Files
blender/intern/cycles/kernel/kernel_path_surface.h
Mai Lavelle 915766f42d Cycles: Branched path tracing for the split kernel
This implements branched path tracing for the split kernel.

General approach is to store the ray state at a branch point, trace the
branched ray as normal, then restore the state as necessary before iterating
to the next part of the path. A state machine is used to advance the indirect
loop state, which avoids the need to add any new kernels. Each iteration the
state machine recreates as much state as possible from the stored ray to keep
overall storage down.

Its kind of hard to keep all the different integration loops in sync, so this
needs lots of testing to make sure everything is working correctly. We should
probably start trying to deduplicate the integration loops more now.

Nonbranched BMW is ~2% slower, while classroom is ~2% faster, other scenes
could use more testing still.

Reviewers: sergey, nirved

Reviewed By: nirved

Subscribers: Blendify, bliblubli

Differential Revision: https://developer.blender.org/D2611
2017-05-02 14:26:46 -04:00

363 lines
11 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__)
/* branched path tracing: connect path directly to position on one or more lights and add it to L */
ccl_device_noinline void kernel_branched_path_surface_connect_light(
KernelGlobals *kg,
RNG *rng,
ShaderData *sd,
ShaderData *emission_sd,
ccl_addr_space PathState *state,
float3 throughput,
float num_samples_adjust,
PathRadiance *L,
int sample_all_lights)
{
#ifdef __EMISSION__
/* sample illumination from lights to find path contribution */
if(!(sd->flag & SD_BSDF_HAS_EVAL))
return;
Ray light_ray;
BsdfEval L_light;
bool is_lamp;
# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
# endif
if(sample_all_lights) {
/* lamp sampling */
for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
if(UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce)))
continue;
int num_samples = ceil_to_int(num_samples_adjust*light_select_num_samples(kg, i));
float num_samples_inv = num_samples_adjust/(num_samples*kernel_data.integrator.num_all_lights);
RNG lamp_rng = cmj_hash(*rng, i);
for(int j = 0; j < num_samples; j++) {
float light_u, light_v;
path_branched_rng_2D(kg, &lamp_rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
float terminate = path_branched_rng_light_termination(kg, &lamp_rng, state, j, num_samples);
LightSample ls;
if(lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
/* The sampling probability returned by lamp_light_sample assumes that all lights were sampled.
* However, this code only samples lamps, so if the scene also had mesh lights, the real probability is twice as high. */
if(kernel_data.integrator.pdf_triangles != 0.0f)
ls.pdf *= 2.0f;
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
}
else {
path_radiance_accum_total_light(L, throughput*num_samples_inv, &L_light);
}
}
}
}
}
/* mesh light sampling */
if(kernel_data.integrator.pdf_triangles != 0.0f) {
int num_samples = ceil_to_int(num_samples_adjust*kernel_data.integrator.mesh_light_samples);
float num_samples_inv = num_samples_adjust/num_samples;
for(int j = 0; j < num_samples; j++) {
float light_t = path_branched_rng_1D(kg, rng, state, j, num_samples, PRNG_LIGHT);
float light_u, light_v;
path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
float terminate = path_branched_rng_light_termination(kg, rng, state, j, num_samples);
/* only sample triangle lights */
if(kernel_data.integrator.num_all_lights)
light_t = 0.5f*light_t;
LightSample ls;
if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* Same as above, probability needs to be corrected since the sampling was forced to select a mesh light. */
if(kernel_data.integrator.num_all_lights)
ls.pdf *= 2.0f;
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
}
else {
path_radiance_accum_total_light(L, throughput*num_samples_inv, &L_light);
}
}
}
}
}
}
else {
/* sample one light at random */
float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
float terminate = path_state_rng_light_termination(kg, rng, state);
LightSample ls;
if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* sample random light */
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
path_radiance_accum_light(L, throughput*num_samples_adjust, &L_light, shadow, num_samples_adjust, state->bounce, is_lamp);
}
else {
path_radiance_accum_total_light(L, throughput*num_samples_adjust, &L_light);
}
}
}
}
#endif
}
/* branched path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device bool kernel_branched_path_surface_bounce(
KernelGlobals *kg,
RNG *rng,
ShaderData *sd,
const ShaderClosure *sc,
int sample,
int num_samples,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
PathRadiance *L,
ccl_addr_space Ray *ray)
{
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
path_branched_rng_2D(kg, rng, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample_closure(kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
return false;
/* modify throughput */
path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
/* modify path state */
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->D = normalize(bsdf_omega_in);
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
#endif
#ifdef __OBJECT_MOTION__
ray->time = sd->time;
#endif
#ifdef __VOLUME__
/* enter/exit volume */
if(label & LABEL_TRANSMIT)
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
#endif
/* branch RNG state */
path_state_branch(state, sample, num_samples);
/* set MIS state */
state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX);
state->ray_pdf = bsdf_pdf;
#ifdef __LAMP_MIS__
state->ray_t = 0.0f;
#endif
return true;
}
#endif
/* path tracing: connect path directly to position on a light and add it to L */
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, RNG *rng,
ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state,
PathRadiance *L)
{
#ifdef __EMISSION__
if(!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)))
return;
#ifdef __SHADOW_TRICKS__
if(state->flag & PATH_RAY_SHADOW_CATCHER) {
kernel_branched_path_surface_connect_light(kg,
rng,
sd,
emission_sd,
state,
throughput,
1.0f,
L,
1);
return;
}
#endif
/* sample illumination from lights to find path contribution */
float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
Ray light_ray;
BsdfEval L_light;
bool is_lamp;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
#endif
LightSample ls;
if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
float terminate = path_state_rng_light_termination(kg, rng, state);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
path_radiance_accum_light(L, throughput, &L_light, shadow, 1.0f, state->bounce, is_lamp);
}
else {
path_radiance_accum_total_light(L, throughput, &L_light);
}
}
}
#endif
}
/* path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
RNG *rng,
ShaderData *sd,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
PathRadiance *L,
ccl_addr_space Ray *ray)
{
/* no BSDF? we can stop here */
if(sd->flag & SD_BSDF) {
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample(kg, sd, bsdf_u, bsdf_v, &bsdf_eval,
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
return false;
/* modify throughput */
path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
/* set labels */
if(!(label & LABEL_TRANSPARENT)) {
state->ray_pdf = bsdf_pdf;
#ifdef __LAMP_MIS__
state->ray_t = 0.0f;
#endif
state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf);
}
/* update path state */
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->D = normalize(bsdf_omega_in);
if(state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
#endif
#ifdef __VOLUME__
/* enter/exit volume */
if(label & LABEL_TRANSMIT)
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
#endif
return true;
}
#ifdef __VOLUME__
else if(sd->flag & SD_HAS_ONLY_VOLUME) {
/* no surface shader but have a volume shader? act transparent */
/* update path state, count as transparent */
path_state_next(kg, state, LABEL_TRANSPARENT);
if(state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
/* setup ray position, direction stays unchanged */
ray->P = ray_offset(sd->P, -sd->Ng);
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
#endif
/* enter/exit volume */
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
return true;
}
#endif
else {
/* no bsdf or volume? */
return false;
}
}
CCL_NAMESPACE_END