Files
blender/source/gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_OpenGLRasterizer.cpp
Mitchell Stokes 964107fbce BGE code cleanup: Removing RAS_GLExtensionManager.
This class did nothing but print out extensions if they were found.
Instead, the code from bge.logic.PrintGLInfo() is now printed as the
Rasterizer is initialized. This gives better information, and it removes
some GL code from KX_PythonInit.cpp (the PrintGLInfo method now calls
the Rasterizer to print the information).

Differential Revision: https://developer.blender.org/D438
2015-12-07 19:25:12 -08:00

1686 lines
42 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Rasterizer/RAS_OpenGLRasterizer/RAS_OpenGLRasterizer.cpp
* \ingroup bgerastogl
*/
#include <math.h>
#include <stdlib.h>
#include "RAS_OpenGLRasterizer.h"
#include "glew-mx.h"
#include "RAS_ICanvas.h"
#include "RAS_Rect.h"
#include "RAS_TexVert.h"
#include "RAS_MeshObject.h"
#include "RAS_Polygon.h"
#include "RAS_ILightObject.h"
#include "MT_CmMatrix4x4.h"
#include "RAS_OpenGLLight.h"
#include "RAS_StorageVA.h"
#include "RAS_StorageVBO.h"
#include "GPU_draw.h"
#include "GPU_material.h"
#include "GPU_extensions.h"
extern "C"{
#include "BLF_api.h"
#include "BKE_DerivedMesh.h"
}
// XXX Clean these up <<<
#include "EXP_Value.h"
#include "KX_Scene.h"
#include "KX_RayCast.h"
#include "KX_GameObject.h"
// >>>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/**
* 32x32 bit masks for vinterlace stereo mode
*/
static GLuint left_eye_vinterlace_mask[32];
static GLuint right_eye_vinterlace_mask[32];
/**
* 32x32 bit masks for hinterlace stereo mode.
* Left eye = &hinterlace_mask[0]
* Right eye = &hinterlace_mask[1]
*/
static GLuint hinterlace_mask[33];
RAS_OpenGLRasterizer::RAS_OpenGLRasterizer(RAS_ICanvas* canvas, RAS_STORAGE_TYPE storage)
:RAS_IRasterizer(canvas),
m_2DCanvas(canvas),
m_fogenabled(false),
m_time(0.0),
m_campos(0.0f, 0.0f, 0.0f),
m_camortho(false),
m_stereomode(RAS_STEREO_NOSTEREO),
m_curreye(RAS_STEREO_LEFTEYE),
m_eyeseparation(0.0),
m_focallength(0.0),
m_setfocallength(false),
m_noOfScanlines(32),
m_motionblur(0),
m_motionblurvalue(-1.0),
m_usingoverrideshader(false),
m_clientobject(NULL),
m_auxilaryClientInfo(NULL),
m_drawingmode(KX_TEXTURED),
m_texco_num(0),
m_attrib_num(0),
//m_last_alphablend(GPU_BLEND_SOLID),
m_last_frontface(true),
m_materialCachingInfo(0),
m_storage_type(storage)
{
m_viewmatrix.setIdentity();
m_viewinvmatrix.setIdentity();
for (int i = 0; i < 32; i++)
{
left_eye_vinterlace_mask[i] = 0x55555555;
right_eye_vinterlace_mask[i] = 0xAAAAAAAA;
hinterlace_mask[i] = (i&1)*0xFFFFFFFF;
}
hinterlace_mask[32] = 0;
m_prevafvalue = GPU_get_anisotropic();
if (m_storage_type == RAS_VBO /*|| m_storage_type == RAS_AUTO_STORAGE && GLEW_ARB_vertex_buffer_object*/) {
m_storage = new RAS_StorageVBO(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
}
else if ((m_storage_type == RAS_VA) || (m_storage_type == RAS_AUTO_STORAGE)) {
m_storage = new RAS_StorageVA(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
}
else {
printf("Unknown rasterizer storage type, falling back to vertex arrays\n");
m_storage = new RAS_StorageVA(&m_texco_num, m_texco, &m_attrib_num, m_attrib, m_attrib_layer);
}
glGetIntegerv(GL_MAX_LIGHTS, (GLint *) &m_numgllights);
if (m_numgllights < 8)
m_numgllights = 8;
PrintHardwareInfo();
}
RAS_OpenGLRasterizer::~RAS_OpenGLRasterizer()
{
// Restore the previous AF value
GPU_set_anisotropic(m_prevafvalue);
if (m_storage)
delete m_storage;
}
bool RAS_OpenGLRasterizer::Init()
{
bool storage_init;
GPU_state_init();
m_ambr = 0.0f;
m_ambg = 0.0f;
m_ambb = 0.0f;
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_alphablend = GPU_BLEND_SOLID;
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
m_redback = 0.4375;
m_greenback = 0.4375;
m_blueback = 0.4375;
m_alphaback = 0.0;
glClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glShadeModel(GL_SMOOTH);
storage_init = m_storage->Init();
return true && storage_init;
}
void RAS_OpenGLRasterizer::SetAmbientColor(float color[3])
{
m_ambr = color[0];
m_ambg = color[1];
m_ambb = color[2];
}
void RAS_OpenGLRasterizer::SetAmbient(float factor)
{
float ambient[] = {m_ambr * factor, m_ambg * factor, m_ambb * factor, 1.0f};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);
}
void RAS_OpenGLRasterizer::SetBackColor(float color[3])
{
m_redback = color[0];
m_greenback = color[1];
m_blueback = color[2];
m_alphaback = 1.0f;
}
void RAS_OpenGLRasterizer::SetFog(short type, float start, float dist, float intensity, float color[3])
{
float params[4] = {color[0], color[1], color[2], 1.0f};
glFogi(GL_FOG_MODE, GL_LINEAR);
glFogf(GL_FOG_DENSITY, intensity / 10.0f);
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, start + dist);
glFogfv(GL_FOG_COLOR, params);
}
void RAS_OpenGLRasterizer::EnableFog(bool enable)
{
m_fogenabled = enable;
}
void RAS_OpenGLRasterizer::DisplayFog()
{
if ((m_drawingmode >= KX_SOLID) && m_fogenabled) {
glEnable(GL_FOG);
}
else {
glDisable(GL_FOG);
}
}
bool RAS_OpenGLRasterizer::SetMaterial(const RAS_IPolyMaterial& mat)
{
return mat.Activate(this, m_materialCachingInfo);
}
void RAS_OpenGLRasterizer::Exit()
{
m_storage->Exit();
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glClearDepth(1.0);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glClearColor(m_redback, m_greenback, m_blueback, m_alphaback);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDepthMask (GL_TRUE);
glDepthFunc(GL_LEQUAL);
glBlendFunc(GL_ONE, GL_ZERO);
glDisable(GL_POLYGON_STIPPLE);
glDisable(GL_LIGHTING);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
EndFrame();
}
bool RAS_OpenGLRasterizer::BeginFrame(double time)
{
m_time = time;
// Blender camera routine destroys the settings
if (m_drawingmode < KX_SOLID)
{
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
}
else
{
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
}
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
//m_last_alphablend = GPU_BLEND_SOLID;
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
glFrontFace(GL_CCW);
m_last_frontface = true;
glShadeModel(GL_SMOOTH);
glEnable(GL_MULTISAMPLE_ARB);
m_2DCanvas->BeginFrame();
// Render Tools
m_clientobject = NULL;
m_lastlightlayer = -1;
m_lastauxinfo = NULL;
m_lastlighting = true; /* force disable in DisableOpenGLLights() */
DisableOpenGLLights();
return true;
}
void RAS_OpenGLRasterizer::SetDrawingMode(int drawingmode)
{
m_drawingmode = drawingmode;
if (m_drawingmode == KX_WIREFRAME)
glDisable(GL_CULL_FACE);
m_storage->SetDrawingMode(drawingmode);
}
int RAS_OpenGLRasterizer::GetDrawingMode()
{
return m_drawingmode;
}
void RAS_OpenGLRasterizer::SetDepthMask(DepthMask depthmask)
{
glDepthMask(depthmask == KX_DEPTHMASK_DISABLED ? GL_FALSE : GL_TRUE);
}
void RAS_OpenGLRasterizer::ClearColorBuffer()
{
m_2DCanvas->ClearColor(m_redback,m_greenback,m_blueback,m_alphaback);
m_2DCanvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER);
}
void RAS_OpenGLRasterizer::ClearDepthBuffer()
{
m_2DCanvas->ClearBuffer(RAS_ICanvas::DEPTH_BUFFER);
}
void RAS_OpenGLRasterizer::ClearCachingInfo(void)
{
m_materialCachingInfo = 0;
}
void RAS_OpenGLRasterizer::FlushDebugShapes(SCA_IScene *scene)
{
std::vector<OglDebugShape> &debugShapes = m_debugShapes[scene];
if (debugShapes.empty())
return;
// DrawDebugLines
GLboolean light, tex;
light= glIsEnabled(GL_LIGHTING);
tex= glIsEnabled(GL_TEXTURE_2D);
if (light) glDisable(GL_LIGHTING);
if (tex) glDisable(GL_TEXTURE_2D);
//draw lines
glBegin(GL_LINES);
for (unsigned int i = 0; i < debugShapes.size(); i++) {
if (debugShapes[i].m_type != OglDebugShape::LINE)
continue;
glColor4f(debugShapes[i].m_color[0], debugShapes[i].m_color[1], debugShapes[i].m_color[2], 1.0f);
const MT_Scalar *fromPtr = &debugShapes[i].m_pos.x();
const MT_Scalar *toPtr= &debugShapes[i].m_param.x();
glVertex3dv(fromPtr);
glVertex3dv(toPtr);
}
glEnd();
//draw circles
for (unsigned int i = 0; i < debugShapes.size(); i++) {
if (debugShapes[i].m_type != OglDebugShape::CIRCLE)
continue;
glBegin(GL_LINE_LOOP);
glColor4f(debugShapes[i].m_color[0], debugShapes[i].m_color[1], debugShapes[i].m_color[2], 1.0f);
static const MT_Vector3 worldUp(0.0, 0.0, 1.0);
MT_Vector3 norm = debugShapes[i].m_param;
MT_Matrix3x3 tr;
if (norm.fuzzyZero() || norm == worldUp)
{
tr.setIdentity();
}
else
{
MT_Vector3 xaxis, yaxis;
xaxis = MT_cross(norm, worldUp);
yaxis = MT_cross(xaxis, norm);
tr.setValue(xaxis.x(), xaxis.y(), xaxis.z(),
yaxis.x(), yaxis.y(), yaxis.z(),
norm.x(), norm.y(), norm.z());
}
MT_Scalar rad = debugShapes[i].m_param2.x();
int n = (int)debugShapes[i].m_param2.y();
for (int j = 0; j<n; j++)
{
MT_Scalar theta = j*M_PI*2/n;
MT_Vector3 pos(cos(theta) * rad, sin(theta) * rad, 0.0);
pos = pos*tr;
pos += debugShapes[i].m_pos;
const MT_Scalar* posPtr = &pos.x();
glVertex3dv(posPtr);
}
glEnd();
}
if (light) glEnable(GL_LIGHTING);
if (tex) glEnable(GL_TEXTURE_2D);
debugShapes.clear();
}
void RAS_OpenGLRasterizer::EndFrame()
{
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDisable(GL_MULTISAMPLE_ARB);
m_2DCanvas->EndFrame();
}
void RAS_OpenGLRasterizer::SetRenderArea()
{
RAS_Rect area;
// only above/below stereo method needs viewport adjustment
switch (m_stereomode)
{
case RAS_STEREO_ABOVEBELOW:
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
// upper half of window
area.SetLeft(0);
area.SetBottom(m_2DCanvas->GetHeight() -
int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// lower half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight() - m_noOfScanlines) / 2);
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
case RAS_STEREO_3DTVTOPBOTTOM:
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
// upper half of window
area.SetLeft(0);
area.SetBottom(m_2DCanvas->GetHeight() -
m_2DCanvas->GetHeight() / 2);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// lower half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight() / 2);
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
case RAS_STEREO_SIDEBYSIDE:
switch (m_curreye)
{
case RAS_STEREO_LEFTEYE:
// Left half of window
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth()/2);
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
case RAS_STEREO_RIGHTEYE:
// Right half of window
area.SetLeft(m_2DCanvas->GetWidth()/2);
area.SetBottom(0);
area.SetRight(m_2DCanvas->GetWidth());
area.SetTop(m_2DCanvas->GetHeight());
m_2DCanvas->SetDisplayArea(&area);
break;
}
break;
default:
// every available pixel
area.SetLeft(0);
area.SetBottom(0);
area.SetRight(int(m_2DCanvas->GetWidth()));
area.SetTop(int(m_2DCanvas->GetHeight()));
m_2DCanvas->SetDisplayArea(&area);
break;
}
}
void RAS_OpenGLRasterizer::SetStereoMode(const StereoMode stereomode)
{
m_stereomode = stereomode;
}
RAS_IRasterizer::StereoMode RAS_OpenGLRasterizer::GetStereoMode()
{
return m_stereomode;
}
bool RAS_OpenGLRasterizer::Stereo()
{
if (m_stereomode > RAS_STEREO_NOSTEREO) // > 0
return true;
else
return false;
}
bool RAS_OpenGLRasterizer::InterlacedStereo()
{
return m_stereomode == RAS_STEREO_VINTERLACE || m_stereomode == RAS_STEREO_INTERLACED;
}
void RAS_OpenGLRasterizer::SetEye(const StereoEye eye)
{
m_curreye = eye;
switch (m_stereomode)
{
case RAS_STEREO_QUADBUFFERED:
glDrawBuffer(m_curreye == RAS_STEREO_LEFTEYE ? GL_BACK_LEFT : GL_BACK_RIGHT);
break;
case RAS_STEREO_ANAGLYPH:
if (m_curreye == RAS_STEREO_LEFTEYE) {
glColorMask(GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE);
}
else {
//glAccum(GL_LOAD, 1.0);
glColorMask(GL_FALSE, GL_TRUE, GL_TRUE, GL_FALSE);
ClearDepthBuffer();
}
break;
case RAS_STEREO_VINTERLACE:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) ((m_curreye == RAS_STEREO_LEFTEYE) ? left_eye_vinterlace_mask : right_eye_vinterlace_mask));
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
case RAS_STEREO_INTERLACED:
{
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple((const GLubyte*) &hinterlace_mask[m_curreye == RAS_STEREO_LEFTEYE?0:1]);
if (m_curreye == RAS_STEREO_RIGHTEYE)
ClearDepthBuffer();
break;
}
default:
break;
}
}
RAS_IRasterizer::StereoEye RAS_OpenGLRasterizer::GetEye()
{
return m_curreye;
}
void RAS_OpenGLRasterizer::SetEyeSeparation(const float eyeseparation)
{
m_eyeseparation = eyeseparation;
}
float RAS_OpenGLRasterizer::GetEyeSeparation()
{
return m_eyeseparation;
}
void RAS_OpenGLRasterizer::SetFocalLength(const float focallength)
{
m_focallength = focallength;
m_setfocallength = true;
}
float RAS_OpenGLRasterizer::GetFocalLength()
{
return m_focallength;
}
void RAS_OpenGLRasterizer::SwapBuffers()
{
m_2DCanvas->SwapBuffers();
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewMatrix() const
{
return m_viewmatrix;
}
const MT_Matrix4x4& RAS_OpenGLRasterizer::GetViewInvMatrix() const
{
return m_viewinvmatrix;
}
void RAS_OpenGLRasterizer::IndexPrimitives_3DText(RAS_MeshSlot& ms,
class RAS_IPolyMaterial* polymat)
{
bool obcolor = ms.m_bObjectColor;
MT_Vector4& rgba = ms.m_RGBAcolor;
RAS_MeshSlot::iterator it;
const STR_String& mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
// handle object color
if (obcolor) {
glDisableClientState(GL_COLOR_ARRAY);
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
}
else
glEnableClientState(GL_COLOR_ARRAY);
for (ms.begin(it); !ms.end(it); ms.next(it)) {
RAS_TexVert *vertex;
size_t i, j, numvert;
numvert = it.array->m_type;
if (it.array->m_type == RAS_DisplayArray::LINE) {
// line drawing, no text
glBegin(GL_LINES);
for (i=0; i<it.totindex; i+=2)
{
vertex = &it.vertex[it.index[i]];
glVertex3fv(vertex->getXYZ());
vertex = &it.vertex[it.index[i+1]];
glVertex3fv(vertex->getXYZ());
}
glEnd();
}
else {
// triangle and quad text drawing
for (i=0; i<it.totindex; i+=numvert)
{
float v[4][3];
const float *v_ptr[4] = {NULL};
const float *uv_ptr[4] = {NULL};
int glattrib, unit;
for (j=0; j<numvert; j++) {
vertex = &it.vertex[it.index[i+j]];
v[j][0] = vertex->getXYZ()[0];
v[j][1] = vertex->getXYZ()[1];
v[j][2] = vertex->getXYZ()[2];
v_ptr[j] = v[j];
uv_ptr[j] = vertex->getUV(0);
}
// find the right opengl attribute
glattrib = -1;
if (GLEW_ARB_vertex_program)
for (unit=0; unit<m_attrib_num; unit++)
if (m_attrib[unit] == RAS_TEXCO_UV)
glattrib = unit;
GPU_render_text(
polymat->GetMTexPoly(), polymat->GetDrawingMode(), mytext, mytext.Length(), polymat->GetMCol(),
v_ptr, uv_ptr, glattrib);
ClearCachingInfo();
}
}
}
glDisableClientState(GL_COLOR_ARRAY);
}
void RAS_OpenGLRasterizer::SetTexCoordNum(int num)
{
m_texco_num = num;
if (m_texco_num > RAS_MAX_TEXCO)
m_texco_num = RAS_MAX_TEXCO;
}
void RAS_OpenGLRasterizer::SetAttribNum(int num)
{
m_attrib_num = num;
if (m_attrib_num > RAS_MAX_ATTRIB)
m_attrib_num = RAS_MAX_ATTRIB;
}
void RAS_OpenGLRasterizer::SetTexCoord(TexCoGen coords, int unit)
{
// this changes from material to material
if (unit < RAS_MAX_TEXCO)
m_texco[unit] = coords;
}
void RAS_OpenGLRasterizer::SetAttrib(TexCoGen coords, int unit, int layer)
{
// this changes from material to material
if (unit < RAS_MAX_ATTRIB) {
m_attrib[unit] = coords;
m_attrib_layer[unit] = layer;
}
}
void RAS_OpenGLRasterizer::IndexPrimitives(RAS_MeshSlot& ms)
{
if (ms.m_pDerivedMesh)
DrawDerivedMesh(ms);
else
m_storage->IndexPrimitives(ms);
}
// Code for hooking into Blender's mesh drawing for derived meshes.
// If/when we use more of Blender's drawing code, we may be able to
// clean this up
static bool current_wireframe;
static RAS_MaterialBucket *current_bucket;
static RAS_IPolyMaterial *current_polymat;
static RAS_MeshSlot *current_ms;
static RAS_MeshObject *current_mesh;
static int current_blmat_nr;
static GPUVertexAttribs current_gpu_attribs;
static Image *current_image;
static int CheckMaterialDM(int matnr, void *attribs)
{
// only draw the current material
if (matnr != current_blmat_nr)
return 0;
GPUVertexAttribs *gattribs = (GPUVertexAttribs *)attribs;
if (gattribs)
memcpy(gattribs, &current_gpu_attribs, sizeof(GPUVertexAttribs));
return 1;
}
static DMDrawOption CheckTexDM(MTexPoly *mtexpoly, const bool has_mcol, int matnr)
{
// index is the original face index, retrieve the polygon
if (matnr == current_blmat_nr &&
(mtexpoly == NULL || mtexpoly->tpage == current_image)) {
// must handle color.
if (current_wireframe)
return DM_DRAW_OPTION_NO_MCOL;
if (current_ms->m_bObjectColor) {
MT_Vector4& rgba = current_ms->m_RGBAcolor;
glColor4d(rgba[0], rgba[1], rgba[2], rgba[3]);
// don't use mcol
return DM_DRAW_OPTION_NO_MCOL;
}
if (!has_mcol) {
// we have to set the color from the material
unsigned char rgba[4];
current_polymat->GetMaterialRGBAColor(rgba);
glColor4ubv((const GLubyte *)rgba);
return DM_DRAW_OPTION_NO_MCOL;
}
return DM_DRAW_OPTION_NORMAL;
}
return DM_DRAW_OPTION_SKIP;
}
void RAS_OpenGLRasterizer::DrawDerivedMesh(class RAS_MeshSlot &ms)
{
// mesh data is in derived mesh,
current_bucket = ms.m_bucket;
current_polymat = current_bucket->GetPolyMaterial();
current_ms = &ms;
current_mesh = ms.m_mesh;
current_wireframe = m_drawingmode <= RAS_IRasterizer::KX_WIREFRAME;
// MCol *mcol = (MCol*)ms.m_pDerivedMesh->getFaceDataArray(ms.m_pDerivedMesh, CD_MCOL); /* UNUSED */
// handle two-side
if (current_polymat->GetDrawingMode() & RAS_IRasterizer::KX_BACKCULL)
this->SetCullFace(true);
else
this->SetCullFace(false);
if (current_polymat->GetFlag() & RAS_BLENDERGLSL) {
// GetMaterialIndex return the original mface material index,
// increment by 1 to match what derived mesh is doing
current_blmat_nr = current_polymat->GetMaterialIndex()+1;
// For GLSL we need to retrieve the GPU material attribute
Material* blmat = current_polymat->GetBlenderMaterial();
Scene* blscene = current_polymat->GetBlenderScene();
if (!current_wireframe && blscene && blmat)
GPU_material_vertex_attributes(GPU_material_from_blender(blscene, blmat, false), &current_gpu_attribs);
else
memset(&current_gpu_attribs, 0, sizeof(current_gpu_attribs));
// DM draw can mess up blending mode, restore at the end
int current_blend_mode = GPU_get_material_alpha_blend();
ms.m_pDerivedMesh->drawFacesGLSL(ms.m_pDerivedMesh, CheckMaterialDM);
GPU_set_material_alpha_blend(current_blend_mode);
} else {
//ms.m_pDerivedMesh->drawMappedFacesTex(ms.m_pDerivedMesh, CheckTexfaceDM, mcol);
current_blmat_nr = current_polymat->GetMaterialIndex();
current_image = current_polymat->GetBlenderImage();
ms.m_pDerivedMesh->drawFacesTex(ms.m_pDerivedMesh, CheckTexDM, NULL, NULL, DM_DRAW_USE_ACTIVE_UV);
}
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(MT_CmMatrix4x4 &mat)
{
glMatrixMode(GL_PROJECTION);
double* matrix = &mat(0, 0);
glLoadMatrixd(matrix);
m_camortho = (mat(3, 3) != 0.0);
}
void RAS_OpenGLRasterizer::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
glMatrixMode(GL_PROJECTION);
double matrix[16];
/* Get into argument. Looks a bit dodgy, but it's ok. */
mat.getValue(matrix);
/* Internally, MT_Matrix4x4 uses doubles (MT_Scalar). */
glLoadMatrixd(matrix);
m_camortho= (mat[3][3] != 0.0);
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetFrustumMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar,
float focallength,
bool
) {
MT_Matrix4x4 result;
double mat[16];
// correction for stereo
if (Stereo())
{
float near_div_focallength;
float offset;
// if Rasterizer.setFocalLength is not called we use the camera focallength
if (!m_setfocallength)
// if focallength is null we use a value known to be reasonable
m_focallength = (focallength == 0.f) ? m_eyeseparation * 30.0f
: focallength;
near_div_focallength = frustnear / m_focallength;
offset = 0.5f * m_eyeseparation * near_div_focallength;
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
left += offset;
right += offset;
break;
case RAS_STEREO_RIGHTEYE:
left -= offset;
right -= offset;
break;
}
// leave bottom and top untouched
if (m_stereomode == RAS_STEREO_3DTVTOPBOTTOM) {
// restore the vertical frustrum because the 3DTV will
// expande the top and bottom part to the full size of the screen
bottom *= 2.0f;
top *= 2.0f;
}
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
MT_Matrix4x4 RAS_OpenGLRasterizer::GetOrthoMatrix(
float left,
float right,
float bottom,
float top,
float frustnear,
float frustfar
) {
MT_Matrix4x4 result;
double mat[16];
// stereo is meaning less for orthographic, disable it
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, frustnear, frustfar);
glGetDoublev(GL_PROJECTION_MATRIX, mat);
result.setValue(mat);
return result;
}
// next arguments probably contain redundant info, for later...
void RAS_OpenGLRasterizer::SetViewMatrix(const MT_Matrix4x4 &mat,
const MT_Matrix3x3 & camOrientMat3x3,
const MT_Point3 & pos,
bool perspective)
{
m_viewmatrix = mat;
// correction for stereo
if (Stereo() && perspective)
{
MT_Vector3 unitViewDir(0.0, -1.0, 0.0); // minus y direction, Blender convention
MT_Vector3 unitViewupVec(0.0, 0.0, 1.0);
MT_Vector3 viewDir, viewupVec;
MT_Vector3 eyeline;
// actual viewDir
viewDir = camOrientMat3x3 * unitViewDir; // this is the moto convention, vector on right hand side
// actual viewup vec
viewupVec = camOrientMat3x3 * unitViewupVec;
// vector between eyes
eyeline = viewDir.cross(viewupVec);
switch (m_curreye) {
case RAS_STEREO_LEFTEYE:
{
// translate to left by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(-(eyeline * m_eyeseparation / 2.0));
m_viewmatrix *= transform;
}
break;
case RAS_STEREO_RIGHTEYE:
{
// translate to right by half the eye distance
MT_Transform transform;
transform.setIdentity();
transform.translate(eyeline * m_eyeseparation / 2.0);
m_viewmatrix *= transform;
}
break;
}
}
m_viewinvmatrix = m_viewmatrix;
m_viewinvmatrix.invert();
// note: getValue gives back column major as needed by OpenGL
MT_Scalar glviewmat[16];
m_viewmatrix.getValue(glviewmat);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixd(glviewmat);
m_campos = pos;
}
const MT_Point3& RAS_OpenGLRasterizer::GetCameraPosition()
{
return m_campos;
}
bool RAS_OpenGLRasterizer::GetCameraOrtho()
{
return m_camortho;
}
void RAS_OpenGLRasterizer::SetCullFace(bool enable)
{
if (enable)
glEnable(GL_CULL_FACE);
else
glDisable(GL_CULL_FACE);
}
void RAS_OpenGLRasterizer::SetLines(bool enable)
{
if (enable)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
void RAS_OpenGLRasterizer::SetSpecularity(float specX,
float specY,
float specZ,
float specval)
{
GLfloat mat_specular[] = {specX, specY, specZ, specval};
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular);
}
void RAS_OpenGLRasterizer::SetShinyness(float shiny)
{
GLfloat mat_shininess[] = { shiny };
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shininess);
}
void RAS_OpenGLRasterizer::SetDiffuse(float difX,float difY,float difZ,float diffuse)
{
GLfloat mat_diffuse [] = {difX, difY,difZ, diffuse};
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse);
}
void RAS_OpenGLRasterizer::SetEmissive(float eX, float eY, float eZ, float e)
{
GLfloat mat_emit [] = {eX,eY,eZ,e};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, mat_emit);
}
double RAS_OpenGLRasterizer::GetTime()
{
return m_time;
}
void RAS_OpenGLRasterizer::SetPolygonOffset(float mult, float add)
{
glPolygonOffset(mult, add);
GLint mode = GL_POLYGON_OFFSET_FILL;
if (m_drawingmode < KX_SHADED)
mode = GL_POLYGON_OFFSET_LINE;
if (mult != 0.0f || add != 0.0f)
glEnable(mode);
else
glDisable(mode);
}
void RAS_OpenGLRasterizer::EnableMotionBlur(float motionblurvalue)
{
/* don't just set m_motionblur to 1, but check if it is 0 so
* we don't reset a motion blur that is already enabled */
if (m_motionblur == 0)
m_motionblur = 1;
m_motionblurvalue = motionblurvalue;
}
void RAS_OpenGLRasterizer::DisableMotionBlur()
{
m_motionblur = 0;
m_motionblurvalue = -1.0;
}
void RAS_OpenGLRasterizer::SetAlphaBlend(int alphablend)
{
/* Variance shadow maps don't handle alpha well, best to not allow it for now */
if (m_drawingmode == KX_SHADOW && m_usingoverrideshader)
GPU_set_material_alpha_blend(GPU_BLEND_SOLID);
else
GPU_set_material_alpha_blend(alphablend);
/*
if (alphablend == m_last_alphablend)
return;
if (alphablend == GPU_BLEND_SOLID) {
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else if (alphablend == GPU_BLEND_ADD) {
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
}
else if (alphablend == GPU_BLEND_ALPHA) {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.0f);
}
else if (alphablend == GPU_BLEND_CLIP) {
glDisable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.5f);
}
m_last_alphablend = alphablend;
*/
}
void RAS_OpenGLRasterizer::SetFrontFace(bool ccw)
{
if (m_last_frontface == ccw)
return;
if (ccw)
glFrontFace(GL_CCW);
else
glFrontFace(GL_CW);
m_last_frontface = ccw;
}
void RAS_OpenGLRasterizer::SetAnisotropicFiltering(short level)
{
GPU_set_anisotropic((float)level);
}
short RAS_OpenGLRasterizer::GetAnisotropicFiltering()
{
return (short)GPU_get_anisotropic();
}
void RAS_OpenGLRasterizer::SetMipmapping(MipmapOption val)
{
if (val == RAS_IRasterizer::RAS_MIPMAP_LINEAR)
{
GPU_set_linear_mipmap(1);
GPU_set_mipmap(1);
}
else if (val == RAS_IRasterizer::RAS_MIPMAP_NEAREST)
{
GPU_set_linear_mipmap(0);
GPU_set_mipmap(1);
}
else
{
GPU_set_linear_mipmap(0);
GPU_set_mipmap(0);
}
}
RAS_IRasterizer::MipmapOption RAS_OpenGLRasterizer::GetMipmapping()
{
if (GPU_get_mipmap()) {
if (GPU_get_linear_mipmap()) {
return RAS_IRasterizer::RAS_MIPMAP_LINEAR;
}
else {
return RAS_IRasterizer::RAS_MIPMAP_NEAREST;
}
}
else {
return RAS_IRasterizer::RAS_MIPMAP_NONE;
}
}
void RAS_OpenGLRasterizer::SetUsingOverrideShader(bool val)
{
m_usingoverrideshader = val;
}
bool RAS_OpenGLRasterizer::GetUsingOverrideShader()
{
return m_usingoverrideshader;
}
/**
* Render Tools
*/
/* ProcessLighting performs lighting on objects. the layer is a bitfield that
* contains layer information. There are 20 'official' layers in blender. A
* light is applied on an object only when they are in the same layer. OpenGL
* has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in
* a scene. */
void RAS_OpenGLRasterizer::ProcessLighting(bool uselights, const MT_Transform& viewmat)
{
bool enable = false;
int layer= -1;
/* find the layer */
if (uselights) {
if (m_clientobject)
layer = static_cast<KX_GameObject*>(m_clientobject)->GetLayer();
}
/* avoid state switching */
if (m_lastlightlayer == layer && m_lastauxinfo == m_auxilaryClientInfo)
return;
m_lastlightlayer = layer;
m_lastauxinfo = m_auxilaryClientInfo;
/* enable/disable lights as needed */
if (layer >= 0) {
//enable = ApplyLights(layer, viewmat);
// taken from blender source, incompatibility between Blender Object / GameObject
KX_Scene* kxscene = (KX_Scene*)m_auxilaryClientInfo;
float glviewmat[16];
unsigned int count;
std::vector<RAS_OpenGLLight*>::iterator lit = m_lights.begin();
for (count=0; count<m_numgllights; count++)
glDisable((GLenum)(GL_LIGHT0+count));
viewmat.getValue(glviewmat);
glPushMatrix();
glLoadMatrixf(glviewmat);
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
{
RAS_OpenGLLight* light = (*lit);
if (light->ApplyFixedFunctionLighting(kxscene, layer, count))
count++;
}
glPopMatrix();
enable = count > 0;
}
if (enable)
EnableOpenGLLights();
else
DisableOpenGLLights();
}
void RAS_OpenGLRasterizer::EnableOpenGLLights()
{
if (m_lastlighting == true)
return;
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, (GetCameraOrtho())? GL_FALSE: GL_TRUE);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
m_lastlighting = true;
}
void RAS_OpenGLRasterizer::DisableOpenGLLights()
{
if (m_lastlighting == false)
return;
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
m_lastlighting = false;
}
RAS_ILightObject *RAS_OpenGLRasterizer::CreateLight()
{
return new RAS_OpenGLLight(this);
}
void RAS_OpenGLRasterizer::AddLight(RAS_ILightObject* lightobject)
{
RAS_OpenGLLight* gllight = dynamic_cast<RAS_OpenGLLight*>(lightobject);
assert(gllight);
m_lights.push_back(gllight);
}
void RAS_OpenGLRasterizer::RemoveLight(RAS_ILightObject* lightobject)
{
RAS_OpenGLLight* gllight = dynamic_cast<RAS_OpenGLLight*>(lightobject);
assert(gllight);
std::vector<RAS_OpenGLLight*>::iterator lit =
std::find(m_lights.begin(),m_lights.end(),gllight);
if (!(lit==m_lights.end()))
m_lights.erase(lit);
}
bool RAS_OpenGLRasterizer::RayHit(struct KX_ClientObjectInfo *client, KX_RayCast *result, double *oglmatrix)
{
if (result->m_hitMesh) {
RAS_Polygon* poly = result->m_hitMesh->GetPolygon(result->m_hitPolygon);
if (!poly->IsVisible())
return false;
MT_Vector3 resultnormal(result->m_hitNormal);
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
left = (dir.cross(resultnormal)).safe_normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
double maat[16] = {left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
resultnormal[0], resultnormal[1], resultnormal[2], 0,
0, 0, 0, 1};
glTranslated(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
//glMultMatrixd(oglmatrix);
glMultMatrixd(maat);
return true;
}
else {
return false;
}
}
void RAS_OpenGLRasterizer::applyTransform(double* oglmatrix,int objectdrawmode )
{
/* FIXME:
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
Program received signal SIGABRT, Aborted.
[Switching to Thread 16384 (LWP 1519)]
0x40477571 in kill () from /lib/libc.so.6
(gdb) bt
#7 0x08334368 in MT_Vector3::normalized() const ()
#8 0x0833e6ec in RAS_OpenGLRasterizer::applyTransform(RAS_IRasterizer*, double*, int) ()
*/
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0, 0.0, 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*)m_clientobject;
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetWorldScaling();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (up.cross(left)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16] = {left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
up[0], up[1], up[2], 0,
0, 0, 0, 1};
glTranslatef(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
}
else {
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
KX_GameObject *gameobj = (KX_GameObject*)m_clientobject;
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment();
PHY_IPhysicsController* physics_controller = gameobj->GetPhysicsController();
KX_GameObject *parent = gameobj->GetParent();
if (!physics_controller && parent)
physics_controller = parent->GetPhysicsController();
KX_RayCast::Callback<RAS_OpenGLRasterizer, double> callback(this, physics_controller, oglmatrix);
if (!KX_RayCast::RayTest(physics_environment, frompoint, topoint, callback))
{
// couldn't find something to cast the shadow on...
glMultMatrixd(oglmatrix);
}
else
{ // we found the "ground", but the cast matrix doesn't take
// scaling in consideration, so we must apply the object scale
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
glScalef(size[0], size[1], size[2]);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}
static void DisableForText()
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); /* needed for texture fonts otherwise they render as wireframe */
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
if (GLEW_ARB_multitexture) {
for (int i=0; i<RAS_MAX_TEXCO; i++) {
glActiveTextureARB(GL_TEXTURE0_ARB+i);
if (GLEW_ARB_texture_cube_map) {
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_Q);
glDisable(GL_TEXTURE_GEN_R);
}
glDisable(GL_TEXTURE_2D);
}
glActiveTextureARB(GL_TEXTURE0_ARB);
}
else {
if (GLEW_ARB_texture_cube_map)
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glDisable(GL_TEXTURE_2D);
}
}
void RAS_OpenGLRasterizer::RenderBox2D(int xco,
int yco,
int width,
int height,
float percentage)
{
/* This is a rather important line :( The gl-mode hasn't been left
* behind quite as neatly as we'd have wanted to. I don't know
* what cause it, though :/ .*/
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0, width, 0, height, -100, 100);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
yco = height - yco;
int barsize = 50;
/* draw in black first*/
glColor3ub(0, 0, 0);
glBegin(GL_QUADS);
glVertex2f(xco + 1 + 1 + barsize * percentage, yco - 1 + 10);
glVertex2f(xco + 1, yco - 1 + 10);
glVertex2f(xco + 1, yco - 1);
glVertex2f(xco + 1 + 1 + barsize * percentage, yco - 1);
glEnd();
glColor3ub(255, 255, 255);
glBegin(GL_QUADS);
glVertex2f(xco + 1 + barsize * percentage, yco + 10);
glVertex2f(xco, yco + 10);
glVertex2f(xco, yco);
glVertex2f(xco + 1 + barsize * percentage, yco);
glEnd();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
void RAS_OpenGLRasterizer::RenderText3D(
int fontid, const char *text, int size, int dpi,
const float color[4], const double mat[16], float aspect)
{
/* gl prepping */
DisableForText();
/* the actual drawing */
glColor4fv(color);
/* multiply the text matrix by the object matrix */
BLF_enable(fontid, BLF_MATRIX|BLF_ASPECT);
BLF_matrix(fontid, mat);
/* aspect is the inverse scale that allows you to increase */
/* your resolution without sizing the final text size */
/* the bigger the size, the smaller the aspect */
BLF_aspect(fontid, aspect, aspect, aspect);
BLF_size(fontid, size, dpi);
BLF_position(fontid, 0, 0, 0);
BLF_draw(fontid, text, 65535);
BLF_disable(fontid, BLF_MATRIX|BLF_ASPECT);
}
void RAS_OpenGLRasterizer::RenderText2D(
RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco, int yco,
int width, int height)
{
/* This is a rather important line :( The gl-mode hasn't been left
* behind quite as neatly as we'd have wanted to. I don't know
* what cause it, though :/ .*/
DisableForText();
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrtho(0, width, 0, height, -100, 100);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
if (mode == RAS_TEXT_PADDED) {
/* draw in black first*/
glColor3ub(0, 0, 0);
BLF_size(blf_mono_font, 11, 72);
BLF_position(blf_mono_font, (float)xco+1, (float)(height-yco-1), 0.0f);
BLF_draw(blf_mono_font, text, 65535); /* XXX, use real len */
}
/* the actual drawing */
glColor3ub(255, 255, 255);
BLF_size(blf_mono_font, 11, 72);
BLF_position(blf_mono_font, (float)xco, (float)(height-yco), 0.0f);
BLF_draw(blf_mono_font, text, 65535); /* XXX, use real len */
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
void RAS_OpenGLRasterizer::PushMatrix()
{
glPushMatrix();
}
void RAS_OpenGLRasterizer::PopMatrix()
{
glPopMatrix();
}
void RAS_OpenGLRasterizer::MotionBlur()
{
int state = GetMotionBlurState();
float motionblurvalue;
if (state)
{
motionblurvalue = GetMotionBlurValue();
if (state==1)
{
//bugfix:load color buffer into accum buffer for the first time(state=1)
glAccum(GL_LOAD, 1.0);
SetMotionBlurState(2);
}
else if (motionblurvalue >= 0.0f && motionblurvalue <= 1.0f) {
glAccum(GL_MULT, motionblurvalue);
glAccum(GL_ACCUM, 1-motionblurvalue);
glAccum(GL_RETURN, 1.0);
glFlush();
}
}
}
void RAS_OpenGLRasterizer::SetClientObject(void* obj)
{
if (m_clientobject != obj)
{
bool ccw = (obj == NULL || !((KX_GameObject*)obj)->IsNegativeScaling());
SetFrontFace(ccw);
m_clientobject = obj;
}
}
void RAS_OpenGLRasterizer::SetAuxilaryClientInfo(void* inf)
{
m_auxilaryClientInfo = inf;
}
void RAS_OpenGLRasterizer::PrintHardwareInfo()
{
#define pprint(x) std::cout << x << std::endl;
pprint("GL_VENDOR: " << glGetString(GL_VENDOR));
pprint("GL_RENDERER: " << glGetString(GL_RENDERER));
pprint("GL_VERSION: " << glGetString(GL_VERSION));
bool support=0;
pprint("Supported Extensions...");
pprint(" GL_ARB_shader_objects supported? "<< (GLEW_ARB_shader_objects?"yes.":"no."));
support= GLEW_ARB_vertex_shader;
pprint(" GL_ARB_vertex_shader supported? "<< (support?"yes.":"no."));
if (support) {
pprint(" ----------Details----------");
int max=0;
glGetIntegerv(GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB, (GLint*)&max);
pprint(" Max uniform components." << max);
glGetIntegerv(GL_MAX_VARYING_FLOATS_ARB, (GLint*)&max);
pprint(" Max varying floats." << max);
glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max);
pprint(" Max vertex texture units." << max);
glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB, (GLint*)&max);
pprint(" Max combined texture units." << max);
pprint("");
}
support=GLEW_ARB_fragment_shader;
pprint(" GL_ARB_fragment_shader supported? "<< (support?"yes.":"no."));
if (support) {
pprint(" ----------Details----------");
int max=0;
glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB, (GLint*)&max);
pprint(" Max uniform components." << max);
pprint("");
}
support = GLEW_ARB_texture_cube_map;
pprint(" GL_ARB_texture_cube_map supported? "<< (support?"yes.":"no."));
if (support) {
pprint(" ----------Details----------");
int size=0;
glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB, (GLint*)&size);
pprint(" Max cubemap size." << size);
pprint("");
}
support = GLEW_ARB_multitexture;
pprint(" GL_ARB_multitexture supported? "<< (support?"yes.":"no."));
if (support) {
pprint(" ----------Details----------");
int units=0;
glGetIntegerv(GL_MAX_TEXTURE_UNITS_ARB, (GLint*)&units);
pprint(" Max texture units available. " << units);
pprint("");
}
pprint(" GL_ARB_texture_env_combine supported? "<< (GLEW_ARB_texture_env_combine?"yes.":"no."));
pprint(" GL_ARB_texture_non_power_of_two supported " << (GPU_non_power_of_two_support()?"yes.":"no."));
}