
Volumes can now have textured colors and density. There is a Volume Sampling panel in the Render properties with these settings: * Step size: distance between volume shader samples when rendering the volume. Lower values give more accurate and detailed results but also increased render time. * Max steps: maximum number of steps through the volume before giving up, to protect from extremely long render times with big objects or small step sizes. This is much more compute intensive than homogeneous volume, so when you are not using a texture you should enable the Homogeneous Volume option in the material or world for faster rendering. One important missing feature is that Generated texture coordinates are not yet working in volumes, and they are the default coordinates for nearly all texture nodes. So until that works you need to plug in object texture coordinates or a world space position. This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
418 lines
13 KiB
C
418 lines
13 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef enum VolumeIntegrateResult {
|
|
VOLUME_PATH_TERMINATED = 0,
|
|
VOLUME_PATH_SCATTERED = 1,
|
|
VOLUME_PATH_ATTENUATED = 2,
|
|
VOLUME_PATH_MISSED = 3
|
|
} VolumeIntegrateResult;
|
|
|
|
/* Volume shader properties
|
|
*
|
|
* extinction coefficient = absorption coefficient + scattering coefficient
|
|
* sigma_t = sigma_a + sigma_s */
|
|
|
|
typedef struct VolumeShaderCoefficients {
|
|
float3 sigma_a;
|
|
float3 sigma_s;
|
|
float3 emission;
|
|
} VolumeShaderCoefficients;
|
|
|
|
/* evaluate shader to get extinction coefficient at P */
|
|
ccl_device bool volume_shader_extinction_sample(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack, int path_flag, ShaderContext ctx, float3 P, float3 *extinction)
|
|
{
|
|
sd->P = P;
|
|
shader_eval_volume(kg, sd, stack, 0.0f, path_flag, ctx);
|
|
|
|
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER)))
|
|
return false;
|
|
|
|
float3 sigma_t = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < sd->num_closure; i++) {
|
|
const ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(CLOSURE_IS_VOLUME(sc->type))
|
|
sigma_t += sc->weight;
|
|
}
|
|
|
|
*extinction = sigma_t;
|
|
return true;
|
|
}
|
|
|
|
/* evaluate shader to get absorption, scattering and emission at P */
|
|
ccl_device bool volume_shader_sample(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack, int path_flag, ShaderContext ctx, float3 P, VolumeShaderCoefficients *sample)
|
|
{
|
|
sd->P = P;
|
|
shader_eval_volume(kg, sd, stack, 0.0f, path_flag, ctx);
|
|
|
|
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER|SD_EMISSION)))
|
|
return false;
|
|
|
|
sample->sigma_a = make_float3(0.0f, 0.0f, 0.0f);
|
|
sample->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
sample->emission = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < sd->num_closure; i++) {
|
|
const ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(sc->type == CLOSURE_VOLUME_ABSORPTION_ID)
|
|
sample->sigma_a += sc->weight;
|
|
else if(sc->type == CLOSURE_EMISSION_ID)
|
|
sample->emission += sc->weight;
|
|
else if(CLOSURE_IS_VOLUME(sc->type))
|
|
sample->sigma_s += sc->weight;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ccl_device float3 volume_color_attenuation(float3 sigma, float t)
|
|
{
|
|
return make_float3(expf(-sigma.x * t), expf(-sigma.y * t), expf(-sigma.z * t));
|
|
}
|
|
|
|
ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, VolumeStack *stack)
|
|
{
|
|
for(int i = 0; stack[i].shader != SHADER_NO_ID; i++) {
|
|
int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2);
|
|
|
|
if(shader_flag & SD_HETEROGENEOUS_VOLUME)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Volumetric Shadows
|
|
*
|
|
* These functions are used to attenuate shadow rays to lights. Both absorption
|
|
* and scattering will block light, represented by the extinction coefficient. */
|
|
|
|
/* homogenous volume: assume shader evaluation at the starts gives
|
|
* the extinction coefficient for the entire line segment */
|
|
ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
|
|
{
|
|
ShaderContext ctx = SHADER_CONTEXT_SHADOW;
|
|
int path_flag = PATH_RAY_SHADOW;
|
|
float3 sigma_t;
|
|
|
|
if(volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, ray->P, &sigma_t))
|
|
*throughput *= volume_color_attenuation(sigma_t, ray->t);
|
|
}
|
|
|
|
/* heterogeneous volume: integrate stepping through the volume until we
|
|
* reach the end, get absorbed entirely, or run out of iterations */
|
|
ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
|
|
{
|
|
ShaderContext ctx = SHADER_CONTEXT_SHADOW;
|
|
int path_flag = PATH_RAY_SHADOW;
|
|
float3 tp = *throughput;
|
|
const float tp_eps = 1e-10f; /* todo: this is likely not the right value */
|
|
|
|
/* prepare for stepping */
|
|
int max_steps = kernel_data.integrator.volume_max_steps;
|
|
float step = kernel_data.integrator.volume_step_size;
|
|
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
|
|
|
|
/* compute extinction at the start */
|
|
float t = 0.0f;
|
|
float3 P = ray->P;
|
|
float3 sigma_t;
|
|
|
|
if(!volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, P, &sigma_t))
|
|
sigma_t = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < max_steps; i++) {
|
|
/* advance to new position */
|
|
float new_t = min(ray->t, t + random_jitter_offset + i * step);
|
|
float3 new_P = ray->P + ray->D * new_t;
|
|
float3 new_sigma_t;
|
|
|
|
/* compute attenuation over segment */
|
|
if(volume_shader_extinction_sample(kg, sd, state->volume_stack, path_flag, ctx, new_P, &new_sigma_t)) {
|
|
/* todo: we could avoid computing expf() for each step by summing,
|
|
* because exp(a)*exp(b) = exp(a+b), but we still want a quick
|
|
* tp_eps check too */
|
|
tp *= volume_color_attenuation(0.5f*(sigma_t + new_sigma_t), new_t - t);
|
|
|
|
/* stop if nearly all light blocked */
|
|
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps)
|
|
break;
|
|
|
|
sigma_t = new_sigma_t;
|
|
}
|
|
else {
|
|
/* skip empty space */
|
|
sigma_t = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
/* stop if at the end of the volume */
|
|
t = new_t;
|
|
if(t == ray->t)
|
|
break;
|
|
}
|
|
|
|
*throughput = tp;
|
|
}
|
|
|
|
/* get the volume attenuation over line segment defined by ray, with the
|
|
* assumption that there are no surfaces blocking light between the endpoints */
|
|
ccl_device void kernel_volume_shadow(KernelGlobals *kg, PathState *state, Ray *ray, float3 *throughput)
|
|
{
|
|
ShaderData sd;
|
|
shader_setup_from_volume(kg, &sd, ray, state->bounce);
|
|
|
|
if(volume_stack_is_heterogeneous(kg, state->volume_stack))
|
|
kernel_volume_shadow_heterogeneous(kg, state, ray, &sd, throughput);
|
|
else
|
|
kernel_volume_shadow_homogeneous(kg, state, ray, &sd, throughput);
|
|
}
|
|
|
|
/* Volumetric Path */
|
|
|
|
/* homogenous volume: assume shader evaluation at the starts gives
|
|
* the volume shading coefficient for the entire line segment */
|
|
ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput)
|
|
{
|
|
ShaderContext ctx = SHADER_CONTEXT_VOLUME;
|
|
int path_flag = PATH_RAY_SHADOW;
|
|
VolumeShaderCoefficients coeff;
|
|
|
|
if(!volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, ray->P, &coeff))
|
|
return VOLUME_PATH_MISSED;
|
|
|
|
/* todo: in principle the SD_EMISSION, SD_ABSORPTION and SD_SCATTER flags
|
|
* should ensure that one of the components is > 0 and so no division by
|
|
* zero occurs, however this needs to be double-checked and tested */
|
|
|
|
int closure_flag = sd->flag;
|
|
float t = ray->t;
|
|
|
|
/* compute attenuation from absorption */
|
|
float3 attenuation;
|
|
|
|
if(closure_flag & SD_ABSORPTION)
|
|
attenuation = volume_color_attenuation(coeff.sigma_a, t);
|
|
|
|
/* integrate emission attenuated by absorption
|
|
* integral E * exp(-sigma_a * t) from 0 to t = E * (1 - exp(-sigma_a * t))/sigma_a
|
|
* this goes to E * t as sigma_a goes to zero
|
|
*
|
|
* todo: we should use an epsilon to avoid precision issues near zero sigma_a */
|
|
if(closure_flag & SD_EMISSION) {
|
|
float3 emission = coeff.emission;
|
|
|
|
if(closure_flag & SD_ABSORPTION) {
|
|
float3 sigma_a = coeff.sigma_a;
|
|
|
|
emission.x *= (sigma_a.x > 0.0f)? (1.0f - attenuation.x)/sigma_a.x: t;
|
|
emission.y *= (sigma_a.y > 0.0f)? (1.0f - attenuation.y)/sigma_a.y: t;
|
|
emission.z *= (sigma_a.z > 0.0f)? (1.0f - attenuation.z)/sigma_a.z: t;
|
|
}
|
|
else
|
|
emission *= t;
|
|
|
|
path_radiance_accum_emission(L, *throughput, emission, state->bounce);
|
|
}
|
|
|
|
/* modify throughput */
|
|
if(closure_flag & SD_ABSORPTION)
|
|
*throughput *= attenuation;
|
|
|
|
return VOLUME_PATH_ATTENUATED;
|
|
}
|
|
|
|
/* heterogeneous volume: integrate stepping through the volume until we
|
|
* reach the end, get absorbed entirely, or run out of iterations */
|
|
ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput)
|
|
{
|
|
ShaderContext ctx = SHADER_CONTEXT_VOLUME;
|
|
int path_flag = PATH_RAY_SHADOW;
|
|
VolumeShaderCoefficients coeff;
|
|
float3 tp = *throughput;
|
|
const float tp_eps = 1e-10f; /* todo: this is likely not the right value */
|
|
|
|
/* prepare for stepping */
|
|
int max_steps = kernel_data.integrator.volume_max_steps;
|
|
float step = kernel_data.integrator.volume_step_size;
|
|
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
|
|
|
|
/* compute coefficients at the start */
|
|
float t = 0.0f;
|
|
float3 P = ray->P;
|
|
|
|
if(!volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, P, &coeff)) {
|
|
coeff.sigma_a = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff.sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff.emission = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
for(int i = 0; i < max_steps; i++) {
|
|
/* advance to new position */
|
|
float new_t = min(ray->t, t + random_jitter_offset + i * step);
|
|
float3 new_P = ray->P + ray->D * new_t;
|
|
VolumeShaderCoefficients new_coeff;
|
|
|
|
/* compute attenuation over segment */
|
|
if(volume_shader_sample(kg, sd, state->volume_stack, path_flag, ctx, new_P, &new_coeff)) {
|
|
int closure_flag = sd->flag;
|
|
float dt = new_t - t;
|
|
|
|
/* compute attenuation from absorption */
|
|
float3 attenuation, sigma_a;
|
|
|
|
if(closure_flag & SD_ABSORPTION) {
|
|
/* todo: we could avoid computing expf() for each step by summing,
|
|
* because exp(a)*exp(b) = exp(a+b), but we still want a quick
|
|
* tp_eps check too */
|
|
sigma_a = 0.5f*(coeff.sigma_a + new_coeff.sigma_a);
|
|
attenuation = volume_color_attenuation(sigma_a, dt);
|
|
}
|
|
|
|
/* integrate emission attenuated by absorption
|
|
* integral E * exp(-sigma_a * t) from 0 to t = E * (1 - exp(-sigma_a * t))/sigma_a
|
|
* this goes to E * t as sigma_a goes to zero
|
|
*
|
|
* todo: we should use an epsilon to avoid precision issues near zero sigma_a */
|
|
if(closure_flag & SD_EMISSION) {
|
|
float3 emission = 0.5f*(coeff.emission + new_coeff.emission);
|
|
|
|
if(closure_flag & SD_ABSORPTION) {
|
|
emission.x *= (sigma_a.x > 0.0f)? (1.0f - attenuation.x)/sigma_a.x: dt;
|
|
emission.y *= (sigma_a.y > 0.0f)? (1.0f - attenuation.y)/sigma_a.y: dt;
|
|
emission.z *= (sigma_a.z > 0.0f)? (1.0f - attenuation.z)/sigma_a.z: dt;
|
|
}
|
|
else
|
|
emission *= t;
|
|
|
|
path_radiance_accum_emission(L, tp, emission, state->bounce);
|
|
}
|
|
|
|
/* modify throughput */
|
|
if(closure_flag & SD_ABSORPTION) {
|
|
tp *= attenuation;
|
|
|
|
/* stop if nearly all light blocked */
|
|
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) {
|
|
tp = make_float3(0.0f, 0.0f, 0.0f);
|
|
break;
|
|
}
|
|
}
|
|
|
|
coeff = new_coeff;
|
|
}
|
|
else {
|
|
/* skip empty space */
|
|
coeff.sigma_a = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff.sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff.emission = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
/* stop if at the end of the volume */
|
|
t = new_t;
|
|
if(t == ray->t)
|
|
break;
|
|
}
|
|
|
|
*throughput = tp;
|
|
|
|
return VOLUME_PATH_ATTENUATED;
|
|
}
|
|
|
|
/* get the volume attenuation and emission over line segment defined by
|
|
* ray, with the assumption that there are no surfaces blocking light
|
|
* between the endpoints */
|
|
ccl_device VolumeIntegrateResult kernel_volume_integrate(KernelGlobals *kg, PathState *state, Ray *ray, PathRadiance *L, float3 *throughput)
|
|
{
|
|
ShaderData sd;
|
|
shader_setup_from_volume(kg, &sd, ray, state->bounce);
|
|
|
|
if(volume_stack_is_heterogeneous(kg, state->volume_stack))
|
|
return kernel_volume_integrate_heterogeneous(kg, state, ray, &sd, L, throughput);
|
|
else
|
|
return kernel_volume_integrate_homogeneous(kg, state, ray, &sd, L, throughput);
|
|
}
|
|
|
|
/* Volume Stack
|
|
*
|
|
* This is an array of object/shared ID's that the current segment of the path
|
|
* is inside of. */
|
|
|
|
ccl_device void kernel_volume_stack_init(KernelGlobals *kg, VolumeStack *stack)
|
|
{
|
|
/* todo: this assumes camera is always in air, need to detect when it isn't */
|
|
if(kernel_data.background.volume_shader == SHADER_NO_ID) {
|
|
stack[0].shader = SHADER_NO_ID;
|
|
}
|
|
else {
|
|
stack[0].shader = kernel_data.background.volume_shader;
|
|
stack[0].object = ~0;
|
|
stack[1].shader = SHADER_NO_ID;
|
|
}
|
|
}
|
|
|
|
ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack)
|
|
{
|
|
/* todo: we should have some way for objects to indicate if they want the
|
|
* world shader to work inside them. excluding it by default is problematic
|
|
* because non-volume objects can't be assumed to be closed manifolds */
|
|
|
|
if(!(sd->flag & SD_HAS_VOLUME))
|
|
return;
|
|
|
|
if(sd->flag & SD_BACKFACING) {
|
|
/* exit volume object: remove from stack */
|
|
for(int i = 0; stack[i].shader != SHADER_NO_ID; i++) {
|
|
if(stack[i].object == sd->object) {
|
|
/* shift back next stack entries */
|
|
do {
|
|
stack[i] = stack[i+1];
|
|
i++;
|
|
}
|
|
while(stack[i].shader != SHADER_NO_ID);
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* enter volume object: add to stack */
|
|
int i;
|
|
|
|
for(i = 0; stack[i].shader != SHADER_NO_ID; i++) {
|
|
/* already in the stack? then we have nothing to do */
|
|
if(stack[i].object == sd->object)
|
|
return;
|
|
}
|
|
|
|
/* if we exceed the stack limit, ignore */
|
|
if(i >= VOLUME_STACK_SIZE-1)
|
|
return;
|
|
|
|
/* add to the end of the stack */
|
|
stack[i].shader = sd->shader;
|
|
stack[i].object = sd->object;
|
|
stack[i+1].shader = SHADER_NO_ID;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|