Files
blender/intern/cycles/kernel/kernel_passes.h
Lukas Stockner 902209eda5 Partial Fix T73043: Denoising Albedo not working well for Sheen
Similar to the Microfacet Closures, the Principled BSDF Sheen closure is
added at a high weight but typically results in fairly low values.
Therefore, the default weight is a bad indicator of importance.

The fix here is the same as it was back then for Microfacets:
Compute an average weight using the normal as the half-vector
and use it to scale down the sample weight and the albedo channel.

In addition to drastically improving denoising of materials with
sheen when using the new Denoising node, this also can reduce noise
on such materials considerably.
2020-01-20 23:06:08 +01:00

393 lines
16 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/kernel_id_passes.h"
CCL_NAMESPACE_BEGIN
#ifdef __DENOISING_FEATURES__
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg,
ccl_global float *buffer,
int sample,
float path_total,
float path_total_shaded)
{
if (kernel_data.film.pass_denoising_data == 0)
return;
buffer += (sample & 1) ? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
path_total = ensure_finite(path_total);
path_total_shaded = ensure_finite(path_total_shaded);
kernel_write_pass_float(buffer, path_total);
kernel_write_pass_float(buffer + 1, path_total_shaded);
float value = path_total_shaded / max(path_total, 1e-7f);
kernel_write_pass_float(buffer + 2, value * value);
}
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space PathState *state,
PathRadiance *L)
{
if (state->denoising_feature_weight == 0.0f) {
return;
}
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
/* Skip implicitly transparent surfaces. */
if (sd->flag & SD_HAS_ONLY_VOLUME) {
return;
}
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
float3 albedo = make_float3(0.0f, 0.0f, 0.0f);
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
continue;
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
normal += sc->N * sc->sample_weight;
sum_weight += sc->sample_weight;
if (bsdf_get_specular_roughness_squared(sc) > sqr(0.075f)) {
float3 closure_albedo = sc->weight;
/* Closures that include a Fresnel term typically have weights close to 1 even though their
* actual contribution is significantly lower.
* To account for this, we scale their weight by the average fresnel factor (the same is also
* done for the sample weight in the BSDF setup, so we don't need to scale that here). */
if (CLOSURE_IS_BSDF_MICROFACET_FRESNEL(sc->type)) {
MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
closure_albedo *= bsdf->extra->fresnel_color;
}
else if (sc->type == CLOSURE_BSDF_PRINCIPLED_SHEEN_ID) {
PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf *)sc;
closure_albedo *= bsdf->avg_value;
}
albedo += closure_albedo;
sum_nonspecular_weight += sc->sample_weight;
}
}
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
if ((sum_weight == 0.0f) || (sum_nonspecular_weight * 4.0f > sum_weight)) {
if (sum_weight != 0.0f) {
normal /= sum_weight;
}
/* Transform normal into camera space. */
const Transform worldtocamera = kernel_data.cam.worldtocamera;
normal = transform_direction(&worldtocamera, normal);
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo);
state->denoising_feature_weight = 0.0f;
}
}
#endif /* __DENOISING_FEATURES__ */
#ifdef __KERNEL_DEBUG__
ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L)
{
int flag = kernel_data.film.pass_flag;
if (flag & PASSMASK(BVH_TRAVERSED_NODES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
L->debug_data.num_bvh_traversed_nodes);
}
if (flag & PASSMASK(BVH_TRAVERSED_INSTANCES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
L->debug_data.num_bvh_traversed_instances);
}
if (flag & PASSMASK(BVH_INTERSECTIONS)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
L->debug_data.num_bvh_intersections);
}
if (flag & PASSMASK(RAY_BOUNCES)) {
kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
L->debug_data.num_ray_bounces);
}
}
#endif /* __KERNEL_DEBUG__ */
#ifdef __KERNEL_CPU__
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
kernel_write_id_pass_cpu(buffer, depth * 2, id, matte_weight, kg->coverage_##name)
ccl_device_inline size_t kernel_write_id_pass_cpu(
float *buffer, size_t depth, float id, float matte_weight, CoverageMap *map)
{
if (map) {
(*map)[id] += matte_weight;
return 0;
}
#else /* __KERNEL_CPU__ */
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
kernel_write_id_slots_gpu(buffer, depth * 2, id, matte_weight)
ccl_device_inline size_t kernel_write_id_slots_gpu(ccl_global float *buffer,
size_t depth,
float id,
float matte_weight)
{
#endif /* __KERNEL_CPU__ */
kernel_write_id_slots(buffer, depth, id, matte_weight);
return depth * 2;
}
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L,
ShaderData *sd,
ccl_addr_space PathState *state,
float3 throughput)
{
#ifdef __PASSES__
int path_flag = state->flag;
if (!(path_flag & PATH_RAY_CAMERA))
return;
int flag = kernel_data.film.pass_flag;
int light_flag = kernel_data.film.light_pass_flag;
if (!((flag | light_flag) & PASS_ANY))
return;
if (!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
if (!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f ||
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
if (state->sample == 0) {
if (flag & PASSMASK(DEPTH)) {
float depth = camera_distance(kg, sd->P);
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
}
if (flag & PASSMASK(OBJECT_ID)) {
float id = object_pass_id(kg, sd->object);
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
}
if (flag & PASSMASK(MATERIAL_ID)) {
float id = shader_pass_id(kg, sd);
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
}
}
if (flag & PASSMASK(NORMAL)) {
float3 normal = shader_bsdf_average_normal(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
}
if (flag & PASSMASK(UV)) {
float3 uv = primitive_uv(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
}
if (flag & PASSMASK(MOTION)) {
float4 speed = primitive_motion_vector(kg, sd);
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
}
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
}
}
if (kernel_data.film.cryptomatte_passes) {
const float matte_weight = average(throughput) *
(1.0f - average(shader_bsdf_transparency(kg, sd)));
if (matte_weight > 0.0f) {
ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte;
if (kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
float id = object_cryptomatte_id(kg, sd->object);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, object);
}
if (kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
float id = shader_cryptomatte_id(kg, sd->shader);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, material);
}
if (kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
float id = object_cryptomatte_asset_id(kg, sd->object);
cryptomatte_buffer += WRITE_ID_SLOT(
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, asset);
}
}
}
if (light_flag & PASSMASK_COMPONENT(DIFFUSE))
L->color_diffuse += shader_bsdf_diffuse(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(GLOSSY))
L->color_glossy += shader_bsdf_glossy(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(TRANSMISSION))
L->color_transmission += shader_bsdf_transmission(kg, sd) * throughput;
if (light_flag & PASSMASK_COMPONENT(SUBSURFACE))
L->color_subsurface += shader_bsdf_subsurface(kg, sd) * throughput;
if (light_flag & PASSMASK(MIST)) {
/* bring depth into 0..1 range */
float mist_start = kernel_data.film.mist_start;
float mist_inv_depth = kernel_data.film.mist_inv_depth;
float depth = camera_distance(kg, sd->P);
float mist = saturate((depth - mist_start) * mist_inv_depth);
/* falloff */
float mist_falloff = kernel_data.film.mist_falloff;
if (mist_falloff == 1.0f)
;
else if (mist_falloff == 2.0f)
mist = mist * mist;
else if (mist_falloff == 0.5f)
mist = sqrtf(mist);
else
mist = powf(mist, mist_falloff);
/* modulate by transparency */
float3 alpha = shader_bsdf_alpha(kg, sd);
L->mist += (1.0f - mist) * average(throughput * alpha);
}
#endif
}
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg,
ccl_global float *buffer,
PathRadiance *L)
{
#ifdef __PASSES__
int light_flag = kernel_data.film.light_pass_flag;
if (!kernel_data.film.use_light_pass)
return;
if (light_flag & PASSMASK(DIFFUSE_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
if (light_flag & PASSMASK(GLOSSY_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
if (light_flag & PASSMASK(TRANSMISSION_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect,
L->indirect_transmission);
if (light_flag & PASSMASK(SUBSURFACE_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect,
L->indirect_subsurface);
if (light_flag & PASSMASK(VOLUME_INDIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_indirect, L->indirect_scatter);
if (light_flag & PASSMASK(DIFFUSE_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
if (light_flag & PASSMASK(GLOSSY_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
if (light_flag & PASSMASK(TRANSMISSION_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct,
L->direct_transmission);
if (light_flag & PASSMASK(SUBSURFACE_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct,
L->direct_subsurface);
if (light_flag & PASSMASK(VOLUME_DIRECT))
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_direct, L->direct_scatter);
if (light_flag & PASSMASK(EMISSION))
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
if (light_flag & PASSMASK(BACKGROUND))
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
if (light_flag & PASSMASK(AO))
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
if (light_flag & PASSMASK(DIFFUSE_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
if (light_flag & PASSMASK(GLOSSY_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
if (light_flag & PASSMASK(TRANSMISSION_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color,
L->color_transmission);
if (light_flag & PASSMASK(SUBSURFACE_COLOR))
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface);
if (light_flag & PASSMASK(SHADOW)) {
float4 shadow = L->shadow;
shadow.w = kernel_data.film.pass_shadow_scale;
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
}
if (light_flag & PASSMASK(MIST))
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
#endif
}
ccl_device_inline void kernel_write_result(KernelGlobals *kg,
ccl_global float *buffer,
int sample,
PathRadiance *L)
{
PROFILING_INIT(kg, PROFILING_WRITE_RESULT);
PROFILING_OBJECT(PRIM_NONE);
float alpha;
float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
if (kernel_data.film.pass_flag & PASSMASK(COMBINED)) {
kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
}
kernel_write_light_passes(kg, buffer, L);
#ifdef __DENOISING_FEATURES__
if (kernel_data.film.pass_denoising_data) {
# ifdef __SHADOW_TRICKS__
kernel_write_denoising_shadow(kg,
buffer + kernel_data.film.pass_denoising_data,
sample,
average(L->path_total),
average(L->path_total_shaded));
# else
kernel_write_denoising_shadow(
kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
# endif
if (kernel_data.film.pass_denoising_clean) {
float3 noisy, clean;
path_radiance_split_denoising(kg, L, &noisy, &clean);
kernel_write_pass_float3_variance(
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR, noisy);
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean, clean);
}
else {
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_COLOR,
ensure_finite3(L_sum));
}
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_NORMAL,
L->denoising_normal);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
DENOISING_PASS_ALBEDO,
L->denoising_albedo);
kernel_write_pass_float_variance(
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH, L->denoising_depth);
}
#endif /* __DENOISING_FEATURES__ */
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, buffer, L);
#endif
}
CCL_NAMESPACE_END