Files
blender/intern/libmv/libmv/multiview/homography.cc
Sergey Sharybin 8e0cdfd0c9 Libmv: Correction to previous commit
We do need to make a copy of the values.
2017-04-07 17:57:48 +02:00

468 lines
16 KiB
C++

// Copyright (c) 2008, 2009 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
#include "libmv/multiview/homography.h"
#include "ceres/ceres.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/conditioning.h"
#include "libmv/multiview/homography_parameterization.h"
namespace libmv {
/** 2D Homography transformation estimation in the case that points are in
* euclidean coordinates.
*
* x = H y
* x and y vector must have the same direction, we could write
* crossproduct(|x|, * H * |y| ) = |0|
*
* | 0 -1 x2| |a b c| |y1| |0|
* | 1 0 -x1| * |d e f| * |y2| = |0|
* |-x2 x1 0| |g h 1| |1 | |0|
*
* That gives :
*
* (-d+x2*g)*y1 + (-e+x2*h)*y2 + -f+x2 |0|
* (a-x1*g)*y1 + (b-x1*h)*y2 + c-x1 = |0|
* (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f |0|
*/
static bool Homography2DFromCorrespondencesLinearEuc(
const Mat &x1,
const Mat &x2,
Mat3 *H,
double expected_precision) {
assert(2 == x1.rows());
assert(4 <= x1.cols());
assert(x1.rows() == x2.rows());
assert(x1.cols() == x2.cols());
int n = x1.cols();
MatX8 L = Mat::Zero(n * 3, 8);
Mat b = Mat::Zero(n * 3, 1);
for (int i = 0; i < n; ++i) {
int j = 3 * i;
L(j, 0) = x1(0, i); // a
L(j, 1) = x1(1, i); // b
L(j, 2) = 1.0; // c
L(j, 6) = -x2(0, i) * x1(0, i); // g
L(j, 7) = -x2(0, i) * x1(1, i); // h
b(j, 0) = x2(0, i); // i
++j;
L(j, 3) = x1(0, i); // d
L(j, 4) = x1(1, i); // e
L(j, 5) = 1.0; // f
L(j, 6) = -x2(1, i) * x1(0, i); // g
L(j, 7) = -x2(1, i) * x1(1, i); // h
b(j, 0) = x2(1, i); // i
// This ensures better stability
// TODO(julien) make a lite version without this 3rd set
++j;
L(j, 0) = x2(1, i) * x1(0, i); // a
L(j, 1) = x2(1, i) * x1(1, i); // b
L(j, 2) = x2(1, i); // c
L(j, 3) = -x2(0, i) * x1(0, i); // d
L(j, 4) = -x2(0, i) * x1(1, i); // e
L(j, 5) = -x2(0, i); // f
}
// Solve Lx=B
Vec h = L.fullPivLu().solve(b);
Homography2DNormalizedParameterization<double>::To(h, H);
if ((L * h).isApprox(b, expected_precision)) {
return true;
} else {
return false;
}
}
/** 2D Homography transformation estimation in the case that points are in
* homogeneous coordinates.
*
* | 0 -x3 x2| |a b c| |y1| -x3*d+x2*g -x3*e+x2*h -x3*f+x2*1 |y1| (-x3*d+x2*g)*y1 (-x3*e+x2*h)*y2 (-x3*f+x2*1)*y3 |0|
* | x3 0 -x1| * |d e f| * |y2| = x3*a-x1*g x3*b-x1*h x3*c-x1*1 * |y2| = (x3*a-x1*g)*y1 (x3*b-x1*h)*y2 (x3*c-x1*1)*y3 = |0|
* |-x2 x1 0| |g h 1| |y3| -x2*a+x1*d -x2*b+x1*e -x2*c+x1*f |y3| (-x2*a+x1*d)*y1 (-x2*b+x1*e)*y2 (-x2*c+x1*f)*y3 |0|
* X = |a b c d e f g h|^t
*/
bool Homography2DFromCorrespondencesLinear(const Mat &x1,
const Mat &x2,
Mat3 *H,
double expected_precision) {
if (x1.rows() == 2) {
return Homography2DFromCorrespondencesLinearEuc(x1, x2, H,
expected_precision);
}
assert(3 == x1.rows());
assert(4 <= x1.cols());
assert(x1.rows() == x2.rows());
assert(x1.cols() == x2.cols());
const int x = 0;
const int y = 1;
const int w = 2;
int n = x1.cols();
MatX8 L = Mat::Zero(n * 3, 8);
Mat b = Mat::Zero(n * 3, 1);
for (int i = 0; i < n; ++i) {
int j = 3 * i;
L(j, 0) = x2(w, i) * x1(x, i); // a
L(j, 1) = x2(w, i) * x1(y, i); // b
L(j, 2) = x2(w, i) * x1(w, i); // c
L(j, 6) = -x2(x, i) * x1(x, i); // g
L(j, 7) = -x2(x, i) * x1(y, i); // h
b(j, 0) = x2(x, i) * x1(w, i);
++j;
L(j, 3) = x2(w, i) * x1(x, i); // d
L(j, 4) = x2(w, i) * x1(y, i); // e
L(j, 5) = x2(w, i) * x1(w, i); // f
L(j, 6) = -x2(y, i) * x1(x, i); // g
L(j, 7) = -x2(y, i) * x1(y, i); // h
b(j, 0) = x2(y, i) * x1(w, i);
// This ensures better stability
++j;
L(j, 0) = x2(y, i) * x1(x, i); // a
L(j, 1) = x2(y, i) * x1(y, i); // b
L(j, 2) = x2(y, i) * x1(w, i); // c
L(j, 3) = -x2(x, i) * x1(x, i); // d
L(j, 4) = -x2(x, i) * x1(y, i); // e
L(j, 5) = -x2(x, i) * x1(w, i); // f
}
// Solve Lx=B
Vec h = L.fullPivLu().solve(b);
if ((L * h).isApprox(b, expected_precision)) {
Homography2DNormalizedParameterization<double>::To(h, H);
return true;
} else {
return false;
}
}
// Default settings for homography estimation which should be suitable
// for a wide range of use cases.
EstimateHomographyOptions::EstimateHomographyOptions(void) :
use_normalization(true),
max_num_iterations(50),
expected_average_symmetric_distance(1e-16) {
}
namespace {
void GetNormalizedPoints(const Mat &original_points,
Mat *normalized_points,
Mat3 *normalization_matrix) {
IsotropicPreconditionerFromPoints(original_points, normalization_matrix);
ApplyTransformationToPoints(original_points,
*normalization_matrix,
normalized_points);
}
// Cost functor which computes symmetric geometric distance
// used for homography matrix refinement.
class HomographySymmetricGeometricCostFunctor {
public:
HomographySymmetricGeometricCostFunctor(const Vec2 &x,
const Vec2 &y)
: x_(x), y_(y) { }
template<typename T>
bool operator()(const T *homography_parameters, T *residuals) const {
typedef Eigen::Matrix<T, 3, 3> Mat3;
typedef Eigen::Matrix<T, 3, 1> Vec3;
Mat3 H(homography_parameters);
Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
Vec3 y(T(y_(0)), T(y_(1)), T(1.0));
Vec3 H_x = H * x;
Vec3 Hinv_y = H.inverse() * y;
H_x /= H_x(2);
Hinv_y /= Hinv_y(2);
// This is a forward error.
residuals[0] = H_x(0) - T(y_(0));
residuals[1] = H_x(1) - T(y_(1));
// This is a backward error.
residuals[2] = Hinv_y(0) - T(x_(0));
residuals[3] = Hinv_y(1) - T(x_(1));
return true;
}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
const Vec2 x_;
const Vec2 y_;
};
// Termination checking callback used for homography estimation.
// It finished the minimization as soon as actual average of
// symmetric geometric distance is less or equal to the expected
// average value.
class TerminationCheckingCallback : public ceres::IterationCallback {
public:
TerminationCheckingCallback(const Mat &x1, const Mat &x2,
const EstimateHomographyOptions &options,
Mat3 *H)
: options_(options), x1_(x1), x2_(x2), H_(H) {}
virtual ceres::CallbackReturnType operator()(
const ceres::IterationSummary& summary) {
// If the step wasn't successful, there's nothing to do.
if (!summary.step_is_successful) {
return ceres::SOLVER_CONTINUE;
}
// Calculate average of symmetric geometric distance.
double average_distance = 0.0;
for (int i = 0; i < x1_.cols(); i++) {
average_distance = SymmetricGeometricDistance(*H_,
x1_.col(i),
x2_.col(i));
}
average_distance /= x1_.cols();
if (average_distance <= options_.expected_average_symmetric_distance) {
return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
}
return ceres::SOLVER_CONTINUE;
}
private:
const EstimateHomographyOptions &options_;
const Mat &x1_;
const Mat &x2_;
Mat3 *H_;
};
} // namespace
/** 2D Homography transformation estimation in the case that points are in
* euclidean coordinates.
*/
bool EstimateHomography2DFromCorrespondences(
const Mat &x1,
const Mat &x2,
const EstimateHomographyOptions &options,
Mat3 *H) {
// TODO(sergey): Support homogenous coordinates, not just euclidean.
assert(2 == x1.rows());
assert(4 <= x1.cols());
assert(x1.rows() == x2.rows());
assert(x1.cols() == x2.cols());
Mat3 T1 = Mat3::Identity(),
T2 = Mat3::Identity();
// Step 1: Algebraic homography estimation.
Mat x1_normalized, x2_normalized;
if (options.use_normalization) {
LG << "Estimating homography using normalization.";
GetNormalizedPoints(x1, &x1_normalized, &T1);
GetNormalizedPoints(x2, &x2_normalized, &T2);
} else {
x1_normalized = x1;
x2_normalized = x2;
}
// Assume algebraic estiation always suceeds,
Homography2DFromCorrespondencesLinear(x1_normalized, x2_normalized, H);
// Denormalize the homography matrix.
if (options.use_normalization) {
*H = T2.inverse() * (*H) * T1;
}
LG << "Estimated matrix after algebraic estimation:\n" << *H;
// Step 2: Refine matrix using Ceres minimizer.
ceres::Problem problem;
for (int i = 0; i < x1.cols(); i++) {
HomographySymmetricGeometricCostFunctor
*homography_symmetric_geometric_cost_function =
new HomographySymmetricGeometricCostFunctor(x1.col(i),
x2.col(i));
problem.AddResidualBlock(
new ceres::AutoDiffCostFunction<
HomographySymmetricGeometricCostFunctor,
4, // num_residuals
9>(homography_symmetric_geometric_cost_function),
NULL,
H->data());
}
// Configure the solve.
ceres::Solver::Options solver_options;
solver_options.linear_solver_type = ceres::DENSE_QR;
solver_options.max_num_iterations = options.max_num_iterations;
solver_options.update_state_every_iteration = true;
// Terminate if the average symmetric distance is good enough.
TerminationCheckingCallback callback(x1, x2, options, H);
solver_options.callbacks.push_back(&callback);
// Run the solve.
ceres::Solver::Summary summary;
ceres::Solve(solver_options, &problem, &summary);
VLOG(1) << "Summary:\n" << summary.FullReport();
LG << "Final refined matrix:\n" << *H;
return summary.IsSolutionUsable();
}
/**
* x2 ~ A * x1
* x2^t * Hi * A *x1 = 0
* H1 = H2 = H3 =
* | 0 0 0 1| |-x2w| |0 0 0 0| | 0 | | 0 0 1 0| |-x2z|
* | 0 0 0 0| -> | 0 | |0 0 1 0| -> |-x2z| | 0 0 0 0| -> | 0 |
* | 0 0 0 0| | 0 | |0-1 0 0| | x2y| |-1 0 0 0| | x2x|
* |-1 0 0 0| | x2x| |0 0 0 0| | 0 | | 0 0 0 0| | 0 |
* H4 = H5 = H6 =
* |0 0 0 0| | 0 | | 0 1 0 0| |-x2y| |0 0 0 0| | 0 |
* |0 0 0 1| -> |-x2w| |-1 0 0 0| -> | x2x| |0 0 0 0| -> | 0 |
* |0 0 0 0| | 0 | | 0 0 0 0| | 0 | |0 0 0 1| |-x2w|
* |0-1 0 0| | x2y| | 0 0 0 0| | 0 | |0 0-1 0| | x2z|
* |a b c d|
* A = |e f g h|
* |i j k l|
* |m n o 1|
*
* x2^t * H1 * A *x1 = (-x2w*a +x2x*m )*x1x + (-x2w*b +x2x*n )*x1y + (-x2w*c +x2x*o )*x1z + (-x2w*d +x2x*1 )*x1w = 0
* x2^t * H2 * A *x1 = (-x2z*e +x2y*i )*x1x + (-x2z*f +x2y*j )*x1y + (-x2z*g +x2y*k )*x1z + (-x2z*h +x2y*l )*x1w = 0
* x2^t * H3 * A *x1 = (-x2z*a +x2x*i )*x1x + (-x2z*b +x2x*j )*x1y + (-x2z*c +x2x*k )*x1z + (-x2z*d +x2x*l )*x1w = 0
* x2^t * H4 * A *x1 = (-x2w*e +x2y*m )*x1x + (-x2w*f +x2y*n )*x1y + (-x2w*g +x2y*o )*x1z + (-x2w*h +x2y*1 )*x1w = 0
* x2^t * H5 * A *x1 = (-x2y*a +x2x*e )*x1x + (-x2y*b +x2x*f )*x1y + (-x2y*c +x2x*g )*x1z + (-x2y*d +x2x*h )*x1w = 0
* x2^t * H6 * A *x1 = (-x2w*i +x2z*m )*x1x + (-x2w*j +x2z*n )*x1y + (-x2w*k +x2z*o )*x1z + (-x2w*l +x2z*1 )*x1w = 0
*
* X = |a b c d e f g h i j k l m n o|^t
*/
bool Homography3DFromCorrespondencesLinear(const Mat &x1,
const Mat &x2,
Mat4 *H,
double expected_precision) {
assert(4 == x1.rows());
assert(5 <= x1.cols());
assert(x1.rows() == x2.rows());
assert(x1.cols() == x2.cols());
const int x = 0;
const int y = 1;
const int z = 2;
const int w = 3;
int n = x1.cols();
MatX15 L = Mat::Zero(n * 6, 15);
Mat b = Mat::Zero(n * 6, 1);
for (int i = 0; i < n; ++i) {
int j = 6 * i;
L(j, 0) = -x2(w, i) * x1(x, i); // a
L(j, 1) = -x2(w, i) * x1(y, i); // b
L(j, 2) = -x2(w, i) * x1(z, i); // c
L(j, 3) = -x2(w, i) * x1(w, i); // d
L(j, 12) = x2(x, i) * x1(x, i); // m
L(j, 13) = x2(x, i) * x1(y, i); // n
L(j, 14) = x2(x, i) * x1(z, i); // o
b(j, 0) = -x2(x, i) * x1(w, i);
++j;
L(j, 4) = -x2(z, i) * x1(x, i); // e
L(j, 5) = -x2(z, i) * x1(y, i); // f
L(j, 6) = -x2(z, i) * x1(z, i); // g
L(j, 7) = -x2(z, i) * x1(w, i); // h
L(j, 8) = x2(y, i) * x1(x, i); // i
L(j, 9) = x2(y, i) * x1(y, i); // j
L(j, 10) = x2(y, i) * x1(z, i); // k
L(j, 11) = x2(y, i) * x1(w, i); // l
++j;
L(j, 0) = -x2(z, i) * x1(x, i); // a
L(j, 1) = -x2(z, i) * x1(y, i); // b
L(j, 2) = -x2(z, i) * x1(z, i); // c
L(j, 3) = -x2(z, i) * x1(w, i); // d
L(j, 8) = x2(x, i) * x1(x, i); // i
L(j, 9) = x2(x, i) * x1(y, i); // j
L(j, 10) = x2(x, i) * x1(z, i); // k
L(j, 11) = x2(x, i) * x1(w, i); // l
++j;
L(j, 4) = -x2(w, i) * x1(x, i); // e
L(j, 5) = -x2(w, i) * x1(y, i); // f
L(j, 6) = -x2(w, i) * x1(z, i); // g
L(j, 7) = -x2(w, i) * x1(w, i); // h
L(j, 12) = x2(y, i) * x1(x, i); // m
L(j, 13) = x2(y, i) * x1(y, i); // n
L(j, 14) = x2(y, i) * x1(z, i); // o
b(j, 0) = -x2(y, i) * x1(w, i);
++j;
L(j, 0) = -x2(y, i) * x1(x, i); // a
L(j, 1) = -x2(y, i) * x1(y, i); // b
L(j, 2) = -x2(y, i) * x1(z, i); // c
L(j, 3) = -x2(y, i) * x1(w, i); // d
L(j, 4) = x2(x, i) * x1(x, i); // e
L(j, 5) = x2(x, i) * x1(y, i); // f
L(j, 6) = x2(x, i) * x1(z, i); // g
L(j, 7) = x2(x, i) * x1(w, i); // h
++j;
L(j, 8) = -x2(w, i) * x1(x, i); // i
L(j, 9) = -x2(w, i) * x1(y, i); // j
L(j, 10) = -x2(w, i) * x1(z, i); // k
L(j, 11) = -x2(w, i) * x1(w, i); // l
L(j, 12) = x2(z, i) * x1(x, i); // m
L(j, 13) = x2(z, i) * x1(y, i); // n
L(j, 14) = x2(z, i) * x1(z, i); // o
b(j, 0) = -x2(z, i) * x1(w, i);
}
// Solve Lx=B
Vec h = L.fullPivLu().solve(b);
if ((L * h).isApprox(b, expected_precision)) {
Homography3DNormalizedParameterization<double>::To(h, H);
return true;
} else {
return false;
}
}
double SymmetricGeometricDistance(const Mat3 &H,
const Vec2 &x1,
const Vec2 &x2) {
Vec3 x(x1(0), x1(1), 1.0);
Vec3 y(x2(0), x2(1), 1.0);
Vec3 H_x = H * x;
Vec3 Hinv_y = H.inverse() * y;
H_x /= H_x(2);
Hinv_y /= Hinv_y(2);
return (H_x.head<2>() - y.head<2>()).squaredNorm() +
(Hinv_y.head<2>() - x.head<2>()).squaredNorm();
}
} // namespace libmv