include "util/util_guarded_allocator.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
CCL_NAMESPACE_BEGIN
DeviceScene::DeviceScene(Device *device)
: bvh_nodes(device, "__bvh_nodes", MEM_GLOBAL),
bvh_leaf_nodes(device, "__bvh_leaf_nodes", MEM_GLOBAL),
object_node(device, "__object_node", MEM_GLOBAL),
prim_type(device, "__prim_type", MEM_GLOBAL),
prim_visibility(device, "__prim_visibility", MEM_GLOBAL),
prim_index(device, "__prim_index", MEM_GLOBAL),
prim_object(device, "__prim_object", MEM_GLOBAL),
prim_time(device, "__prim_time", MEM_GLOBAL),
tri_verts(device, "__tri_verts", MEM_GLOBAL),
tri_shader(device, "__tri_shader", MEM_GLOBAL),
tri_vnormal(device, "__tri_vnormal", MEM_GLOBAL),
tri_vindex(device, "__tri_vindex", MEM_GLOBAL),
tri_patch(device, "__tri_patch", MEM_GLOBAL),
tri_patch_uv(device, "__tri_patch_uv", MEM_GLOBAL),
curves(device, "__curves", MEM_GLOBAL),
curve_keys(device, "__curve_keys", MEM_GLOBAL),
curve_segments(device, "__curve_segments", MEM_GLOBAL),
patches(device, "__patches", MEM_GLOBAL),
objects(device, "__objects", MEM_GLOBAL),
object_motion_pass(device, "__object_motion_pass", MEM_GLOBAL),
object_motion(device, "__object_motion", MEM_GLOBAL),
object_flag(device, "__object_flag", MEM_GLOBAL),
object_volume_step(device, "__object_volume_step", MEM_GLOBAL),
camera_motion(device, "__camera_motion", MEM_GLOBAL),
attributes_map(device, "__attributes_map", MEM_GLOBAL),
attributes_float(device, "__attributes_float", MEM_GLOBAL),
attributes_float2(device, "__attributes_float2", MEM_GLOBAL),
attributes_float3(device, "__attributes_float3", MEM_GLOBAL),
attributes_uchar4(device, "__attributes_uchar4", MEM_GLOBAL),
light_distribution(device, "__light_distribution", MEM_GLOBAL),
lights(device, "__lights", MEM_GLOBAL),
light_background_marginal_cdf(device, "__light_background_marginal_cdf", MEM_GLOBAL),
light_background_conditional_cdf(device, "__light_background_conditional_cdf", MEM_GLOBAL),
particles(device, "__particles", MEM_GLOBAL),
svm_nodes(device, "__svm_nodes", MEM_GLOBAL),
shaders(device, "__shaders", MEM_GLOBAL),
lookup_table(device, "__lookup_table", MEM_GLOBAL),
sample_pattern_lut(device, "__sample_pattern_lut", MEM_GLOBAL),
ies_lights(device, "__ies", MEM_GLOBAL)
{
memset((void *)&data, 0, sizeof(data));
}
Scene::Scene(const SceneParams &params_, Device *device)
: name("Scene"),
bvh(NULL),
default_surface(NULL),
default_volume(NULL),
default_light(NULL),
default_background(NULL),
default_empty(NULL),
device(device),
dscene(device),
params(params_),
update_stats(NULL),
kernels_loaded(false),
/* TODO(sergey): Check if it's indeed optimal value for the split kernel. */
max_closure_global(1)
{
memset((void *)&dscene.data, 0, sizeof(dscene.data));
/* OSL only works on the CPU */
if (device->info.has_osl)
shader_manager = ShaderManager::create(params.shadingsystem);
else
shader_manager = ShaderManager::create(SHADINGSYSTEM_SVM);
light_manager = new LightManager();
geometry_manager = new GeometryManager();
object_manager = new ObjectManager();
image_manager = new ImageManager(device->info);
particle_system_manager = new ParticleSystemManager();
bake_manager = new BakeManager();
procedural_manager = new ProceduralManager();
/* Create nodes after managers, since create_node() can tag the managers. */
camera = create_node<Camera>();
dicing_camera = create_node<Camera>();
lookup_tables = new LookupTables();
film = create_node<Film>();
background = create_node<Background>();
integrator = create_node<Integrator>();
film->add_default(this);
shader_manager->add_default(this);
}
Scene::~Scene()
{
free_memory(true);
}
void Scene::free_memory(bool final)
{
delete bvh;
bvh = NULL;
/* The order of deletion is important to make sure data is freed based on possible dependencies
* as the Nodes' reference counts are decremented in the destructors:
*
* - Procedurals can create and hold pointers to any other types.
* - Objects can hold pointers to Geometries and ParticleSystems
* - Lights and Geometries can hold pointers to Shaders.
*
* Similarly, we first delete all nodes and their associated device data, and then the managers
* and their associated device data.
*/
foreach (Procedural *p, procedurals)
delete p;
foreach (Object *o, objects)
delete o;
foreach (Geometry *g, geometry)
delete g;
foreach (ParticleSystem *p, particle_systems)
delete p;
foreach (Light *l, lights)
delete l;
foreach (Pass *p, passes)
delete p;
geometry.clear();
objects.clear();
lights.clear();
particle_systems.clear();
procedurals.clear();
passes.clear();
if (device) {
camera->device_free(device, &dscene, this);
film->device_free(device, &dscene, this);
background->device_free(device, &dscene);
integrator->device_free(device, &dscene, true);
}
if (final) {
delete camera;
delete dicing_camera;
delete film;
delete background;
delete integrator;
}
/* Delete Shaders after every other nodes to ensure that we do not try to decrement the reference
* count on some dangling pointer. */
foreach (Shader *s, shaders)
delete s;
shaders.clear();
/* Now that all nodes have been deleted, we can safely delete managers and device data. */
if (device) {
object_manager->device_free(device, &dscene, true);
geometry_manager->device_free(device, &dscene, true);
shader_manager->device_free(device, &dscene, this);
light_manager->device_free(device, &dscene);
particle_system_manager->device_free(device, &dscene);
bake_manager->device_free(device, &dscene);
if (final)
image_manager->device_free(device);
else
image_manager->device_free_builtin(device);
lookup_tables->device_free(device, &dscene);
}
if (final) {
delete lookup_tables;
delete object_manager;
delete geometry_manager;
delete shader_manager;
delete light_manager;
delete particle_system_manager;
delete image_manager;
delete bake_manager;
delete update_stats;
delete procedural_manager;
}
}
void Scene::device_update(Device *device_, Progress &progress)
{
if (!device)
device = device_;
bool print_stats = need_data_update();
if (update_stats) {
update_stats->clear();
}
scoped_callback_timer timer([this, print_stats](double time) {
if (update_stats) {
update_stats->scene.times.add_entry({"device_update", time});
if (print_stats) {
printf("Update statistics:\n%s\n", update_stats->full_report().c_str());
}
}
});
/* The order of updates is important, because there's dependencies between
* the different managers, using data computed by previous managers.
*
* - Image manager uploads images used by shaders.
* - Camera may be used for adaptive subdivision.
* - Displacement shader must have all shader data available.
* - Light manager needs lookup tables and final mesh data to compute emission CDF.
* - Lookup tables are done a second time to handle film tables
*/
progress.set_status("Updating Shaders");
shader_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
procedural_manager->update(this, progress);
if (progress.get_cancel())
return;
progress.set_status("Updating Background");
background->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera");
camera->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
geometry_manager->device_update_preprocess(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects");
object_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Particle Systems");
particle_system_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Meshes");
geometry_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Objects Flags");
object_manager->device_update_flags(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Images");
image_manager->device_update(device, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Camera Volume");
camera->device_update_volume(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lights");
light_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Integrator");
integrator->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Film");
film->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Lookup Tables");
lookup_tables->device_update(device, &dscene, this);
if (progress.get_cancel() || device->have_error())
return;
progress.set_status("Updating Baking");
bake_manager->device_update(device, &dscene, this, progress);
if (progress.get_cancel() || device->have_error())
return;
if (device->have_error() == false) {
progress.set_status("Updating Device", "Writing constant memory");
device->const_copy_to("__data", &dscene.data, sizeof(dscene.data));
}
if (print_stats) {
size_t mem_used = util_guarded_get_mem_used();
size_t mem_peak = util_guarded_get_mem_peak();
VLOG(1) << "System memory statistics after full device sync:\n"
<< " Usage: " << string_human_readable_number(mem_used) << " ("
<< string_human_readable_size(mem_used) << ")\n"
<< " Peak: " << string_human_readable_number(mem_peak) << " ("
<< string_human_readable_size(mem_peak) << ")";
}
}
Scene::MotionType Scene::need_motion()
{
if (integrator->get_motion_blur())
return MOTION_BLUR;
else if (Pass::contains(passes, PASS_MOTION))
return MOTION_PASS;
else
return MOTION_NONE;
}
float Scene::motion_shutter_time()
{
if (need_motion() == Scene::MOTION_PASS)
return 2.0f;
else
return camera->get_shuttertime();
}
bool Scene::need_global_attribute(AttributeStandard std)
{
if (std == ATTR_STD_UV)
return Pass::contains(passes, PASS_UV);
else if (std == ATTR_STD_MOTION_VERTEX_POSITION)
return need_motion() != MOTION_NONE;
else if (std == ATTR_STD_MOTION_VERTEX_NORMAL)
return need_motion() == MOTION_BLUR;
return false;
}
void Scene::need_global_attributes(AttributeRequestSet &attributes)
{
for (int std = ATTR_STD_NONE; std < ATTR_STD_NUM; std++)
if (need_global_attribute((AttributeStandard)std))
attributes.add((AttributeStandard)std);
}
bool Scene::need_update()
{
return (need_reset() || film->is_modified());
}
bool Scene::need_data_update()
{
return (background->is_modified() || image_manager->need_update() ||
object_manager->need_update() || geometry_manager->need_update() ||
light_manager->need_update() || lookup_tables->need_update() ||
integrator->is_modified() || shader_manager->need_update() ||
particle_system_manager->need_update() || bake_manager->need_update() ||
film->is_modified() || procedural_manager->need_update());
}
bool Scene::need_reset()
{
return need_data_update() || camera->is_modified();
}
void Scene::reset()
{
shader_manager->reset(this);
shader_manager->add_default(this);
/* ensure all objects are updated */
camera->tag_modified();
dicing_camera->tag_modified();
film->tag_modified();
background->tag_modified();
background->tag_update(this);
integrator->tag_update(this, Integrator::UPDATE_ALL);
object_manager->tag_update(this, ObjectManager::UPDATE_ALL);
geometry_manager->tag_update(this, GeometryManager::UPDATE_ALL);
light_manager->tag_update(this, LightManager::UPDATE_ALL);
particle_system_manager->tag_update(this);
procedural_manager->tag_update();
}
void Scene::device_free()
{
free_memory(false);
}
void Scene::collect_statistics(RenderStats *stats)
{
geometry_manager->collect_statistics(this, stats);
image_manager->collect_statistics(stats);
}
void Scene::enable_update_stats()
{
if (!update_stats) {
update_stats = new SceneUpdateStats();
}
}
void Scene::update_kernel_features()
{
if (!need_update()) {
return;
}
/* These features are not being tweaked as often as shaders,
* so could be done selective magic for the viewport as well. */
uint kernel_features = shader_manager->get_kernel_features(this);
bool use_motion = need_motion() == Scene::MotionType::MOTION_BLUR;
kernel_features |= KERNEL_FEATURE_PATH_TRACING;
if (params.hair_shape == CURVE_THICK) {
kernel_features |= KERNEL_FEATURE_HAIR_THICK;
}
if (use_motion && camera->use_motion()) {
kernel_features |= KERNEL_FEATURE_CAMERA_MOTION;
}
foreach (Object *object, objects) {
Geometry *geom = object->get_geometry();
if (use_motion) {
if (object->use_motion() || geom->get_use_motion_blur()) {
kernel_features |= KERNEL_FEATURE_OBJECT_MOTION;
}
if (geom->get_use_motion_blur()) {
kernel_features |= KERNEL_FEATURE_CAMERA_MOTION;
}
}
if (object->get_is_shadow_catcher()) {
kernel_features |= KERNEL_FEATURE_SHADOW_CATCHER;
}
if (geom->is_mesh()) {
Mesh *mesh = static_cast<Mesh *>(geom);
#ifdef WITH_OPENSUBDIV
if (mesh->get_subdivision_type() != Mesh::SUBDIVISION_NONE) {
kernel_features |= KERNEL_FEATURE_PATCH_EVALUATION;
}
#endif
}
else if (geom->is_hair()) {
kernel_features |= KERNEL_FEATURE_HAIR;
}
}
if (bake_manager->get_baking()) {
kernel_features |= KERNEL_FEATURE_BAKING;
}
kernel_features |= film->get_kernel_features(this);
dscene.data.kernel_features = kernel_features;
/* Currently viewport render is faster with higher max_closures, needs investigating. */
const uint max_closures = (params.background) ? get_max_closure_count() : MAX_CLOSURE;
dscene.data.max_closures = max_closures;
dscene.data.max_shaders = shaders.size();
dscene.data.volume_stack_size = get_volume_stack_size();
}
bool Scene::update(Progress &progress)
{
if (!need_update()) {
return false;
}
/* Load render kernels, before device update where we upload data to the GPU. */
load_kernels(progress, false);
/* Upload scene data to the GPU. */
progress.set_status("Updating Scene");
MEM_GUARDED_CALL(&progress, device_update, device, progress);
return true;
}
static void log_kernel_features(const uint features)
{
VLOG(2) << "Requested features:\n";
VLOG(2) << "Use BSDF " << string_from_bool(features & KERNEL_FEATURE_NODE_BSDF) << "\n";
VLOG(2) << "Use Principled BSDF " << string_from_bool(features & KERNEL_FEATURE_PRINCIPLED)
<< "\n";
VLOG(2) << "Use Emission " << string_from_bool(features & KERNEL_FEATURE_NODE_EMISSION) << "\n";
VLOG(2) << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_NODE_VOLUME) << "\n";
VLOG(2) << "Use Hair " << string_from_bool(features & KERNEL_FEATURE_NODE_HAIR) << "\n";
VLOG(2) << "Use Bump " << string_from_bool(features & KERNEL_FEATURE_NODE_BUMP) << "\n";
VLOG(2) << "Use Voronoi " << string_from_bool(features & KERNEL_FEATURE_NODE_VORONOI_EXTRA)
<< "\n";
VLOG(2) << "Use Shader Raytrace " << string_from_bool(features & KERNEL_FEATURE_NODE_RAYTRACE)
<< "\n";
VLOG(2) << "Use Transparent " << string_from_bool(features & KERNEL_FEATURE_TRANSPARENT) << "\n";
VLOG(2) << "Use Denoising " << string_from_bool(features & KERNEL_FEATURE_DENOISING) << "\n";
VLOG(2) << "Use Path Tracing " << string_from_bool(features & KERNEL_FEATURE_PATH_TRACING)
<< "\n";
VLOG(2) << "Use Hair " << string_from_bool(features & KERNEL_FEATURE_HAIR) << "\n";
VLOG(2) << "Use Object Motion " << string_from_bool(features & KERNEL_FEATURE_OBJECT_MOTION)
<< "\n";
VLOG(2) << "Use Camera Motion " << string_from_bool(features & KERNEL_FEATURE_CAMERA_MOTION)
<< "\n";
VLOG(2) << "Use Baking " << string_from_bool(features & KERNEL_FEATURE_BAKING) << "\n";
VLOG(2) << "Use Subsurface " << string_from_bool(features & KERNEL_FEATURE_SUBSURFACE) << "\n";
VLOG(2) << "Use Volume " << string_from_bool(features & KERNEL_FEATURE_VOLUME) << "\n";
VLOG(2) << "Use Patch Evaluation "
<< string_from_bool(features & KERNEL_FEATURE_PATCH_EVALUATION) << "\n";
VLOG(2) << "Use Shadow Catcher " << string_from_bool(features & KERNEL_FEATURE_SHADOW_CATCHER)
<< "\n";
}
bool Scene::load_kernels(Progress &progress, bool lock_scene)
{
thread_scoped_lock scene_lock;
if (lock_scene) {
scene_lock = thread_scoped_lock(mutex);
}
const uint kernel_features = dscene.data.kernel_features;
if (!kernels_loaded || loaded_kernel_features != kernel_features) {
progress.set_status("Loading render kernels (may take a few minutes the first time)");
scoped_timer timer;
log_kernel_features(kernel_features);
if (!device->load_kernels(kernel_features)) {
string message = device->error_message();
if (message.empty())
message = "Failed loading render kernel, see console for errors";
progress.set_error(message);
progress.set_status(message);
progress.set_update();
return false;
}
kernels_loaded = true;
loaded_kernel_features = kernel_features;
return true;
}
return false;
}
int Scene::get_max_closure_count()
{
if (shader_manager->use_osl()) {
/* OSL always needs the maximum as we can't predict the
* number of closures a shader might generate. */
return MAX_CLOSURE;
}
int max_closures = 0;
for (int i = 0; i < shaders.size(); i++) {
Shader *shader = shaders[i];
if (shader->reference_count()) {
int num_closures = shader->graph->get_num_closures();
max_closures = max(max_closures, num_closures);
}
}
max_closure_global = max(max_closure_global, max_closures);
if (max_closure_global > MAX_CLOSURE) {
/* This is usually harmless as more complex shader tend to get many
* closures discarded due to mixing or low weights. We need to limit
* to MAX_CLOSURE as this is hardcoded in CPU/mega kernels, and it
* avoids excessive memory usage for split kernels. */
VLOG(2) << "Maximum number of closures exceeded: " << max_closure_global << " > "
<< MAX_CLOSURE;
max_closure_global = MAX_CLOSURE;
}
return max_closure_global;
}
int Scene::get_volume_stack_size() const
{
int volume_stack_size = 0;
/* Space for background volume and terminator.
* Don't do optional here because camera ray initialization expects that there is space for
* at least those elements (avoiding extra condition to check if there is actual volume or not).
*/
volume_stack_size += 2;
/* Quick non-expensive check. Can over-estimate maximum possible nested level, but does not
* require expensive calculation during pre-processing. */
for (const Object *object : objects) {
if (object->check_is_volume()) {
++volume_stack_size;
}
if (volume_stack_size == MAX_VOLUME_STACK_SIZE) {
break;
}
}
volume_stack_size = min(volume_stack_size, MAX_VOLUME_STACK_SIZE);
return volume_stack_size;
}
bool Scene::has_shadow_catcher()
{
if (shadow_catcher_modified_) {
has_shadow_catcher_ = false;
for (Object *object : objects) {
if (object->get_is_shadow_catcher()) {
has_shadow_catcher_ = true;
break;
}
}
shadow_catcher_modified_ = false;
}
return has_shadow_catcher_;
}
void Scene::tag_shadow_catcher_modified()
{
shadow_catcher_modified_ = true;
}
template<> Light *Scene::create_node<Light>()
{
Light *node = new Light();
node->set_owner(this);
lights.push_back(node);
light_manager->tag_update(this, LightManager::LIGHT_ADDED);
return node;
}
template<> Mesh *Scene::create_node<Mesh>()
{
Mesh *node = new Mesh();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Hair *Scene::create_node<Hair>()
{
Hair *node = new Hair();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::HAIR_ADDED);
return node;
}
template<> Volume *Scene::create_node<Volume>()
{
Volume *node = new Volume();
node->set_owner(this);
geometry.push_back(node);
geometry_manager->tag_update(this, GeometryManager::MESH_ADDED);
return node;
}
template<> Object *Scene::create_node<Object>()
{
Object *node = new Object();
node->set_owner(this);
objects.push_back(node);
object_manager->tag_update(this, ObjectManager::OBJECT_ADDED);
return node;
}
template<> ParticleSystem *Scene::create_node<ParticleSystem>()
{
ParticleSystem *node = new ParticleSystem();
node->set_owner(this);
particle_systems.push_back(node);
particle_system_manager->tag_update(this);
return node;
}
template<> Shader *Scene::create_node<Shader>()
{
Shader *node = new Shader();
node->set_owner(this);
shaders.push_back(node);
shader_manager->tag_update(this, ShaderManager::SHADER_ADDED);
return node;
}
template<> AlembicProcedural *Scene::create_node<AlembicProcedural>()
{
#ifdef WITH_ALEMBIC
AlembicProcedural *node = new AlembicProcedural();
node->set_owner(this);
procedurals.push_back(node);
procedural_manager->tag_update();
return node;
#else
return nullptr;
#endif
}
template<> Pass *Scene::create_node<Pass>()
{
Pass *node = new Pass();
node->set_owner(this);
passes.push_back(node);
film->tag_modified();
return node;
}
template<typename T> void delete_node_from_array(vector<T> &nodes, T node)
{
for (size_t i = 0; i < nodes.size(); ++i) {
if (nodes[i] == node) {
std::swap(nodes[i], nodes[nodes.size() - 1]);
break;
}
}
nodes.resize(nodes.size() - 1);
delete node;
}
template<> void Scene::delete_node_impl(Light *node)
{
delete_node_from_array(lights, node);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_node_impl(Mesh *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Hair *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::HAIR_REMOVED);
}
template<> void Scene::delete_node_impl(Volume *node)
{
delete_node_from_array(geometry, static_cast<Geometry *>(node));
geometry_manager->tag_update(this, GeometryManager::MESH_REMOVED);
}
template<> void Scene::delete_node_impl(Geometry *node)
{
uint flag;
if (node->is_hair()) {
flag = GeometryManager::HAIR_REMOVED;
}
else {
flag = GeometryManager::MESH_REMOVED;
}
delete_node_from_array(geometry, node);
geometry_manager->tag_update(this, flag);
}
template<> void Scene::delete_node_impl(Object *node)
{
delete_node_from_array(objects, node);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_node_impl(ParticleSystem *node)
{
delete_node_from_array(particle_systems, node);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_node_impl(Shader *shader)
{
/* don't delete unused shaders, not supported */
shader->clear_reference_count();
}
template<> void Scene::delete_node_impl(Procedural *node)
{
delete_node_from_array(procedurals, node);
procedural_manager->tag_update();
}
template<> void Scene::delete_node_impl(AlembicProcedural *node)
{
#ifdef WITH_ALEMBIC
delete_node_impl(static_cast<Procedural *>(node));
#else
(void)node;
#endif
}
template<> void Scene::delete_node_impl(Pass *node)
{
delete_node_from_array(passes, node);
film->tag_modified();
}
template<typename T>
static void remove_nodes_in_set(const set<T *> &nodes_set,
vector<T *> &nodes_array,
const NodeOwner *owner)
{
size_t new_size = nodes_array.size();
for (size_t i = 0; i < new_size; ++i) {
T *node = nodes_array[i];
if (nodes_set.find(node) != nodes_set.end()) {
std::swap(nodes_array[i], nodes_array[new_size - 1]);
assert(node->get_owner() == owner);
delete node;
i -= 1;
new_size -= 1;
}
}
nodes_array.resize(new_size);
(void)owner;
}
template<> void Scene::delete_nodes(const set<Light *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, lights, owner);
light_manager->tag_update(this, LightManager::LIGHT_REMOVED);
}
template<> void Scene::delete_nodes(const set<Geometry *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, geometry, owner);
geometry_manager->tag_update(this, GeometryManager::GEOMETRY_REMOVED);
}
template<> void Scene::delete_nodes(const set<Object *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, objects, owner);
object_manager->tag_update(this, ObjectManager::OBJECT_REMOVED);
}
template<> void Scene::delete_nodes(const set<ParticleSystem *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, particle_systems, owner);
particle_system_manager->tag_update(this);
}
template<> void Scene::delete_nodes(const set<Shader *> &nodes, const NodeOwner * /*owner*/)
{
/* don't delete unused shaders, not supported */
for (Shader *shader : nodes) {
shader->clear_reference_count();
}
}
template<> void Scene::delete_nodes(const set<Procedural *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, procedurals, owner);
procedural_manager->tag_update();
}
template<> void Scene::delete_nodes(const set<Pass *> &nodes, const NodeOwner *owner)
{
remove_nodes_in_set(nodes, passes, owner);
film->tag_modified();
}
CCL_NAMESPACE_END