Files
blender/source/blender/editors/transform/transform.c

6613 lines
158 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/editors/transform/transform.c
* \ingroup edtransform
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#ifndef WIN32
# include <unistd.h>
#else
# include <io.h>
#endif
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mask_types.h"
#include "DNA_movieclip_types.h"
#include "DNA_scene_types.h" /* PET modes */
#include "RNA_access.h"
#include "BIF_gl.h"
#include "BIF_glutil.h"
#include "BLF_api.h"
#include "BKE_nla.h"
#include "BKE_bmesh.h"
#include "BKE_context.h"
#include "BKE_constraint.h"
#include "BKE_global.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_unit.h"
#include "BKE_mask.h"
#include "ED_image.h"
#include "ED_keyframing.h"
#include "ED_screen.h"
#include "ED_space_api.h"
#include "ED_markers.h"
#include "ED_view3d.h"
#include "ED_mesh.h"
#include "ED_clip.h"
#include "ED_mask.h"
#include "UI_view2d.h"
#include "WM_types.h"
#include "WM_api.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_linklist.h"
#include "BLI_smallhash.h"
#include "BLI_array.h"
#include "UI_interface_icons.h"
#include "UI_resources.h"
#include "transform.h"
static void drawTransformApply(const struct bContext *C, ARegion *ar, void *arg);
static int doEdgeSlide(TransInfo *t, float perc);
/* ************************** SPACE DEPENDANT CODE **************************** */
void setTransformViewMatrices(TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D && t->ar && t->ar->regiontype == RGN_TYPE_WINDOW) {
RegionView3D *rv3d = t->ar->regiondata;
copy_m4_m4(t->viewmat, rv3d->viewmat);
copy_m4_m4(t->viewinv, rv3d->viewinv);
copy_m4_m4(t->persmat, rv3d->persmat);
copy_m4_m4(t->persinv, rv3d->persinv);
t->persp = rv3d->persp;
}
else {
unit_m4(t->viewmat);
unit_m4(t->viewinv);
unit_m4(t->persmat);
unit_m4(t->persinv);
t->persp = RV3D_ORTHO;
}
calculateCenter2D(t);
}
static void convertViewVec2D(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx, divy;
divx = BLI_rcti_size_x(&v2d->mask);
divy = BLI_rcti_size_y(&v2d->mask);
r_vec[0] = BLI_rctf_size_x(&v2d->cur) * dx / divx;
r_vec[1] = BLI_rctf_size_y(&v2d->cur) * dy / divy;
r_vec[2] = 0.0f;
}
static void convertViewVec2D_mask(View2D *v2d, float r_vec[3], int dx, int dy)
{
float divx, divy;
float mulx, muly;
divx = BLI_rcti_size_x(&v2d->mask);
divy = BLI_rcti_size_y(&v2d->mask);
mulx = BLI_rctf_size_x(&v2d->cur);
muly = BLI_rctf_size_y(&v2d->cur);
/* difference with convertViewVec2D */
/* clamp w/h, mask only */
if (mulx / divx < muly / divy) {
divy = divx;
muly = mulx;
}
else {
divx = divy;
mulx = muly;
}
/* end difference */
r_vec[0] = mulx * dx / divx;
r_vec[1] = muly * dy / divy;
r_vec[2] = 0.0f;
}
void convertViewVec(TransInfo *t, float r_vec[3], int dx, int dy)
{
if ((t->spacetype == SPACE_VIEW3D) && (t->ar->regiontype == RGN_TYPE_WINDOW)) {
const float mval_f[2] = {(float)dx, (float)dy};
ED_view3d_win_to_delta(t->ar, mval_f, r_vec);
}
else if (t->spacetype == SPACE_IMAGE) {
float aspx, aspy;
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
ED_space_image_get_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
ED_space_image_get_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
r_vec[0] *= aspx;
r_vec[1] *= aspy;
}
else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
convertViewVec2D(t->view, r_vec, dx, dy);
}
else if (ELEM(t->spacetype, SPACE_NODE, SPACE_SEQ)) {
convertViewVec2D(&t->ar->v2d, r_vec, dx, dy);
}
else if (t->spacetype == SPACE_CLIP) {
float aspx, aspy;
if (t->options & CTX_MASK) {
convertViewVec2D_mask(t->view, r_vec, dx, dy);
}
else {
convertViewVec2D(t->view, r_vec, dx, dy);
}
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(t->sa->spacedata.first, &aspx, &aspy);
}
else if (t->options & CTX_MASK) {
/* TODO - NOT WORKING, this isnt so bad since its only display aspect */
ED_space_clip_get_aspect(t->sa->spacedata.first, &aspx, &aspy);
}
else {
/* should never happen, quiet warnings */
BLI_assert(0);
aspx = aspy = 1.0f;
}
r_vec[0] *= aspx;
r_vec[1] *= aspy;
}
else {
printf("%s: called in an invalid context\n", __func__);
zero_v3(r_vec);
}
}
void projectIntView(TransInfo *t, const float vec[3], int adr[2])
{
if (t->spacetype == SPACE_VIEW3D) {
if (t->ar->regiontype == RGN_TYPE_WINDOW) {
if (ED_view3d_project_int_global(t->ar, vec, adr, V3D_PROJ_TEST_NOP) != V3D_PROJ_RET_OK) {
adr[0] = (int)2140000000.0f; /* this is what was done in 2.64, perhaps we can be smarter? */
adr[1] = (int)2140000000.0f;
}
}
}
else if (t->spacetype == SPACE_IMAGE) {
SpaceImage *sima = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
/* not working quite right, TODO (see below too) */
float aspx, aspy;
float v[2];
ED_space_image_get_aspect(sima, &aspx, &aspy);
copy_v2_v2(v, vec);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
BKE_mask_coord_to_image(sima->image, &sima->iuser, v, v);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
ED_image_point_pos__reverse(sima, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else {
float aspx, aspy, v[2];
ED_space_image_get_uv_aspect(t->sa->spacedata.first, &aspx, &aspy);
v[0] = vec[0] / aspx;
v[1] = vec[1] / aspy;
UI_view2d_to_region_no_clip(t->view, v[0], v[1], adr, adr + 1);
}
}
else if (t->spacetype == SPACE_ACTION) {
int out[2] = {0, 0};
#if 0
SpaceAction *sact = t->sa->spacedata.first;
if (sact->flag & SACTION_DRAWTIME) {
//vec[0] = vec[0]/((t->scene->r.frs_sec / t->scene->r.frs_sec_base));
/* same as below */
UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out + 1);
}
else
#endif
{
UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out + 1);
}
adr[0] = out[0];
adr[1] = out[1];
}
else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) {
int out[2] = {0, 0};
UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out + 1);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_SEQ) { /* XXX not tested yet, but should work */
int out[2] = {0, 0};
UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out + 1);
adr[0] = out[0];
adr[1] = out[1];
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = t->sa->spacedata.first;
if (t->options & CTX_MASK) {
/* not working quite right, TODO (see above too) */
float aspx, aspy;
float v[2];
ED_space_clip_get_aspect(sc, &aspx, &aspy);
copy_v2_v2(v, vec);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
BKE_mask_coord_to_movieclip(sc->clip, &sc->user, v, v);
v[0] = v[0] / aspx;
v[1] = v[1] / aspy;
ED_clip_point_stable_pos__reverse(sc, t->ar, v, v);
adr[0] = v[0];
adr[1] = v[1];
}
else if (t->options & CTX_MOVIECLIP) {
float v[2], aspx, aspy;
copy_v2_v2(v, vec);
ED_space_clip_get_aspect_dimension_aware(t->sa->spacedata.first, &aspx, &aspy);
v[0] /= aspx;
v[1] /= aspy;
UI_view2d_to_region_no_clip(t->view, v[0], v[1], adr, adr + 1);
}
else {
BLI_assert(0);
}
}
else if (t->spacetype == SPACE_NODE) {
UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], adr, adr + 1);
}
}
void projectFloatView(TransInfo *t, const float vec[3], float adr[2])
{
switch (t->spacetype) {
case SPACE_VIEW3D:
{
if (t->ar->regiontype == RGN_TYPE_WINDOW) {
if (ED_view3d_project_float_global(t->ar, vec, adr, V3D_PROJ_TEST_NOP) != V3D_PROJ_RET_OK) {
/* XXX, 2.64 and prior did this, weak! */
adr[0] = t->ar->winx / 2.0f;
adr[1] = t->ar->winy / 2.0f;
}
return;
}
break;
}
case SPACE_IMAGE:
case SPACE_CLIP:
case SPACE_IPO:
case SPACE_NLA:
{
int a[2];
projectIntView(t, vec, a);
adr[0] = a[0];
adr[1] = a[1];
return;
}
}
zero_v2(adr);
}
void applyAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION)) {
SpaceImage *sima = t->sa->spacedata.first;
float aspx, aspy;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] *= width;
vec[1] *= height;
}
ED_space_image_get_uv_aspect(sima, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
SpaceClip *sc = t->sa->spacedata.first;
float aspx, aspy;
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(sc, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
else if (t->options & CTX_MASK) {
ED_space_clip_get_aspect(sc, &aspx, &aspy);
vec[0] /= aspx;
vec[1] /= aspy;
}
}
}
}
void removeAspectRatio(TransInfo *t, float vec[2])
{
if ((t->spacetype == SPACE_IMAGE) && (t->mode == TFM_TRANSLATION)) {
SpaceImage *sima = t->sa->spacedata.first;
float aspx, aspy;
if ((sima->flag & SI_COORDFLOATS) == 0) {
int width, height;
ED_space_image_get_size(sima, &width, &height);
vec[0] /= width;
vec[1] /= height;
}
ED_space_image_get_uv_aspect(sima, &aspx, &aspy);
vec[0] *= aspx;
vec[1] *= aspy;
}
else if ((t->spacetype == SPACE_CLIP) && (t->mode == TFM_TRANSLATION)) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
SpaceClip *sc = t->sa->spacedata.first;
float aspx = 1.0f, aspy = 1.0f;
if (t->options & CTX_MOVIECLIP) {
ED_space_clip_get_aspect_dimension_aware(sc, &aspx, &aspy);
}
else if (t->options & CTX_MASK) {
ED_space_clip_get_aspect(sc, &aspx, &aspy);
}
vec[0] *= aspx;
vec[1] *= aspy;
}
}
}
static void viewRedrawForce(const bContext *C, TransInfo *t)
{
if (t->spacetype == SPACE_VIEW3D) {
/* Do we need more refined tags? */
if (t->flag & T_POSE)
WM_event_add_notifier(C, NC_OBJECT | ND_POSE, NULL);
else
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
/* for realtime animation record - send notifiers recognised by animation editors */
// XXX: is this notifier a lame duck?
if ((t->animtimer) && IS_AUTOKEY_ON(t->scene))
WM_event_add_notifier(C, NC_OBJECT | ND_KEYS, NULL);
}
else if (t->spacetype == SPACE_ACTION) {
//SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_IPO) {
//SpaceIpo *sipo = (SpaceIpo *)t->sa->spacedata.first;
WM_event_add_notifier(C, NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NLA) {
WM_event_add_notifier(C, NC_ANIMATION | ND_NLA | NA_EDITED, NULL);
}
else if (t->spacetype == SPACE_NODE) {
//ED_area_tag_redraw(t->sa);
WM_event_add_notifier(C, NC_SPACE | ND_SPACE_NODE_VIEW, NULL);
}
else if (t->spacetype == SPACE_SEQ) {
WM_event_add_notifier(C, NC_SCENE | ND_SEQUENCER, NULL);
}
else if (t->spacetype == SPACE_IMAGE) {
if (t->options & CTX_MASK) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
else {
// XXX how to deal with lock?
SpaceImage *sima = (SpaceImage *)t->sa->spacedata.first;
if (sima->lock) WM_event_add_notifier(C, NC_GEOM | ND_DATA, t->obedit->data);
else ED_area_tag_redraw(t->sa);
}
}
else if (t->spacetype == SPACE_CLIP) {
SpaceClip *sc = (SpaceClip *)t->sa->spacedata.first;
if (ED_space_clip_check_show_trackedit(sc)) {
MovieClip *clip = ED_space_clip_get_clip(sc);
/* objects could be parented to tracking data, so send this for viewport refresh */
WM_event_add_notifier(C, NC_OBJECT | ND_TRANSFORM, NULL);
WM_event_add_notifier(C, NC_MOVIECLIP | NA_EDITED, clip);
}
else if (ED_space_clip_check_show_maskedit(sc)) {
Mask *mask = CTX_data_edit_mask(C);
WM_event_add_notifier(C, NC_MASK | NA_EDITED, mask);
}
}
}
static void viewRedrawPost(bContext *C, TransInfo *t)
{
ED_area_headerprint(t->sa, NULL);
if (t->spacetype == SPACE_VIEW3D) {
/* if autokeying is enabled, send notifiers that keyframes were added */
if (IS_AUTOKEY_ON(t->scene))
WM_main_add_notifier(NC_ANIMATION | ND_KEYFRAME | NA_EDITED, NULL);
/* XXX temp, first hack to get auto-render in compositor work (ton) */
WM_event_add_notifier(C, NC_SCENE | ND_TRANSFORM_DONE, CTX_data_scene(C));
}
#if 0 // TRANSFORM_FIX_ME
if (t->spacetype == SPACE_VIEW3D) {
allqueue(REDRAWBUTSOBJECT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (t->spacetype == SPACE_IMAGE) {
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWVIEW3D, 0);
}
else if (ELEM3(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_IPO)) {
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWACTION, 0);
allqueue(REDRAWNLA, 0);
allqueue(REDRAWIPO, 0);
allqueue(REDRAWTIME, 0);
allqueue(REDRAWBUTSOBJECT, 0);
}
scrarea_queue_headredraw(curarea);
#endif
}
/* ************************** TRANSFORMATIONS **************************** */
void BIF_selectOrientation(void)
{
#if 0 // TRANSFORM_FIX_ME
short val;
char *str_menu = BIF_menustringTransformOrientation("Orientation");
val = pupmenu(str_menu);
MEM_freeN(str_menu);
if (val >= 0) {
G.vd->twmode = val;
}
#endif
}
static void view_editmove(unsigned short UNUSED(event))
{
#if 0 // TRANSFORM_FIX_ME
int refresh = 0;
/* Regular: Zoom in */
/* Shift: Scroll up */
/* Ctrl: Scroll right */
/* Alt-Shift: Rotate up */
/* Alt-Ctrl: Rotate right */
/* only work in 3D window for now
* In the end, will have to send to event to a 2D window handler instead
*/
if (Trans.flag & T_2D_EDIT)
return;
switch (event) {
case WHEELUPMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD2);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD2);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD4);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD4);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADMINUS);
else
persptoetsen(PADPLUSKEY);
refresh = 1;
break;
case WHEELDOWNMOUSE:
if (G.qual & LR_SHIFTKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_SHIFTKEY;
persptoetsen(PAD8);
G.qual |= LR_SHIFTKEY;
}
else {
persptoetsen(PAD8);
}
}
else if (G.qual & LR_CTRLKEY) {
if (G.qual & LR_ALTKEY) {
G.qual &= ~LR_CTRLKEY;
persptoetsen(PAD6);
G.qual |= LR_CTRLKEY;
}
else {
persptoetsen(PAD6);
}
}
else if (U.uiflag & USER_WHEELZOOMDIR)
persptoetsen(PADPLUSKEY);
else
persptoetsen(PADMINUS);
refresh = 1;
break;
}
if (refresh)
setTransformViewMatrices(&Trans);
#endif
}
/* ************************************************* */
/* NOTE: these defines are saved in keymap files, do not change values but just add new ones */
#define TFM_MODAL_CANCEL 1
#define TFM_MODAL_CONFIRM 2
#define TFM_MODAL_TRANSLATE 3
#define TFM_MODAL_ROTATE 4
#define TFM_MODAL_RESIZE 5
#define TFM_MODAL_SNAP_INV_ON 6
#define TFM_MODAL_SNAP_INV_OFF 7
#define TFM_MODAL_SNAP_TOGGLE 8
#define TFM_MODAL_AXIS_X 9
#define TFM_MODAL_AXIS_Y 10
#define TFM_MODAL_AXIS_Z 11
#define TFM_MODAL_PLANE_X 12
#define TFM_MODAL_PLANE_Y 13
#define TFM_MODAL_PLANE_Z 14
#define TFM_MODAL_CONS_OFF 15
#define TFM_MODAL_ADD_SNAP 16
#define TFM_MODAL_REMOVE_SNAP 17
/* 18 and 19 used by numinput, defined in transform.h
* */
#define TFM_MODAL_PROPSIZE_UP 20
#define TFM_MODAL_PROPSIZE_DOWN 21
#define TFM_MODAL_AUTOIK_LEN_INC 22
#define TFM_MODAL_AUTOIK_LEN_DEC 23
#define TFM_MODAL_EDGESLIDE_UP 24
#define TFM_MODAL_EDGESLIDE_DOWN 25
/* called in transform_ops.c, on each regeneration of keymaps */
wmKeyMap *transform_modal_keymap(wmKeyConfig *keyconf)
{
static EnumPropertyItem modal_items[] = {
{TFM_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""},
{TFM_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""},
{TFM_MODAL_TRANSLATE, "TRANSLATE", 0, "Translate", ""},
{TFM_MODAL_ROTATE, "ROTATE", 0, "Rotate", ""},
{TFM_MODAL_RESIZE, "RESIZE", 0, "Resize", ""},
{TFM_MODAL_SNAP_INV_ON, "SNAP_INV_ON", 0, "Invert Snap On", ""},
{TFM_MODAL_SNAP_INV_OFF, "SNAP_INV_OFF", 0, "Invert Snap Off", ""},
{TFM_MODAL_SNAP_TOGGLE, "SNAP_TOGGLE", 0, "Snap Toggle", ""},
{TFM_MODAL_AXIS_X, "AXIS_X", 0, "Orientation X axis", ""},
{TFM_MODAL_AXIS_Y, "AXIS_Y", 0, "Orientation Y axis", ""},
{TFM_MODAL_AXIS_Z, "AXIS_Z", 0, "Orientation Z axis", ""},
{TFM_MODAL_PLANE_X, "PLANE_X", 0, "Orientation X plane", ""},
{TFM_MODAL_PLANE_Y, "PLANE_Y", 0, "Orientation Y plane", ""},
{TFM_MODAL_PLANE_Z, "PLANE_Z", 0, "Orientation Z plane", ""},
{TFM_MODAL_CONS_OFF, "CONS_OFF", 0, "Remove Constraints", ""},
{TFM_MODAL_ADD_SNAP, "ADD_SNAP", 0, "Add Snap Point", ""},
{TFM_MODAL_REMOVE_SNAP, "REMOVE_SNAP", 0, "Remove Last Snap Point", ""},
{NUM_MODAL_INCREMENT_UP, "INCREMENT_UP", 0, "Numinput Increment Up", ""},
{NUM_MODAL_INCREMENT_DOWN, "INCREMENT_DOWN", 0, "Numinput Increment Down", ""},
{TFM_MODAL_PROPSIZE_UP, "PROPORTIONAL_SIZE_UP", 0, "Increase Proportional Influence", ""},
{TFM_MODAL_PROPSIZE_DOWN, "PROPORTIONAL_SIZE_DOWN", 0, "Decrease Proportional Influence", ""},
{TFM_MODAL_AUTOIK_LEN_INC, "AUTOIK_CHAIN_LEN_UP", 0, "Increase Max AutoIK Chain Length", ""},
{TFM_MODAL_AUTOIK_LEN_DEC, "AUTOIK_CHAIN_LEN_DOWN", 0, "Decrease Max AutoIK Chain Length", ""},
{TFM_MODAL_EDGESLIDE_UP, "EDGESLIDE_EDGE_NEXT", 0, "Select next Edge Slide Edge", ""},
{TFM_MODAL_EDGESLIDE_DOWN, "EDGESLIDE_PREV_NEXT", 0, "Select previous Edge Slide Edge", ""},
{0, NULL, 0, NULL, NULL}
};
wmKeyMap *keymap = WM_modalkeymap_get(keyconf, "Transform Modal Map");
/* this function is called for each spacetype, only needs to add map once */
if (keymap && keymap->modal_items) return NULL;
keymap = WM_modalkeymap_add(keyconf, "Transform Modal Map", modal_items);
/* items for modal map */
WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CANCEL);
WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM);
WM_modalkeymap_add_item(keymap, GKEY, KM_PRESS, 0, 0, TFM_MODAL_TRANSLATE);
WM_modalkeymap_add_item(keymap, RKEY, KM_PRESS, 0, 0, TFM_MODAL_ROTATE);
WM_modalkeymap_add_item(keymap, SKEY, KM_PRESS, 0, 0, TFM_MODAL_RESIZE);
WM_modalkeymap_add_item(keymap, TABKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_SNAP_TOGGLE);
WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON);
WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF);
WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON);
WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF);
WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, 0, 0, TFM_MODAL_ADD_SNAP);
WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, KM_ALT, 0, TFM_MODAL_REMOVE_SNAP);
WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP);
WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, KM_ALT, 0, TFM_MODAL_EDGESLIDE_UP);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, KM_ALT, 0, TFM_MODAL_EDGESLIDE_DOWN);
WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC);
WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC);
WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC);
WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC);
return keymap;
}
static void transform_event_xyz_constraint(TransInfo *t, short key_type, char cmode)
{
if (!(t->flag & T_NO_CONSTRAINT)) {
int constraint_axis, constraint_plane;
int edit_2d = (t->flag & T_2D_EDIT);
char msg1[] = "along _";
char msg2[] = "along %s _";
char msg3[] = "locking %s _";
char axis;
/* Initialize */
switch (key_type) {
case XKEY:
axis = 'X';
constraint_axis = CON_AXIS0;
break;
case YKEY:
axis = 'Y';
constraint_axis = CON_AXIS1;
break;
case ZKEY:
axis = 'Z';
constraint_axis = CON_AXIS2;
break;
default:
/* Invalid key */
return;
}
msg1[sizeof(msg1) - 2] = axis;
msg2[sizeof(msg2) - 2] = axis;
msg3[sizeof(msg3) - 2] = axis;
constraint_plane = ((CON_AXIS0 | CON_AXIS1 | CON_AXIS2) & (~constraint_axis));
if (edit_2d && (key_type != ZKEY)) {
if (cmode == axis) {
stopConstraint(t);
}
else {
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_axis, msg1);
}
}
else if (!edit_2d) {
if (cmode == axis) {
if (t->con.orientation != V3D_MANIP_GLOBAL) {
stopConstraint(t);
}
else {
short orientation = (t->current_orientation != V3D_MANIP_GLOBAL ?
t->current_orientation : V3D_MANIP_LOCAL);
if (!(t->modifiers & MOD_CONSTRAINT_PLANE))
setUserConstraint(t, orientation, constraint_axis, msg2);
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, orientation, constraint_plane, msg3);
}
}
else {
if (!(t->modifiers & MOD_CONSTRAINT_PLANE))
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_axis, msg2);
else if (t->modifiers & MOD_CONSTRAINT_PLANE)
setUserConstraint(t, V3D_MANIP_GLOBAL, constraint_plane, msg3);
}
}
t->redraw |= TREDRAW_HARD;
}
}
int transformEvent(TransInfo *t, wmEvent *event)
{
float mati[3][3] = MAT3_UNITY;
char cmode = constraintModeToChar(t);
int handled = 1;
t->redraw |= handleMouseInput(t, &t->mouse, event);
if (event->type == MOUSEMOVE) {
if (t->modifiers & MOD_CONSTRAINT_SELECT)
t->con.mode |= CON_SELECT;
copy_v2_v2_int(t->mval, event->mval);
// t->redraw |= TREDRAW_SOFT; /* Use this for soft redraw. Might cause flicker in object mode */
t->redraw |= TREDRAW_HARD;
if (t->state == TRANS_STARTING) {
t->state = TRANS_RUNNING;
}
applyMouseInput(t, &t->mouse, t->mval, t->values);
// Snapping mouse move events
t->redraw |= handleSnapping(t, event);
}
/* handle modal keymap first */
if (event->type == EVT_MODAL_MAP) {
switch (event->val) {
case TFM_MODAL_CANCEL:
t->state = TRANS_CANCEL;
break;
case TFM_MODAL_CONFIRM:
t->state = TRANS_CONFIRM;
break;
case TFM_MODAL_TRANSLATE:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
else if (t->mode == TFM_TRANSLATION) {
if (t->options & (CTX_MOVIECLIP | CTX_MASK)) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
}
}
break;
case TFM_MODAL_ROTATE:
/* only switch when... */
if (!(t->options & CTX_TEXTURE) && !(t->options & (CTX_MOVIECLIP | CTX_MASK))) {
if (ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
}
break;
case TFM_MODAL_RESIZE:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
else if (t->mode == TFM_RESIZE) {
if (t->options & CTX_MOVIECLIP) {
restoreTransObjects(t);
t->flag ^= T_ALT_TRANSFORM;
t->redraw |= TREDRAW_HARD;
}
}
break;
case TFM_MODAL_SNAP_INV_ON:
t->modifiers |= MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_SNAP_INV_OFF:
t->modifiers &= ~MOD_SNAP_INVERT;
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_SNAP_TOGGLE:
t->modifiers ^= MOD_SNAP;
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_AXIS_X:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
if (cmode == 'X') {
stopConstraint(t);
}
else {
if (t->flag & T_2D_EDIT) {
setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0), "along X");
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0), "along %s X");
}
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_AXIS_Y:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
if (cmode == 'Y') {
stopConstraint(t);
}
else {
if (t->flag & T_2D_EDIT) {
setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1), "along Y");
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS1), "along %s Y");
}
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_AXIS_Z:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Z') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS2), "along %s Z");
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_PLANE_X:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'X') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS1 | CON_AXIS2), "locking %s X");
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_PLANE_Y:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Y') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0 | CON_AXIS2), "locking %s Y");
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_PLANE_Z:
if ((t->flag & (T_NO_CONSTRAINT | T_2D_EDIT)) == 0) {
if (cmode == 'Z') {
stopConstraint(t);
}
else {
setUserConstraint(t, t->current_orientation, (CON_AXIS0 | CON_AXIS1), "locking %s Z");
}
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_CONS_OFF:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
stopConstraint(t);
t->redraw |= TREDRAW_HARD;
}
break;
case TFM_MODAL_ADD_SNAP:
addSnapPoint(t);
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_REMOVE_SNAP:
removeSnapPoint(t);
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_PROPSIZE_UP:
if (t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO)
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->far);
calculatePropRatio(t);
}
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_PROPSIZE_DOWN:
if (t->flag & T_PROP_EDIT) {
t->prop_size *= 0.90909090f;
calculatePropRatio(t);
}
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_EDGESLIDE_UP:
case TFM_MODAL_EDGESLIDE_DOWN:
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_AUTOIK_LEN_INC:
if (t->flag & T_AUTOIK)
transform_autoik_update(t, 1);
t->redraw |= TREDRAW_HARD;
break;
case TFM_MODAL_AUTOIK_LEN_DEC:
if (t->flag & T_AUTOIK)
transform_autoik_update(t, -1);
t->redraw |= TREDRAW_HARD;
break;
default:
handled = 0;
break;
}
// Modal numinput events
t->redraw |= handleNumInput(&(t->num), event);
}
/* else do non-mapped events */
else if (event->val == KM_PRESS) {
switch (event->type) {
case RIGHTMOUSE:
t->state = TRANS_CANCEL;
break;
/* enforce redraw of transform when modifiers are used */
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers |= MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
break;
case SPACEKEY:
if ((t->spacetype == SPACE_VIEW3D) && event->alt) {
#if 0 // TRANSFORM_FIX_ME
int mval[2];
getmouseco_sc(mval);
BIF_selectOrientation();
calc_manipulator_stats(curarea);
copy_m3_m4(t->spacemtx, G.vd->twmat);
warp_pointer(mval[0], mval[1]);
#endif
}
else {
t->state = TRANS_CONFIRM;
}
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
/* exception for switching to dolly, or trackball, in camera view */
if (t->flag & T_CAMERA) {
if (t->mode == TFM_TRANSLATION)
setLocalConstraint(t, (CON_AXIS2), "along local Z");
else if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
}
else {
t->modifiers |= MOD_CONSTRAINT_SELECT;
if (t->con.mode & CON_APPLY) {
stopConstraint(t);
}
else {
if (event->shift) {
initSelectConstraint(t, t->spacemtx);
}
else {
/* bit hackish... but it prevents mmb select to print the orientation from menu */
strcpy(t->spacename, "global");
initSelectConstraint(t, mati);
}
postSelectConstraint(t);
}
}
t->redraw |= TREDRAW_HARD;
}
break;
case ESCKEY:
t->state = TRANS_CANCEL;
break;
case PADENTER:
case RETKEY:
t->state = TRANS_CONFIRM;
break;
case GKEY:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initTranslation(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
break;
case SKEY:
/* only switch when... */
if (ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) {
resetTransRestrictions(t);
restoreTransObjects(t);
initResize(t);
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
break;
case RKEY:
/* only switch when... */
if (!(t->options & CTX_TEXTURE)) {
if (ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) {
resetTransRestrictions(t);
if (t->mode == TFM_ROTATION) {
restoreTransObjects(t);
initTrackball(t);
}
else {
restoreTransObjects(t);
initRotation(t);
}
initSnapping(t, NULL); // need to reinit after mode change
t->redraw |= TREDRAW_HARD;
}
}
break;
case CKEY:
if (event->alt) {
t->flag ^= T_PROP_CONNECTED;
sort_trans_data_dist(t);
calculatePropRatio(t);
t->redraw = 1;
}
else {
stopConstraint(t);
t->redraw |= TREDRAW_HARD;
}
break;
case XKEY:
case YKEY:
case ZKEY:
transform_event_xyz_constraint(t, event->type, cmode);
break;
case OKEY:
if (t->flag & T_PROP_EDIT && event->shift) {
t->prop_mode = (t->prop_mode + 1) % PROP_MODE_MAX;
calculatePropRatio(t);
t->redraw |= TREDRAW_HARD;
}
break;
case PADPLUSKEY:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 1.1f;
if (t->spacetype == SPACE_VIEW3D && t->persp != RV3D_ORTHO)
t->prop_size = min_ff(t->prop_size, ((View3D *)t->view)->far);
calculatePropRatio(t);
}
t->redraw = 1;
break;
case PAGEUPKEY:
case WHEELDOWNMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, 1);
}
else view_editmove(event->type);
t->redraw = 1;
break;
case PADMINUS:
if (event->alt && t->flag & T_PROP_EDIT) {
t->prop_size *= 0.90909090f;
calculatePropRatio(t);
}
t->redraw = 1;
break;
case PAGEDOWNKEY:
case WHEELUPMOUSE:
if (t->flag & T_AUTOIK) {
transform_autoik_update(t, -1);
}
else view_editmove(event->type);
t->redraw = 1;
break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (t->spacetype == SPACE_SEQ)
t->flag |= T_ALT_TRANSFORM;
break;
default:
handled = 0;
break;
}
// Numerical input events
t->redraw |= handleNumInput(&(t->num), event);
// Snapping key events
t->redraw |= handleSnapping(t, event);
}
else if (event->val == KM_RELEASE) {
switch (event->type) {
case LEFTSHIFTKEY:
case RIGHTSHIFTKEY:
t->modifiers &= ~MOD_CONSTRAINT_PLANE;
t->redraw |= TREDRAW_HARD;
break;
case MIDDLEMOUSE:
if ((t->flag & T_NO_CONSTRAINT) == 0) {
t->modifiers &= ~MOD_CONSTRAINT_SELECT;
postSelectConstraint(t);
t->redraw |= TREDRAW_HARD;
}
break;
// case LEFTMOUSE:
// case RIGHTMOUSE:
// if (WM_modal_tweak_exit(event, t->event_type))
//// if (t->options & CTX_TWEAK)
// t->state = TRANS_CONFIRM;
// break;
case LEFTALTKEY:
case RIGHTALTKEY:
if (t->spacetype == SPACE_SEQ)
t->flag &= ~T_ALT_TRANSFORM;
break;
default:
handled = 0;
break;
}
/* confirm transform if launch key is released after mouse move */
if (t->flag & T_RELEASE_CONFIRM) {
/* XXX Keyrepeat bug in Xorg fucks this up, will test when fixed */
if (event->type == t->launch_event && (t->launch_event == LEFTMOUSE || t->launch_event == RIGHTMOUSE)) {
t->state = TRANS_CONFIRM;
}
}
}
else
handled = 0;
// Per transform event, if present
if (t->handleEvent)
t->redraw |= t->handleEvent(t, event);
if (handled || t->redraw) {
return 0;
}
else {
return OPERATOR_PASS_THROUGH;
}
}
int calculateTransformCenter(bContext *C, int centerMode, float cent3d[3], int cent2d[2])
{
TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data");
int success;
t->state = TRANS_RUNNING;
t->options = CTX_NONE;
t->mode = TFM_DUMMY;
initTransInfo(C, t, NULL, NULL); // internal data, mouse, vectors
createTransData(C, t); // make TransData structs from selection
t->around = centerMode; // override userdefined mode
if (t->total == 0) {
success = FALSE;
}
else {
success = TRUE;
calculateCenter(t);
if (cent2d) {
copy_v2_v2_int(cent2d, t->center2d);
}
if (cent3d) {
// Copy center from constraint center. Transform center can be local
copy_v3_v3(cent3d, t->con.center);
}
}
/* aftertrans does insert ipos and action channels, and clears base flags, doesnt read transdata */
special_aftertrans_update(C, t);
postTrans(C, t);
MEM_freeN(t);
return success;
}
typedef enum {
UP,
DOWN,
LEFT,
RIGHT
} ArrowDirection;
static void drawArrow(ArrowDirection d, short offset, short length, short size)
{
switch (d) {
case LEFT:
offset = -offset;
length = -length;
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s(offset, 0);
glVertex2s(offset + length, 0);
glVertex2s(offset + length, 0);
glVertex2s(offset + length - size, -size);
glVertex2s(offset + length, 0);
glVertex2s(offset + length - size, size);
glEnd();
break;
case DOWN:
offset = -offset;
length = -length;
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s(0, offset);
glVertex2s(0, offset + length);
glVertex2s(0, offset + length);
glVertex2s(-size, offset + length - size);
glVertex2s(0, offset + length);
glVertex2s(size, offset + length - size);
glEnd();
break;
}
}
static void drawArrowHead(ArrowDirection d, short size)
{
switch (d) {
case LEFT:
size = -size;
case RIGHT:
glBegin(GL_LINES);
glVertex2s(0, 0);
glVertex2s(-size, -size);
glVertex2s(0, 0);
glVertex2s(-size, size);
glEnd();
break;
case DOWN:
size = -size;
case UP:
glBegin(GL_LINES);
glVertex2s(0, 0);
glVertex2s(-size, -size);
glVertex2s(0, 0);
glVertex2s(size, -size);
glEnd();
break;
}
}
static void drawArc(float size, float angle_start, float angle_end, int segments)
{
float delta = (angle_end - angle_start) / segments;
float angle;
int a;
glBegin(GL_LINE_STRIP);
for (angle = angle_start, a = 0; a < segments; angle += delta, a++) {
glVertex2f(cosf(angle) * size, sinf(angle) * size);
}
glVertex2f(cosf(angle_end) * size, sinf(angle_end) * size);
glEnd();
}
static int helpline_poll(bContext *C)
{
ARegion *ar = CTX_wm_region(C);
if (ar && ar->regiontype == RGN_TYPE_WINDOW)
return 1;
return 0;
}
static void drawHelpline(bContext *UNUSED(C), int x, int y, void *customdata)
{
TransInfo *t = (TransInfo *)customdata;
if (t->helpline != HLP_NONE && !(t->flag & T_USES_MANIPULATOR)) {
float vecrot[3], cent[2];
int mval[2];
mval[0] = x;
mval[1] = y;
copy_v3_v3(vecrot, t->center);
if (t->flag & T_EDIT) {
Object *ob = t->obedit;
if (ob) mul_m4_v3(ob->obmat, vecrot);
}
else if (t->flag & T_POSE) {
Object *ob = t->poseobj;
if (ob) mul_m4_v3(ob->obmat, vecrot);
}
projectFloatView(t, vecrot, cent); // no overflow in extreme cases
glPushMatrix();
switch (t->helpline) {
case HLP_SPRING:
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2iv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(mval[0], mval[1], 0);
glRotatef(-RAD2DEGF(atan2f(cent[0] - t->mval[0], cent[1] - t->mval[1])), 0, 0, 1);
setlinestyle(0);
glLineWidth(3.0);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_HARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_VARROW:
UI_ThemeColor(TH_WIRE);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
glBegin(GL_LINES);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
case HLP_ANGLE:
{
float dx = t->mval[0] - cent[0], dy = t->mval[1] - cent[1];
float angle = atan2f(dy, dx);
float dist = sqrtf(dx * dx + dy * dy);
float delta_angle = min_ff(15.0f / dist, (float)M_PI / 4.0f);
float spacing_angle = min_ff(5.0f / dist, (float)M_PI / 12.0f);
UI_ThemeColor(TH_WIRE);
setlinestyle(3);
glBegin(GL_LINE_STRIP);
glVertex2iv(t->mval);
glVertex2fv(cent);
glEnd();
glTranslatef(cent[0] - t->mval[0] + mval[0], cent[1] - t->mval[1] + mval[1], 0);
setlinestyle(0);
glLineWidth(3.0);
drawArc(dist, angle - delta_angle, angle - spacing_angle, 10);
drawArc(dist, angle + spacing_angle, angle + delta_angle, 10);
glPushMatrix();
glTranslatef(cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0);
glRotatef(RAD2DEGF(angle - delta_angle), 0, 0, 1);
drawArrowHead(DOWN, 5);
glPopMatrix();
glTranslatef(cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0);
glRotatef(RAD2DEGF(angle + delta_angle), 0, 0, 1);
drawArrowHead(UP, 5);
glLineWidth(1.0);
break;
}
case HLP_TRACKBALL:
{
unsigned char col[3], col2[3];
UI_GetThemeColor3ubv(TH_GRID, col);
glTranslatef(mval[0], mval[1], 0);
glLineWidth(3.0);
UI_make_axis_color(col, col2, 'X');
glColor3ubv((GLubyte *)col2);
drawArrow(RIGHT, 5, 10, 5);
drawArrow(LEFT, 5, 10, 5);
UI_make_axis_color(col, col2, 'Y');
glColor3ubv((GLubyte *)col2);
drawArrow(UP, 5, 10, 5);
drawArrow(DOWN, 5, 10, 5);
glLineWidth(1.0);
break;
}
}
glPopMatrix();
}
}
static void drawTransformView(const struct bContext *C, ARegion *UNUSED(ar), void *arg)
{
TransInfo *t = arg;
drawConstraint(t);
drawPropCircle(C, t);
drawSnapping(C, t);
drawNonPropEdge(C, t);
}
/* just draw a little warning message in the top-right corner of the viewport to warn that autokeying is enabled */
static void drawAutoKeyWarning(TransInfo *UNUSED(t), ARegion *ar)
{
const char printable[] = "Auto Keying On";
float printable_size[2];
int xco, yco;
BLF_width_and_height_default(printable, &printable_size[0], &printable_size[1]);
xco = ar->winx - (int)printable_size[0] - 10;
yco = ar->winy - (int)printable_size[1] - 10;
/* warning text (to clarify meaning of overlays)
* - original color was red to match the icon, but that clashes badly with a less nasty border
*/
UI_ThemeColorShade(TH_TEXT_HI, -50);
BLF_draw_default_ascii(xco, ar->winy - 17, 0.0f, printable, sizeof(printable));
/* autokey recording icon... */
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
xco -= (ICON_DEFAULT_WIDTH + 2);
UI_icon_draw(xco, yco, ICON_REC);
glDisable(GL_BLEND);
}
static void drawTransformPixel(const struct bContext *UNUSED(C), ARegion *ar, void *arg)
{
TransInfo *t = arg;
Scene *scene = t->scene;
Object *ob = OBACT;
/* draw autokeyframing hint in the corner
* - only draw if enabled (advanced users may be distracted/annoyed),
* for objects that will be autokeyframed (no point ohterwise),
* AND only for the active region (as showing all is too overwhelming)
*/
if ((U.autokey_flag & AUTOKEY_FLAG_NOWARNING) == 0) {
if (ar == t->ar) {
if (t->flag & (T_OBJECT | T_POSE)) {
if (ob && autokeyframe_cfra_can_key(scene, &ob->id)) {
drawAutoKeyWarning(t, ar);
}
}
}
}
}
void saveTransform(bContext *C, TransInfo *t, wmOperator *op)
{
ToolSettings *ts = CTX_data_tool_settings(C);
int constraint_axis[3] = {0, 0, 0};
int proportional = 0;
PropertyRNA *prop;
// Save back mode in case we're in the generic operator
if ((prop = RNA_struct_find_property(op->ptr, "mode"))) {
RNA_property_enum_set(op->ptr, prop, t->mode);
}
if ((prop = RNA_struct_find_property(op->ptr, "value"))) {
float *values = (t->flag & T_AUTOVALUES) ? t->auto_values : t->values;
if (RNA_property_array_check(prop)) {
RNA_property_float_set_array(op->ptr, prop, values);
}
else {
RNA_property_float_set(op->ptr, prop, values[0]);
}
}
/* convert flag to enum */
switch (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
case (T_PROP_EDIT | T_PROP_CONNECTED):
proportional = PROP_EDIT_CONNECTED;
break;
case T_PROP_EDIT:
proportional = PROP_EDIT_ON;
break;
default:
proportional = PROP_EDIT_OFF;
}
// If modal, save settings back in scene if not set as operator argument
if (t->flag & T_MODAL) {
/* save settings if not set in operator */
if ((prop = RNA_struct_find_property(op->ptr, "proportional")) &&
!RNA_property_is_set(op->ptr, prop))
{
if (t->obedit)
ts->proportional = proportional;
else if (t->options & CTX_MASK)
ts->proportional_mask = (proportional != PROP_EDIT_OFF);
else
ts->proportional_objects = (proportional != PROP_EDIT_OFF);
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_size")) &&
!RNA_property_is_set(op->ptr, prop))
{
ts->proportional_size = t->prop_size;
}
if ((prop = RNA_struct_find_property(op->ptr, "proportional_edit_falloff")) &&
!RNA_property_is_set(op->ptr, prop))
{
ts->prop_mode = t->prop_mode;
}
/* do we check for parameter? */
if (t->modifiers & MOD_SNAP) {
ts->snap_flag |= SCE_SNAP;
}
else {
ts->snap_flag &= ~SCE_SNAP;
}
if (t->spacetype == SPACE_VIEW3D) {
if ((prop = RNA_struct_find_property(op->ptr, "constraint_orientation")) &&
!RNA_property_is_set(op->ptr, prop))
{
View3D *v3d = t->view;
v3d->twmode = t->current_orientation;
}
}
}
if (RNA_struct_find_property(op->ptr, "proportional")) {
RNA_enum_set(op->ptr, "proportional", proportional);
RNA_enum_set(op->ptr, "proportional_edit_falloff", t->prop_mode);
RNA_float_set(op->ptr, "proportional_size", t->prop_size);
}
if ((prop = RNA_struct_find_property(op->ptr, "axis"))) {
RNA_property_float_set_array(op->ptr, prop, t->axis);
}
if ((prop = RNA_struct_find_property(op->ptr, "mirror"))) {
RNA_property_boolean_set(op->ptr, prop, t->flag & T_MIRROR);
}
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis"))) {
/* constraint orientation can be global, event if user selects something else
* so use the orientation in the constraint if set
* */
if (t->con.mode & CON_APPLY) {
RNA_enum_set(op->ptr, "constraint_orientation", t->con.orientation);
}
else {
RNA_enum_set(op->ptr, "constraint_orientation", t->current_orientation);
}
if (t->con.mode & CON_APPLY) {
if (t->con.mode & CON_AXIS0) {
constraint_axis[0] = 1;
}
if (t->con.mode & CON_AXIS1) {
constraint_axis[1] = 1;
}
if (t->con.mode & CON_AXIS2) {
constraint_axis[2] = 1;
}
}
RNA_property_boolean_set_array(op->ptr, prop, constraint_axis);
}
}
/* note: caller needs to free 't' on a 0 return */
int initTransform(bContext *C, TransInfo *t, wmOperator *op, wmEvent *event, int mode)
{
int options = 0;
PropertyRNA *prop;
t->context = C;
/* added initialize, for external calls to set stuff in TransInfo, like undo string */
t->state = TRANS_STARTING;
if ((prop = RNA_struct_find_property(op->ptr, "texture_space")) && RNA_property_is_set(op->ptr, prop)) {
if (RNA_property_boolean_get(op->ptr, prop)) {
options |= CTX_TEXTURE;
}
}
t->options = options;
t->mode = mode;
t->launch_event = event ? event->type : -1;
if (t->launch_event == EVT_TWEAK_R) {
t->launch_event = RIGHTMOUSE;
}
else if (t->launch_event == EVT_TWEAK_L) {
t->launch_event = LEFTMOUSE;
}
// XXX Remove this when wm_operator_call_internal doesn't use window->eventstate (which can have type = 0)
// For manipulator only, so assume LEFTMOUSE
if (t->launch_event == 0) {
t->launch_event = LEFTMOUSE;
}
if (!initTransInfo(C, t, op, event)) { /* internal data, mouse, vectors */
return 0;
}
if (t->spacetype == SPACE_VIEW3D) {
//calc_manipulator_stats(curarea);
initTransformOrientation(C, t);
t->draw_handle_apply = ED_region_draw_cb_activate(t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_IMAGE) {
unit_m3(t->spacemtx);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
//t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL);
t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);
}
else if (t->spacetype == SPACE_CLIP) {
unit_m3(t->spacemtx);
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
}
else if (t->spacetype == SPACE_NODE) {
unit_m3(t->spacemtx);
/*t->draw_handle_apply = ED_region_draw_cb_activate(t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW);*/
t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW);
/*t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t);*/
}
else
unit_m3(t->spacemtx);
createTransData(C, t); // make TransData structs from selection
if (t->total == 0) {
postTrans(C, t);
return 0;
}
/* Stupid code to have Ctrl-Click on manipulator work ok */
if (event) {
/* do this only for translation/rotation/resize due to only this
* moded are available from manipulator and doing such check could
* lead to keymap conflicts for other modes (see #31584)
*/
if (ELEM3(mode, TFM_TRANSLATION, TFM_ROTATION, TFM_RESIZE)) {
wmKeyMap *keymap = WM_keymap_active(CTX_wm_manager(C), op->type->modalkeymap);
wmKeyMapItem *kmi;
for (kmi = keymap->items.first; kmi; kmi = kmi->next) {
if (kmi->propvalue == TFM_MODAL_SNAP_INV_ON && kmi->val == KM_PRESS) {
if ((ELEM(kmi->type, LEFTCTRLKEY, RIGHTCTRLKEY) && event->ctrl) ||
(ELEM(kmi->type, LEFTSHIFTKEY, RIGHTSHIFTKEY) && event->shift) ||
(ELEM(kmi->type, LEFTALTKEY, RIGHTALTKEY) && event->alt) ||
((kmi->type == OSKEY) && event->oskey) )
{
t->modifiers |= MOD_SNAP_INVERT;
}
break;
}
}
}
}
initSnapping(t, op); // Initialize snapping data AFTER mode flags
/* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */
/* EVIL2: we gave as argument also texture space context bit... was cleared */
/* EVIL3: extend mode for animation editors also switches modes... but is best way to avoid duplicate code */
mode = t->mode;
calculatePropRatio(t);
calculateCenter(t);
initMouseInput(t, &t->mouse, t->center2d, t->imval);
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_SKIN_RESIZE:
initSkinResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
initShear(t);
break;
case TFM_WARP:
initWarp(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_MASK_SHRINKFATTEN:
initMaskShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE:
{ /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */
bArmature *arm = t->poseobj->data;
if (arm->drawtype == ARM_ENVELOPE)
initBoneEnvelope(t);
else
initBoneSize(t);
}
break;
case TFM_BONE_ENVELOPE:
initBoneEnvelope(t);
break;
case TFM_EDGE_SLIDE:
initEdgeSlide(t);
break;
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_DUPLICATE:
/* same as TFM_TIME_EXTEND, but we need the mode info for later
* so that duplicate-culling will work properly
*/
if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA))
initTranslation(t);
else
initTimeTranslate(t);
t->mode = mode;
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA))
initTranslation(t);
else
initTimeTranslate(t);
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BEVEL:
initBevel(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
case TFM_SEQ_SLIDE:
initSeqSlide(t);
break;
}
if (t->state == TRANS_CANCEL) {
postTrans(C, t);
return 0;
}
/* overwrite initial values if operator supplied a non-null vector */
if ((prop = RNA_struct_find_property(op->ptr, "value")) && RNA_property_is_set(op->ptr, prop)) {
float values[4] = {0}; /* in case value isn't length 4, avoid uninitialized memory */
if (RNA_property_array_check(prop)) {
RNA_float_get_array(op->ptr, "value", values);
}
else {
values[0] = RNA_float_get(op->ptr, "value");
}
copy_v4_v4(t->values, values);
copy_v4_v4(t->auto_values, values);
t->flag |= T_AUTOVALUES;
}
/* Transformation axis from operator */
if ((prop = RNA_struct_find_property(op->ptr, "axis")) && RNA_property_is_set(op->ptr, prop)) {
RNA_property_float_get_array(op->ptr, prop, t->axis);
normalize_v3(t->axis);
copy_v3_v3(t->axis_orig, t->axis);
}
/* Constraint init from operator */
if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis")) && RNA_property_is_set(op->ptr, prop)) {
int constraint_axis[3];
RNA_property_boolean_get_array(op->ptr, prop, constraint_axis);
if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2]) {
t->con.mode |= CON_APPLY;
if (constraint_axis[0]) {
t->con.mode |= CON_AXIS0;
}
if (constraint_axis[1]) {
t->con.mode |= CON_AXIS1;
}
if (constraint_axis[2]) {
t->con.mode |= CON_AXIS2;
}
setUserConstraint(t, t->current_orientation, t->con.mode, "%s");
}
}
t->context = NULL;
return 1;
}
void transformApply(bContext *C, TransInfo *t)
{
t->context = C;
if ((t->redraw & TREDRAW_HARD) || (t->draw_handle_apply == NULL && (t->redraw & TREDRAW_SOFT))) {
selectConstraint(t);
if (t->transform) {
t->transform(t, t->mval); // calls recalcData()
viewRedrawForce(C, t);
}
t->redraw = TREDRAW_NOTHING;
}
else if (t->redraw & TREDRAW_SOFT) {
viewRedrawForce(C, t);
}
/* If auto confirm is on, break after one pass */
if (t->options & CTX_AUTOCONFIRM) {
t->state = TRANS_CONFIRM;
}
if (BKE_ptcache_get_continue_physics()) {
// TRANSFORM_FIX_ME
//do_screenhandlers(G.curscreen);
t->redraw |= TREDRAW_HARD;
}
t->context = NULL;
}
static void drawTransformApply(const bContext *C, ARegion *UNUSED(ar), void *arg)
{
TransInfo *t = arg;
if (t->redraw & TREDRAW_SOFT) {
t->redraw |= TREDRAW_HARD;
transformApply((bContext *)C, t);
}
}
int transformEnd(bContext *C, TransInfo *t)
{
int exit_code = OPERATOR_RUNNING_MODAL;
t->context = C;
if (t->state != TRANS_STARTING && t->state != TRANS_RUNNING) {
/* handle restoring objects */
if (t->state == TRANS_CANCEL) {
/* exception, edge slide transformed UVs too */
if (t->mode == TFM_EDGE_SLIDE)
doEdgeSlide(t, 0.0f);
exit_code = OPERATOR_CANCELLED;
restoreTransObjects(t); // calls recalcData()
}
else {
exit_code = OPERATOR_FINISHED;
}
/* aftertrans does insert keyframes, and clears base flags, doesnt read transdata */
special_aftertrans_update(C, t);
/* free data */
postTrans(C, t);
/* send events out for redraws */
viewRedrawPost(C, t);
/* Undo as last, certainly after special_trans_update! */
if (t->state == TRANS_CANCEL) {
// if (t->undostr) ED_undo_push(C, t->undostr);
}
else {
// if (t->undostr) ED_undo_push(C, t->undostr);
// else ED_undo_push(C, transform_to_undostr(t));
}
t->undostr = NULL;
viewRedrawForce(C, t);
}
t->context = NULL;
return exit_code;
}
/* ************************** TRANSFORM LOCKS **************************** */
static void protectedTransBits(short protectflag, float *vec)
{
if (protectflag & OB_LOCK_LOCX)
vec[0] = 0.0f;
if (protectflag & OB_LOCK_LOCY)
vec[1] = 0.0f;
if (protectflag & OB_LOCK_LOCZ)
vec[2] = 0.0f;
}
static void protectedSizeBits(short protectflag, float *size)
{
if (protectflag & OB_LOCK_SCALEX)
size[0] = 1.0f;
if (protectflag & OB_LOCK_SCALEY)
size[1] = 1.0f;
if (protectflag & OB_LOCK_SCALEZ)
size[2] = 1.0f;
}
static void protectedRotateBits(short protectflag, float *eul, float *oldeul)
{
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
}
/* this function only does the delta rotation */
/* axis-angle is usually internally stored as quats... */
static void protectedAxisAngleBits(short protectflag, float axis[3], float *angle, float oldAxis[3], float oldAngle)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* axis-angle getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
*angle = oldAngle;
if (protectflag & OB_LOCK_ROTX)
axis[0] = oldAxis[0];
if (protectflag & OB_LOCK_ROTY)
axis[1] = oldAxis[1];
if (protectflag & OB_LOCK_ROTZ)
axis[2] = oldAxis[2];
}
else {
/* axis-angle get limited with euler... */
float eul[3], oldeul[3];
axis_angle_to_eulO(eul, EULER_ORDER_DEFAULT, axis, *angle);
axis_angle_to_eulO(oldeul, EULER_ORDER_DEFAULT, oldAxis, oldAngle);
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
eulO_to_axis_angle(axis, angle, eul, EULER_ORDER_DEFAULT);
/* when converting to axis-angle, we need a special exception for the case when there is no axis */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
}
/* this function only does the delta rotation */
static void protectedQuaternionBits(short protectflag, float *quat, float *oldquat)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0)
return;
if (protectflag & OB_LOCK_ROT4D) {
/* quaternions getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW)
quat[0] = oldquat[0];
if (protectflag & OB_LOCK_ROTX)
quat[1] = oldquat[1];
if (protectflag & OB_LOCK_ROTY)
quat[2] = oldquat[2];
if (protectflag & OB_LOCK_ROTZ)
quat[3] = oldquat[3];
}
else {
/* quaternions get limited with euler... (compatibility mode) */
float eul[3], oldeul[3], nquat[4], noldquat[4];
float qlen;
qlen = normalize_qt_qt(nquat, quat);
normalize_qt_qt(noldquat, oldquat);
quat_to_eul(eul, nquat);
quat_to_eul(oldeul, noldquat);
if (protectflag & OB_LOCK_ROTX)
eul[0] = oldeul[0];
if (protectflag & OB_LOCK_ROTY)
eul[1] = oldeul[1];
if (protectflag & OB_LOCK_ROTZ)
eul[2] = oldeul[2];
eul_to_quat(quat, eul);
/* restore original quat size */
mul_qt_fl(quat, qlen);
/* quaternions flip w sign to accumulate rotations correctly */
if ((nquat[0] < 0.0f && quat[0] > 0.0f) ||
(nquat[0] > 0.0f && quat[0] < 0.0f))
{
mul_qt_fl(quat, -1.0f);
}
}
}
/* ******************* TRANSFORM LIMITS ********************** */
static void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
bConstraintTypeInfo *ctiLoc = get_constraint_typeinfo(CONSTRAINT_TYPE_LOCLIMIT);
bConstraintTypeInfo *ctiDist = get_constraint_typeinfo(CONSTRAINT_TYPE_DISTLIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float ctime = (float)(t->scene->r.cfra);
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
unit_m4(cob.matrix);
copy_v3_v3(cob.matrix[3], td->loc);
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
bConstraintTypeInfo *cti = NULL;
ListBase targets = {NULL, NULL};
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data = con->data;
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
cti = ctiLoc;
}
else if (con->type == CONSTRAINT_TYPE_DISTLIMIT) {
bDistLimitConstraint *data = con->data;
if ((data->flag & LIMITDIST_TRANSFORM) == 0)
continue;
cti = ctiDist;
}
if (cti) {
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatable spacetype */
continue;
}
/* get constraint targets if needed */
get_constraint_targets_for_solving(con, &cob, &targets, ctime);
/* do constraint */
cti->evaluate_constraint(con, &cob, &targets);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
/* free targets list */
BLI_freelistN(&targets);
}
}
/* copy results from cob->matrix */
copy_v3_v3(td->loc, cob.matrix[3]);
}
}
static void constraintob_from_transdata(bConstraintOb *cob, TransData *td)
{
/* Make a temporary bConstraintOb for use by limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(cob, 0, sizeof(bConstraintOb));
if (td->ext) {
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
/* objects and bones do normalization first too, otherwise
* we don't necessarily end up with a rotation matrix, and
* then conversion back to quat gives a different result */
float quat[4];
normalize_qt_qt(quat, td->ext->quat);
quat_to_mat4(cob->matrix, quat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
axis_angle_to_mat4(cob->matrix, &td->ext->quat[1], td->ext->quat[0]);
}
else {
/* eulers */
eulO_to_mat4(cob->matrix, td->ext->rot, td->ext->rotOrder);
}
}
}
static void constraintRotLim(TransInfo *UNUSED(t), TransData *td)
{
if (td->con) {
bConstraintTypeInfo *cti = get_constraint_typeinfo(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
int do_limit = FALSE;
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
/* skip incompatable spacetypes */
if (!ELEM(con->ownspace, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL))
continue;
/* only do conversion if necessary, to preserve quats and eulers */
if (do_limit == FALSE) {
constraintob_from_transdata(&cob, td);
do_limit = TRUE;
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
if (do_limit) {
/* copy results from cob->matrix */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
mat4_to_quat(td->ext->quat, cob.matrix);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
mat4_to_axis_angle(&td->ext->quat[1], &td->ext->quat[0], cob.matrix);
}
else {
/* eulers */
mat4_to_eulO(td->ext->rot, td->ext->rotOrder, cob.matrix);
}
}
}
}
static void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
bConstraintTypeInfo *cti = get_constraint_typeinfo(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
size_to_mat4(cob.matrix, td->ext->size);
}
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & CONSTRAINT_DISABLE) continue;
if (con->enforce == 0.0f) continue;
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0)
continue;
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
/* copy results from cob->matrix */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; // TODO: fix this case
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
return;
mat4_to_size(td->ext->size, cob.matrix);
}
}
}
/* ************************** WARP *************************** */
static void postInputWarp(TransInfo *t, float values[3])
{
mul_v3_fl(values, (float)(M_PI * 2));
if (t->customData) { /* non-null value indicates reversed input */
negate_v3(values);
}
}
void initWarp(TransInfo *t)
{
float max[3], min[3];
int i;
t->mode = TFM_WARP;
t->transform = Warp;
t->handleEvent = handleEventWarp;
setInputPostFct(&t->mouse, postInputWarp);
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 5.0f / 180.0f * (float)M_PI;
t->snap[2] = 1.0f / 180.0f * (float)M_PI;
t->num.increment = 1.0f;
t->flag |= T_NO_CONSTRAINT;
/* we need min/max in view space */
for (i = 0; i < t->total; i++) {
float center[3];
copy_v3_v3(center, t->data[i].center);
mul_m3_v3(t->data[i].mtx, center);
mul_m4_v3(t->viewmat, center);
sub_v3_v3(center, t->viewmat[3]);
if (i) {
minmax_v3v3_v3(min, max, center);
}
else {
copy_v3_v3(max, center);
copy_v3_v3(min, center);
}
}
mid_v3_v3v3(t->center, min, max);
if (max[0] == min[0]) max[0] += 0.1f; /* not optimal, but flipping is better than invalid garbage (i.e. division by zero!) */
t->val = (max[0] - min[0]) / 2.0f; /* t->val is X dimension projected boundbox */
}
int handleEventWarp(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
// Use customData pointer to signal warp direction
if (t->customData == NULL)
t->customData = (void *)1;
else
t->customData = NULL;
status = 1;
}
return status;
}
int Warp(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float vec[3], circumfac, dist, phi0, co, si, *curs, cursor[3], gcursor[3];
int i;
char str[50];
curs = give_cursor(t->scene, t->view);
/*
* gcursor is the one used for helpline.
* It has to be in the same space as the drawing loop
* (that means it needs to be in the object's space when in edit mode and
* in global space in object mode)
*
* cursor is used for calculations.
* It needs to be in view space, but we need to take object's offset
* into account if in Edit mode.
*/
copy_v3_v3(cursor, curs);
copy_v3_v3(gcursor, cursor);
if (t->flag & T_EDIT) {
sub_v3_v3(cursor, t->obedit->obmat[3]);
sub_v3_v3(gcursor, t->obedit->obmat[3]);
mul_m3_v3(t->data->smtx, gcursor);
}
mul_m4_v3(t->viewmat, cursor);
sub_v3_v3(cursor, t->viewmat[3]);
/* amount of radians for warp */
circumfac = t->values[0];
snapGrid(t, &circumfac);
applyNumInput(&t->num, &circumfac);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Warp: %s", c);
circumfac = DEG2RADF(circumfac);
}
else {
/* default header print */
sprintf(str, "Warp: %.3f", RAD2DEGF(circumfac));
}
t->values[0] = circumfac;
circumfac /= 2; /* only need 180 on each side to make 360 */
for (i = 0; i < t->total; i++, td++) {
float loc[3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* translate point to center, rotate in such a way that outline==distance */
copy_v3_v3(vec, td->iloc);
mul_m3_v3(td->mtx, vec);
mul_m4_v3(t->viewmat, vec);
sub_v3_v3(vec, t->viewmat[3]);
dist = vec[0] - cursor[0];
/* t->val is X dimension projected boundbox */
phi0 = (circumfac * dist / t->val);
vec[1] = (vec[1] - cursor[1]);
co = (float)cos(phi0);
si = (float)sin(phi0);
loc[0] = -si * vec[1] + cursor[0];
loc[1] = co * vec[1] + cursor[1];
loc[2] = vec[2];
mul_m4_v3(t->viewinv, loc);
sub_v3_v3(loc, t->viewinv[3]);
mul_m3_v3(td->smtx, loc);
sub_v3_v3(loc, td->iloc);
mul_v3_fl(loc, td->factor);
add_v3_v3v3(td->loc, td->iloc, loc);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHEAR *************************** */
static void postInputShear(TransInfo *UNUSED(t), float values[3])
{
mul_v3_fl(values, 0.05f);
}
void initShear(TransInfo *t)
{
t->mode = TFM_SHEAR;
t->transform = Shear;
t->handleEvent = handleEventShear;
setInputPostFct(&t->mouse, postInputShear);
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = 0.1f;
t->flag |= T_NO_CONSTRAINT;
}
int handleEventShear(TransInfo *t, wmEvent *event)
{
int status = 0;
if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) {
// Use customData pointer to signal Shear direction
if (t->customData == NULL) {
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->customData = (void *)1;
}
else {
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->customData = NULL;
}
status = 1;
}
return status;
}
int Shear(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float vec[3];
float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3];
float value;
int i;
char str[50];
copy_m3_m4(persmat, t->viewmat);
invert_m3_m3(persinv, persmat);
value = t->values[0];
snapGrid(t, &value);
applyNumInput(&t->num, &value);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Shear: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shear: %.3f %s", value, t->proptext);
}
t->values[0] = value;
unit_m3(smat);
// Custom data signals shear direction
if (t->customData == NULL)
smat[1][0] = value;
else
smat[0][1] = value;
mul_m3_m3m3(tmat, smat, persmat);
mul_m3_m3m3(totmat, persinv, tmat);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->obedit) {
float mat3[3][3];
mul_m3_m3m3(mat3, totmat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, mat3);
}
else {
copy_m3_m3(tmat, totmat);
}
sub_v3_v3v3(vec, td->center, t->center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, t->center);
sub_v3_v3(vec, td->center);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** RESIZE *************************** */
void initResize(TransInfo *t)
{
t->mode = TFM_RESIZE;
t->transform = Resize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
}
static void headerResize(TransInfo *t, float vec[3], char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
char *spos = str;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
spos += sprintf(spos, "Scale: %s%s %s", &tvec[0], t->con.text, t->proptext);
break;
case 1:
spos += sprintf(spos, "Scale: %s : %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
t->con.text, t->proptext);
break;
case 2:
spos += sprintf(spos, "Scale: %s : %s : %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
}
}
else {
if (t->flag & T_2D_EDIT) {
spos += sprintf(spos, "Scale X: %s Y: %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
t->con.text, t->proptext);
}
else {
spos += sprintf(spos, "Scale X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2], t->con.text, t->proptext);
}
}
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
spos += sprintf(spos, " Proportional size: %.2f", t->prop_size);
}
(void)spos;
}
#define SIGN(a) (a<-FLT_EPSILON ? 1 : a>FLT_EPSILON ? 2 : 3)
#define VECSIGNFLIP(a, b) ((SIGN(a[0]) & SIGN(b[0])) == 0 || (SIGN(a[1]) & SIGN(b[1])) == 0 || (SIGN(a[2]) & SIGN(b[2])) == 0)
/* smat is reference matrix, only scaled */
static void TransMat3ToSize(float mat[][3], float smat[][3], float *size)
{
float vec[3];
copy_v3_v3(vec, mat[0]);
size[0] = normalize_v3(vec);
copy_v3_v3(vec, mat[1]);
size[1] = normalize_v3(vec);
copy_v3_v3(vec, mat[2]);
size[2] = normalize_v3(vec);
/* first tried with dotproduct... but the sign flip is crucial */
if (VECSIGNFLIP(mat[0], smat[0]) ) size[0] = -size[0];
if (VECSIGNFLIP(mat[1], smat[1]) ) size[1] = -size[1];
if (VECSIGNFLIP(mat[2], smat[2]) ) size[2] = -size[2];
}
static void ElementResize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* local constraint shouldn't alter center */
if ((t->around == V3D_LOCAL) &&
( (t->flag & (T_OBJECT | T_POSE)) ||
((t->flag & T_EDIT) && (t->settings->selectmode & (SCE_SELECT_EDGE | SCE_SELECT_FACE))) ||
(t->obedit && t->obedit->type == OB_ARMATURE))
)
{
copy_v3_v3(center, td->center);
}
else if (t->options & CTX_MOVIECLIP) {
copy_v3_v3(center, td->center);
}
else {
copy_v3_v3(center, t->center);
}
if (td->ext) {
float fsize[3];
if (t->flag & (T_OBJECT | T_TEXTURE | T_POSE)) {
float obsizemat[3][3];
/* Reorient the size mat to fit the oriented object. */
mul_m3_m3m3(obsizemat, tmat, td->axismtx);
/* print_m3("obsizemat", obsizemat); */
TransMat3ToSize(obsizemat, td->axismtx, fsize);
/* print_v3("fsize", fsize); */
}
else {
mat3_to_size(fsize, tmat);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't resize objects itself */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
*td->val = td->ival * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE)
*td->val = td->ival;
td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor);
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS)
sub_v3_v3v3(vec, td->iloc, center);
else
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
if (t->flag & T_POINTS)
sub_v3_v3(vec, td->iloc);
else
sub_v3_v3(vec, td->center);
mul_v3_fl(vec, td->factor);
if (t->flag & (T_OBJECT | T_POSE)) {
mul_m3_v3(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
int Resize(TransInfo *t, const int mval[2])
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[200];
/* for manipulator, center handle, the scaling can't be done relative to center */
if ((t->flag & T_USES_MANIPULATOR) && t->con.mode == 0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1])) / 100.0f;
}
else {
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(size, t->auto_values);
}
copy_v3_v3(t->values, size);
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerResize(t, size, str);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
/* evil hack - redo resize if cliping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) {
size_to_mat3(mat, size);
if (t->con.applySize)
t->con.applySize(t, NULL, mat);
for (i = 0, td = t->data; i < t->total; i++, td++)
ElementResize(t, td, mat);
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
clipUVData(t);
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SKIN *************************** */
void initSkinResize(TransInfo *t)
{
t->mode = TFM_SKIN_RESIZE;
t->transform = SkinResize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
}
t->idx_max = 2;
t->num.idx_max = 2;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
}
int SkinResize(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float size[3], mat[3][3];
float ratio;
int i;
char str[200];
ratio = t->values[0];
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
applySnapping(t, size);
if (t->flag & T_AUTOVALUES) {
copy_v3_v3(size, t->auto_values);
}
copy_v3_v3(t->values, size);
size_to_mat3(mat, size);
headerResize(t, size, str);
for (i = 0, td = t->data; i < t->total; i++, td++) {
float tmat[3][3], smat[3][3];
float fsize[3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, NULL, tmat);
}
mat3_to_size(fsize, tmat);
td->val[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->val[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TOSPHERE *************************** */
void initToSphere(TransInfo *t)
{
TransData *td = t->data;
int i;
t->mode = TFM_TOSPHERE;
t->transform = ToSphere;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->num.flag |= NUM_NULL_ONE | NUM_NO_NEGATIVE;
t->flag |= T_NO_CONSTRAINT;
// Calculate average radius
for (i = 0; i < t->total; i++, td++) {
t->val += len_v3v3(t->center, td->iloc);
}
t->val /= (float)t->total;
}
int ToSphere(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float ratio, radius;
int i;
char str[64];
TransData *td = t->data;
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
if (ratio < 0)
ratio = 0.0f;
else if (ratio > 1)
ratio = 1.0f;
t->values[0] = ratio;
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "To Sphere: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "To Sphere: %.4f %s", ratio, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
float tratio;
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, td->iloc, t->center);
radius = normalize_v3(vec);
tratio = ratio * td->factor;
mul_v3_fl(vec, radius * (1.0f - tratio) + t->val * tratio);
add_v3_v3v3(td->loc, t->center, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** ROTATION *************************** */
static void postInputRotation(TransInfo *t, float values[3])
{
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, t->axis, values);
}
}
void initRotation(TransInfo *t)
{
t->mode = TFM_ROTATION;
t->transform = Rotation;
setInputPostFct(&t->mouse, postInputRotation);
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0 / 180) * M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->num.increment = 1.0f;
if (t->flag & T_2D_EDIT)
t->flag |= T_NO_CONSTRAINT;
negate_v3_v3(t->axis, t->viewinv[2]);
normalize_v3(t->axis);
copy_v3_v3(t->axis_orig, t->axis);
}
static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3], short around)
{
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
float *center = t->center;
/* local constraint shouldn't alter center */
if (around == V3D_LOCAL) {
if ( (t->flag & (T_OBJECT | T_POSE)) ||
(t->settings->selectmode & (SCE_SELECT_EDGE | SCE_SELECT_FACE)) ||
(t->obedit && t->obedit->type == OB_ARMATURE))
{
center = td->center;
}
if (t->options & CTX_MOVIECLIP) {
center = td->center;
}
}
if (t->flag & T_POINTS) {
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(smat, vec);
add_v3_v3v3(td->loc, vec, center);
sub_v3_v3v3(vec, td->loc, td->iloc);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
if (td->flag & TD_USEQUAT) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
if (td->ext->quat) {
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->flag & T_POSE) {
float pmtx[3][3], imtx[3][3];
// Extract and invert armature object matrix
copy_m3_m4(pmtx, t->poseobj->obmat);
invert_m3_m3(imtx, pmtx);
if ((td->flag & TD_NO_LOC) == 0) {
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(mat, vec); // Applying rotation
mul_m3_v3(imtx, vec); // To Local space
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center); // Translation needed from the initial location
/* special exception, see TD_PBONE_LOCAL_MTX definition comments */
if (td->flag & TD_PBONE_LOCAL_MTX_P) {
/* do nothing */
}
else if (td->flag & TD_PBONE_LOCAL_MTX_C) {
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(td->ext->l_smtx, vec); // To Pose space (Local Location)
}
else {
mul_m3_v3(pmtx, vec); // To Global space
mul_m3_v3(td->smtx, vec); // To Pose space
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
/* MORE HACK: as in some cases the matrix to apply location and rot/scale is not the same,
* and ElementRotation() might be called in Translation context (with align snapping),
* we need to be sure to actually use the *rotation* matrix here...
* So no other way than storing it in some dedicated members of td->ext! */
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't rotate objects itself */
/* euler or quaternion/axis-angle? */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
mul_serie_m3(fmat, td->ext->r_mtx, mat, td->ext->r_smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->ext->r_mtx, mat, td->ext->r_smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle);
}
else {
float eulmat[3][3];
mul_m3_m3m3(totmat, mat, td->ext->r_mtx);
mul_m3_m3m3(smat, td->ext->r_smtx, totmat);
/* calculate the total rotatation in eulers */
copy_v3_v3(eul, td->ext->irot);
eulO_to_mat3(eulmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = bone rotation */
mul_m3_m3m3(fmat, smat, eulmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0) {
/* translation */
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(mat, vec);
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN) == 0) { // align mode doesn't rotate objects itself
/* euler or quaternion? */
if ((td->ext->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) {
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL);
mat3_to_quat(quat, fmat); // Actual transform
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle);
}
else {
float obmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* calculate the total rotatation in eulers */
add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */
eulO_to_mat3(obmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = object rotation */
mul_m3_m3m3(fmat, smat, obmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* correct back for delta rot */
sub_v3_v3v3(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
}
static void applyRotation(TransInfo *t, float angle, float axis[3])
{
TransData *td = t->data;
float mat[3][3];
int i;
vec_rot_to_mat3(mat, axis, angle);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->con.applyRot) {
t->con.applyRot(t, td, axis, NULL);
vec_rot_to_mat3(mat, axis, angle * td->factor);
}
else if (t->flag & T_PROP_EDIT) {
vec_rot_to_mat3(mat, axis, angle * td->factor);
}
ElementRotation(t, td, mat, t->around);
}
}
int Rotation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[128], *spos = str;
float final;
final = t->values[0];
snapGrid(t, &final);
if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
t->con.applyRot(t, NULL, t->axis, NULL);
}
else {
/* reset axis if constraint is not set */
copy_v3_v3(t->axis, t->axis_orig);
}
applySnapping(t, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
spos += sprintf(spos, "Rot: %s %s %s", &c[0], t->con.text, t->proptext);
/* Clamp between -180 and 180 */
final = angle_wrap_rad(DEG2RADF(final));
}
else {
spos += sprintf(spos, "Rot: %.2f%s %s", RAD2DEGF(final), t->con.text, t->proptext);
}
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
spos += sprintf(spos, " Proportional size: %.2f", t->prop_size);
}
(void)spos;
t->values[0] = final;
applyRotation(t, final, t->axis);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRACKBALL *************************** */
void initTrackball(TransInfo *t)
{
t->mode = TFM_TRACKBALL;
t->transform = Trackball;
initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL);
t->idx_max = 1;
t->num.idx_max = 1;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0 / 180) * M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->num.increment = 1.0f;
t->flag |= T_NO_CONSTRAINT;
}
static void applyTrackball(TransInfo *t, float axis1[3], float axis2[3], float angles[2])
{
TransData *td = t->data;
float mat[3][3], smat[3][3], totmat[3][3];
int i;
vec_rot_to_mat3(smat, axis1, angles[0]);
vec_rot_to_mat3(totmat, axis2, angles[1]);
mul_m3_m3m3(mat, smat, totmat);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (t->flag & T_PROP_EDIT) {
vec_rot_to_mat3(smat, axis1, td->factor * angles[0]);
vec_rot_to_mat3(totmat, axis2, td->factor * angles[1]);
mul_m3_m3m3(mat, smat, totmat);
}
ElementRotation(t, td, mat, t->around);
}
}
int Trackball(TransInfo *t, const int UNUSED(mval[2]))
{
char str[128], *spos = str;
float axis1[3], axis2[3];
float mat[3][3], totmat[3][3], smat[3][3];
float phi[2];
copy_v3_v3(axis1, t->persinv[0]);
copy_v3_v3(axis2, t->persinv[1]);
normalize_v3(axis1);
normalize_v3(axis2);
phi[0] = t->values[0];
phi[1] = t->values[1];
snapGrid(t, phi);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN * 2];
applyNumInput(&t->num, phi);
outputNumInput(&(t->num), c);
spos += sprintf(spos, "Trackball: %s %s %s", &c[0], &c[NUM_STR_REP_LEN], t->proptext);
phi[0] = DEG2RADF(phi[0]);
phi[1] = DEG2RADF(phi[1]);
}
else {
spos += sprintf(spos, "Trackball: %.2f %.2f %s", RAD2DEGF(phi[0]), RAD2DEGF(phi[1]), t->proptext);
}
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
spos += sprintf(spos, " Proportional size: %.2f", t->prop_size);
}
(void)spos;
vec_rot_to_mat3(smat, axis1, phi[0]);
vec_rot_to_mat3(totmat, axis2, phi[1]);
mul_m3_m3m3(mat, smat, totmat);
// TRANSFORM_FIX_ME
//copy_m3_m3(t->mat, mat); // used in manipulator
applyTrackball(t, axis1, axis2, phi);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TRANSLATION *************************** */
void initTranslation(TransInfo *t)
{
if (t->spacetype == SPACE_ACTION) {
/* this space uses time translate */
t->state = TRANS_CANCEL;
}
t->mode = TFM_TRANSLATION;
t->transform = Translation;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = (t->flag & T_2D_EDIT) ? 1 : 2;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
if (t->spacetype == SPACE_VIEW3D) {
RegionView3D *rv3d = t->ar->regiondata;
if (rv3d) {
t->snap[0] = 0.0f;
t->snap[1] = rv3d->gridview * 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
}
}
else if (ELEM(t->spacetype, SPACE_IMAGE, SPACE_CLIP)) {
t->snap[0] = 0.0f;
t->snap[1] = 0.125f;
t->snap[2] = 0.0625f;
}
else if (t->spacetype == SPACE_NODE) {
t->snap[0] = 0.0f;
t->snap[1] = 125.0f;
t->snap[2] = 25.0f;
}
else {
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
}
t->num.increment = t->snap[1];
}
static void headerTranslation(TransInfo *t, float vec[3], char *str)
{
char *spos = str;
char tvec[NUM_STR_REP_LEN * 3];
char distvec[NUM_STR_REP_LEN];
char autoik[NUM_STR_REP_LEN];
float dist;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
dist = len_v3(t->num.val);
}
else {
float dvec[3];
copy_v3_v3(dvec, vec);
applyAspectRatio(t, dvec);
dist = len_v3(vec);
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) {
int i, do_split = t->scene->unit.flag & USER_UNIT_OPT_SPLIT ? 1 : 0;
for (i = 0; i < 3; i++) {
bUnit_AsString(&tvec[i * NUM_STR_REP_LEN], NUM_STR_REP_LEN, dvec[i] * t->scene->unit.scale_length,
4, t->scene->unit.system, B_UNIT_LENGTH, do_split, 1);
}
}
else {
sprintf(&tvec[0], "%.4f", dvec[0]);
sprintf(&tvec[NUM_STR_REP_LEN], "%.4f", dvec[1]);
sprintf(&tvec[NUM_STR_REP_LEN * 2], "%.4f", dvec[2]);
}
}
if (!(t->flag & T_2D_EDIT) && t->scene->unit.system)
bUnit_AsString(distvec, sizeof(distvec), dist * t->scene->unit.scale_length, 4, t->scene->unit.system, B_UNIT_LENGTH, t->scene->unit.flag & USER_UNIT_OPT_SPLIT, 0);
else if (dist > 1e10f || dist < -1e10f) /* prevent string buffer overflow */
sprintf(distvec, "%.4e", dist);
else
sprintf(distvec, "%.4f", dist);
if (t->flag & T_AUTOIK) {
short chainlen = t->settings->autoik_chainlen;
if (chainlen)
sprintf(autoik, "AutoIK-Len: %d", chainlen);
else
autoik[0] = '\0';
}
else
autoik[0] = '\0';
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
spos += sprintf(spos, "D: %s (%s)%s %s %s", &tvec[0], distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 1:
spos += sprintf(spos, "D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
distvec, t->con.text, t->proptext, &autoik[0]);
break;
case 2:
spos += sprintf(spos, "D: %s D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
else {
if (t->flag & T_2D_EDIT) {
spos += sprintf(spos, "Dx: %s Dy: %s (%s)%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
distvec, t->con.text, t->proptext);
}
else {
spos += sprintf(spos, "Dx: %s Dy: %s Dz: %s (%s)%s %s %s", &tvec[0], &tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2], distvec, t->con.text, t->proptext, &autoik[0]);
}
}
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
spos += sprintf(spos, " Proportional size: %.2f", t->prop_size);
}
(void)spos;
}
static void applyTranslation(TransInfo *t, float vec[3])
{
TransData *td = t->data;
float tvec[3];
int i;
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* handle snapping rotation before doing the translation */
if (usingSnappingNormal(t)) {
if (validSnappingNormal(t)) {
float *original_normal;
float axis[3];
float quat[4];
float mat[3][3];
float angle;
/* In pose mode, we want to align normals with Y axis of bones... */
if (t->flag & T_POSE)
original_normal = td->axismtx[1];
else
original_normal = td->axismtx[2];
cross_v3_v3v3(axis, original_normal, t->tsnap.snapNormal);
angle = saacos(dot_v3v3(original_normal, t->tsnap.snapNormal));
axis_angle_to_quat(quat, axis, angle);
quat_to_mat3(mat, quat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
else {
float mat[3][3];
unit_m3(mat);
ElementRotation(t, td, mat, V3D_LOCAL);
}
}
if (t->con.applyVec) {
float pvec[3];
t->con.applyVec(t, td, vec, tvec, pvec);
}
else {
copy_v3_v3(tvec, vec);
}
mul_m3_v3(td->smtx, tvec);
mul_v3_fl(tvec, td->factor);
protectedTransBits(td->protectflag, tvec);
if (td->loc)
add_v3_v3v3(td->loc, td->iloc, tvec);
constraintTransLim(t, td);
}
}
/* uses t->vec to store actual translation in */
int Translation(TransInfo *t, const int UNUSED(mval[2]))
{
char str[250];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
float tvec[3];
if (hasNumInput(&t->num)) {
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
t->con.applyVec(t, NULL, t->values, tvec, pvec);
copy_v3_v3(t->values, tvec);
headerTranslation(t, pvec, str);
}
else {
snapGrid(t, t->values);
applyNumInput(&t->num, t->values);
if (hasNumInput(&t->num)) {
removeAspectRatio(t, t->values);
}
applySnapping(t, t->values);
headerTranslation(t, t->values, str);
}
applyTranslation(t, t->values);
/* evil hack - redo translation if clipping needed */
if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 0)) {
applyTranslation(t, t->values);
/* In proportional edit it can happen that */
/* vertices in the radius of the brush end */
/* outside the clipping area */
/* XXX HACK - dg */
if (t->flag & (T_PROP_EDIT | T_PROP_CONNECTED)) {
clipUVData(t);
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** SHRINK/FATTEN *************************** */
void initShrinkFatten(TransInfo *t)
{
// If not in mesh edit mode, fallback to Resize
if (t->obedit == NULL || t->obedit->type != OB_MESH) {
initResize(t);
}
else {
t->mode = TFM_SHRINKFATTEN;
t->transform = ShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT;
}
}
int ShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3];
float distance;
int i;
char str[64];
TransData *td = t->data;
distance = -t->values[0];
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s %s", c, t->proptext);
}
else {
/* default header print */
sprintf(str, "Shrink/Fatten: %.4f %s", distance, t->proptext);
}
t->values[0] = -distance;
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
copy_v3_v3(vec, td->axismtx[2]);
mul_v3_fl(vec, distance);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** TILT *************************** */
void initTilt(TransInfo *t)
{
t->mode = TFM_TILT;
t->transform = Tilt;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0 / 180) * M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int Tilt(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Tilt: %s° %s", &c[0], t->proptext);
final = DEG2RADF(final);
/* XXX For some reason, this seems needed for this op, else RNA prop is not updated... :/ */
t->values[0] = final;
}
else {
sprintf(str, "Tilt: %.2f° %s", RAD2DEGF(final), t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + final * td->factor;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** Curve Shrink/Fatten *************** */
void initCurveShrinkFatten(TransInfo *t)
{
t->mode = TFM_CURVE_SHRINKFATTEN;
t->transform = CurveShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
t->flag |= T_NO_CONSTRAINT;
}
int CurveShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Shrink/Fatten: %s", c);
}
else {
sprintf(str, "Shrink/Fatten: %3f", ratio);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
if (*td->val <= 0.0f) *td->val = 0.001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
void initMaskShrinkFatten(TransInfo *t)
{
t->mode = TFM_MASK_SHRINKFATTEN;
t->transform = MaskShrinkFatten;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_ZERO;
t->num.flag |= NUM_NO_ZERO;
t->flag |= T_NO_CONSTRAINT;
}
int MaskShrinkFatten(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float ratio;
int i, initial_feather = FALSE;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Feather Shrink/Fatten: %s", c);
}
else {
sprintf(str, "Feather Shrink/Fatten: %3f", ratio);
}
/* detect if no points have feather yet */
if (ratio > 1.0f) {
initial_feather = TRUE;
for (td = t->data, i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->ival >= 0.001f)
initial_feather = FALSE;
}
}
/* apply shrink/fatten */
for (td = t->data, i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
if (initial_feather)
*td->val = td->ival + (ratio - 1.0f) * 0.01f;
else
*td->val = td->ival * ratio;
/* apply PET */
*td->val = (*td->val * td->factor) + ((1.0f - td->factor) * td->ival);
if (*td->val <= 0.0f) *td->val = 0.001f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** PUSH/PULL *************************** */
void initPushPull(TransInfo *t)
{
t->mode = TFM_PUSHPULL;
t->transform = PushPull;
initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
}
int PushPull(TransInfo *t, const int UNUSED(mval[2]))
{
float vec[3], axis[3];
float distance;
int i;
char str[128];
TransData *td = t->data;
distance = t->values[0];
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Push/Pull: %s%s %s", c, t->con.text, t->proptext);
}
else {
/* default header print */
sprintf(str, "Push/Pull: %.4f%s %s", distance, t->con.text, t->proptext);
}
t->values[0] = distance;
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, NULL, axis, NULL);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
sub_v3_v3v3(vec, t->center, td->center);
if (t->con.applyRot && t->con.mode & CON_APPLY) {
t->con.applyRot(t, td, axis, NULL);
if (isLockConstraint(t)) {
float dvec[3];
project_v3_v3v3(dvec, vec, axis);
sub_v3_v3(vec, dvec);
}
else {
project_v3_v3v3(vec, vec, axis);
}
}
normalize_v3(vec);
mul_v3_fl(vec, distance);
mul_v3_fl(vec, td->factor);
add_v3_v3v3(td->loc, td->iloc, vec);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL **************************** */
void initBevel(TransInfo *t)
{
t->transform = Bevel;
t->handleEvent = handleEventBevel;
initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE);
t->mode = TFM_BEVEL;
t->flag |= T_NO_CONSTRAINT;
t->num.flag |= NUM_NO_NEGATIVE;
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
/* DON'T KNOW WHY THIS IS NEEDED */
if (G.editBMesh->imval[0] == 0 && G.editBMesh->imval[1] == 0) {
/* save the initial mouse co */
G.editBMesh->imval[0] = t->imval[0];
G.editBMesh->imval[1] = t->imval[1];
}
else {
/* restore the mouse co from a previous call to initTransform() */
t->imval[0] = G.editBMesh->imval[0];
t->imval[1] = G.editBMesh->imval[1];
}
}
int handleEventBevel(TransInfo *t, wmEvent *event)
{
if (event->val == KM_PRESS) {
if (!G.editBMesh) return 0;
switch (event->type) {
case MIDDLEMOUSE:
G.editBMesh->options ^= BME_BEVEL_VERT;
t->state = TRANS_CANCEL;
return 1;
//case PADPLUSKEY:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res += 1;
// if (G.editBMesh->res > 4) {
// G.editBMesh->res = 4;
// }
// t->state = TRANS_CANCEL;
// return 1;
//case PADMINUS:
// G.editBMesh->options ^= BME_BEVEL_RES;
// G.editBMesh->res -= 1;
// if (G.editBMesh->res < 0) {
// G.editBMesh->res = 0;
// }
// t->state = TRANS_CANCEL;
// return 1;
default:
return 0;
}
}
return 0;
}
int Bevel(TransInfo *t, const int UNUSED(mval[2]))
{
float distance, d;
int i;
char str[128];
const char *mode;
TransData *td = t->data;
mode = (G.editBMesh->options & BME_BEVEL_VERT) ? "verts only" : "normal";
distance = t->values[0] / 4; /* 4 just seemed a nice value to me, nothing special */
distance = fabs(distance);
snapGrid(t, &distance);
applyNumInput(&t->num, &distance);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Bevel - Dist: %s, Mode: %s (MMB to toggle))", c, mode);
}
else {
/* default header print */
sprintf(str, "Bevel - Dist: %.4f, Mode: %s (MMB to toggle))", distance, mode);
}
if (distance < 0) distance = -distance;
for (i = 0; i < t->total; i++, td++) {
if (td->axismtx[1][0] > 0 && distance > td->axismtx[1][0]) {
d = td->axismtx[1][0];
}
else {
d = distance;
}
madd_v3_v3v3fl(td->loc, td->center, td->axismtx[0], (*td->val) * d);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BEVEL WEIGHT *************************** */
void initBevelWeight(TransInfo *t)
{
t->mode = TFM_BWEIGHT;
t->transform = BevelWeight;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int BevelWeight(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float weight;
int i;
char str[50];
weight = t->values[0];
weight -= 1.0f;
if (weight > 1.0f) weight = 1.0f;
snapGrid(t, &weight);
applyNumInput(&t->num, &weight);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%s %s", c, t->proptext);
else
sprintf(str, "Bevel Weight: %s %s", c, t->proptext);
}
else {
/* default header print */
if (weight >= 0.0f)
sprintf(str, "Bevel Weight: +%.3f %s", weight, t->proptext);
else
sprintf(str, "Bevel Weight: %.3f %s", weight, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->val) {
*td->val = td->ival + weight * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** CREASE *************************** */
void initCrease(TransInfo *t)
{
t->mode = TFM_CREASE;
t->transform = Crease;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int Crease(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float crease;
int i;
char str[50];
crease = t->values[0];
crease -= 1.0f;
if (crease > 1.0f) crease = 1.0f;
snapGrid(t, &crease);
applyNumInput(&t->num, &crease);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (crease >= 0.0f)
sprintf(str, "Crease: +%s %s", c, t->proptext);
else
sprintf(str, "Crease: %s %s", c, t->proptext);
}
else {
/* default header print */
if (crease >= 0.0f)
sprintf(str, "Crease: +%.3f %s", crease, t->proptext);
else
sprintf(str, "Crease: %.3f %s", crease, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + crease * td->factor;
if (*td->val < 0.0f) *td->val = 0.0f;
if (*td->val > 1.0f) *td->val = 1.0f;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone (B-bone) width scaling *************** */
void initBoneSize(TransInfo *t)
{
t->mode = TFM_BONESIZE;
t->transform = BoneSize;
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->idx_max = 2;
t->num.idx_max = 2;
t->num.flag |= NUM_NULL_ONE;
t->num.flag |= NUM_AFFECT_ALL;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
}
static void headerBoneSize(TransInfo *t, float vec[3], char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.4f", vec[0]);
sprintf(&tvec[NUM_STR_REP_LEN], "%.4f", vec[1]);
sprintf(&tvec[NUM_STR_REP_LEN * 2], "%.4f", vec[2]);
}
/* hmm... perhaps the y-axis values don't need to be shown? */
if (t->con.mode & CON_APPLY) {
if (t->num.idx_max == 0)
sprintf(str, "ScaleB: %s%s %s", &tvec[0], t->con.text, t->proptext);
else
sprintf(str, "ScaleB: %s : %s : %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2],
t->con.text, t->proptext);
}
else {
sprintf(str, "ScaleB X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[NUM_STR_REP_LEN], &tvec[NUM_STR_REP_LEN * 2],
t->con.text, t->proptext);
}
}
static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], oldy;
float sizemat[3][3];
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
if (t->con.applySize) {
t->con.applySize(t, td, tmat);
}
/* we've tucked the scale in loc */
oldy = td->iloc[1];
size_to_mat3(sizemat, td->iloc);
mul_m3_m3m3(tmat, tmat, sizemat);
mat3_to_size(td->loc, tmat);
td->loc[1] = oldy;
}
int BoneSize(TransInfo *t, const int mval[2])
{
TransData *td = t->data;
float size[3], mat[3][3];
float ratio;
int i;
char str[60];
// TRANSFORM_FIX_ME MOVE TO MOUSE INPUT
/* for manipulator, center handle, the scaling can't be done relative to center */
if ((t->flag & T_USES_MANIPULATOR) && t->con.mode == 0) {
ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1])) / 100.0f;
}
else {
ratio = t->values[0];
}
size[0] = size[1] = size[2] = ratio;
snapGrid(t, size);
if (hasNumInput(&t->num)) {
applyNumInput(&t->num, size);
constraintNumInput(t, size);
}
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
copy_m3_m3(t->mat, mat); // used in manipulator
headerBoneSize(t, size, str);
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementBoneSize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone envelope *************** */
void initBoneEnvelope(TransInfo *t)
{
t->mode = TFM_BONE_ENVELOPE;
t->transform = BoneEnvelope;
initMouseInputMode(t, &t->mouse, INPUT_SPRING);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int BoneEnvelope(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float ratio;
int i;
char str[50];
ratio = t->values[0];
snapGrid(t, &ratio);
applyNumInput(&t->num, &ratio);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
sprintf(str, "Envelope: %s", c);
}
else {
sprintf(str, "Envelope: %3f", ratio);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
/* if the old/original value was 0.0f, then just use ratio */
if (td->ival)
*td->val = td->ival * ratio;
else
*td->val = ratio;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** Edge Slide *************** */
static BMEdge *get_other_edge(BMVert *v, BMEdge *e)
{
BMIter iter;
BMEdge *e2;
BM_ITER_ELEM (e2, &iter, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e2, BM_ELEM_SELECT) && e2 != e)
return e2;
}
return NULL;
}
static BMLoop *get_next_loop(BMVert *v, BMLoop *l,
BMEdge *olde, BMEdge *nexte, float vec[3])
{
BMLoop *firstl;
float a[3] = {0.0f, 0.0f, 0.0f}, n[3] = {0.0f, 0.0f, 0.0f};
int i = 0;
firstl = l;
do {
l = BM_face_other_edge_loop(l->f, l->e, v);
if (l->radial_next == l)
return NULL;
if (l->e == nexte) {
if (i) {
mul_v3_fl(a, 1.0f / (float)i);
}
else {
float f1[3], f2[3], f3[3];
sub_v3_v3v3(f1, BM_edge_other_vert(olde, v)->co, v->co);
sub_v3_v3v3(f2, BM_edge_other_vert(nexte, v)->co, v->co);
cross_v3_v3v3(f3, f1, l->f->no);
cross_v3_v3v3(a, f2, l->f->no);
mul_v3_fl(a, -1.0f);
mid_v3_v3v3(a, a, f3);
}
copy_v3_v3(vec, a);
return l;
}
else {
sub_v3_v3v3(n, BM_edge_other_vert(l->e, v)->co, v->co);
add_v3_v3v3(a, a, n);
i += 1;
}
if (BM_face_other_edge_loop(l->f, l->e, v)->e == nexte) {
if (i)
mul_v3_fl(a, 1.0f / (float)i);
copy_v3_v3(vec, a);
return BM_face_other_edge_loop(l->f, l->e, v);
}
l = l->radial_next;
} while (l != firstl);
if (i)
mul_v3_fl(a, 1.0f / (float)i);
copy_v3_v3(vec, a);
return NULL;
}
static void calcNonProportionalEdgeSlide(TransInfo *t, SlideData *sld, const float mval[2])
{
TransDataSlideVert *sv = sld->sv;
if (sld->totsv > 0) {
int i = 0;
float v_proj[3];
float dist = 0;
float min_dist = FLT_MAX;
for (i = 0; i < sld->totsv; i++, sv++) {
/* Set length */
sv->edge_len = len_v3v3(sv->upvec, sv->downvec);
mul_v3_m4v3(v_proj, t->obedit->obmat, sv->v->co);
if (ED_view3d_project_float_global(t->ar, v_proj, v_proj, V3D_PROJ_TEST_NOP) == V3D_PROJ_RET_OK) {
dist = len_squared_v2v2(mval, v_proj);
if (dist < min_dist) {
min_dist = dist;
sld->curr_sv_index = i;
}
}
}
}
else {
sld->curr_sv_index = 0;
}
}
static int createSlideVerts(TransInfo *t)
{
BMEditMesh *em = BMEdit_FromObject(t->obedit);
BMesh *bm = em->bm;
BMIter iter;
BMEdge *e, *e1;
BMVert *v, *v2, *first;
TransDataSlideVert *sv_array;
BMBVHTree *btree = BMBVH_NewBVH(em, BMBVH_RESPECT_HIDDEN, NULL, NULL);
SmallHash table;
SlideData *sld = MEM_callocN(sizeof(*sld), "sld");
View3D *v3d = NULL;
RegionView3D *rv3d = NULL;
ARegion *ar = t->ar;
float projectMat[4][4];
float mval[2] = {(float)t->mval[0], (float)t->mval[1]};
float start[3] = {0.0f, 0.0f, 0.0f}, end[3] = {0.0f, 0.0f, 0.0f};
float vec[3], vec2[3] /*, lastvec[3], size, dis=0.0, z */ /* UNUSED */;
float dir[3], maxdist, (*loop_dir)[3], *loop_maxdist;
int numsel, i, j, loop_nr, l_nr;
if (t->spacetype == SPACE_VIEW3D) {
/* background mode support */
v3d = t->sa ? t->sa->spacedata.first : NULL;
rv3d = t->ar ? t->ar->regiondata : NULL;
}
sld->is_proportional = TRUE;
sld->curr_sv_index = 0;
sld->flipped_vtx = FALSE;
if (!rv3d) {
/* ok, let's try to survive this */
unit_m4(projectMat);
}
else {
ED_view3d_ob_project_mat_get(rv3d, t->obedit, projectMat);
}
BLI_smallhash_init(&sld->vhash);
BLI_smallhash_init(&sld->origfaces);
BLI_smallhash_init(&table);
/*ensure valid selection*/
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BMIter iter2;
numsel = 0;
BM_ITER_ELEM (e, &iter2, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
/* BMESH_TODO: this is probably very evil,
* set v->e to a selected edge*/
v->e = e;
numsel++;
}
}
if (numsel == 0 || numsel > 2) {
MEM_freeN(sld);
BMBVH_FreeBVH(btree);
return 0; /* invalid edge selection */
}
}
}
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
if (!BM_edge_is_manifold(e)) {
MEM_freeN(sld);
BMBVH_FreeBVH(btree);
return 0; /* can only handle exactly 2 faces around each edge */
}
}
}
j = 0;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
BM_elem_flag_enable(v, BM_ELEM_TAG);
BLI_smallhash_insert(&table, (uintptr_t)v, SET_INT_IN_POINTER(j));
j += 1;
}
else {
BM_elem_flag_disable(v, BM_ELEM_TAG);
}
}
if (!j) {
MEM_freeN(sld);
BMBVH_FreeBVH(btree);
return 0;
}
sv_array = MEM_callocN(sizeof(TransDataSlideVert) * j, "sv_array");
loop_nr = 0;
j = 0;
while (1) {
BMLoop *l, *l1, *l2;
v = NULL;
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
if (BM_elem_flag_test(v, BM_ELEM_TAG))
break;
}
if (!v)
break;
if (!v->e)
continue;
first = v;
/*walk along the edge loop*/
e = v->e;
/*first, rewind*/
numsel = 0;
do {
e = get_other_edge(v, e);
if (!e) {
e = v->e;
break;
}
numsel += 1;
if (!BM_elem_flag_test(BM_edge_other_vert(e, v), BM_ELEM_TAG))
break;
v = BM_edge_other_vert(e, v);
} while (e != first->e);
BM_elem_flag_disable(v, BM_ELEM_TAG);
l1 = l2 = l = NULL;
l1 = e->l;
l2 = e->l->radial_next;
l = BM_face_other_edge_loop(l1->f, l1->e, v);
sub_v3_v3v3(vec, BM_edge_other_vert(l->e, v)->co, v->co);
if (l2 != l1) {
l = BM_face_other_edge_loop(l2->f, l2->e, v);
sub_v3_v3v3(vec2, BM_edge_other_vert(l->e, v)->co, v->co);
}
else {
l2 = NULL;
}
/*iterate over the loop*/
first = v;
do {
TransDataSlideVert *sv = sv_array + j;
sv->v = v;
sv->origvert = *v;
sv->loop_nr = loop_nr;
copy_v3_v3(sv->upvec, vec);
if (l2)
copy_v3_v3(sv->downvec, vec2);
l = BM_face_other_edge_loop(l1->f, l1->e, v);
sv->up = BM_edge_other_vert(l->e, v);
if (l2) {
l = BM_face_other_edge_loop(l2->f, l2->e, v);
sv->down = BM_edge_other_vert(l->e, v);
}
v2 = v, v = BM_edge_other_vert(e, v);
e1 = e;
e = get_other_edge(v, e);
if (!e) {
//v2=v, v = BM_edge_other_vert(l1->e, v);
sv = sv_array + j + 1;
sv->v = v;
sv->origvert = *v;
sv->loop_nr = loop_nr;
l = BM_face_other_edge_loop(l1->f, l1->e, v);
sv->up = BM_edge_other_vert(l->e, v);
sub_v3_v3v3(sv->upvec, BM_edge_other_vert(l->e, v)->co, v->co);
if (l2) {
l = BM_face_other_edge_loop(l2->f, l2->e, v);
sv->down = BM_edge_other_vert(l->e, v);
sub_v3_v3v3(sv->downvec, BM_edge_other_vert(l->e, v)->co, v->co);
}
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v2, BM_ELEM_TAG);
j += 2;
break;
}
l1 = get_next_loop(v, l1, e1, e, vec);
l2 = l2 ? get_next_loop(v, l2, e1, e, vec2) : NULL;
j += 1;
BM_elem_flag_disable(v, BM_ELEM_TAG);
BM_elem_flag_disable(v2, BM_ELEM_TAG);
} while (e != first->e && l1);
loop_nr++;
}
/* EDBM_flag_disable_all(em, BM_ELEM_SELECT); */
sld->sv = sv_array;
sld->totsv = j;
/* find mouse vectors, the global one, and one per loop in case we have
* multiple loops selected, in case they are oriented different */
zero_v3(dir);
maxdist = -1.0f;
loop_dir = MEM_callocN(sizeof(float) * 3 * loop_nr, "sv loop_dir");
loop_maxdist = MEM_callocN(sizeof(float) * loop_nr, "sv loop_maxdist");
for (j = 0; j < loop_nr; j++)
loop_maxdist[j] = -1.0f;
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
BMIter iter2;
BMEdge *e2;
float vec1[3], d;
/* search cross edges for visible edge to the mouse cursor,
* then use the shared vertex to calculate screen vector*/
for (i = 0; i < 2; i++) {
v = i ? e->v1 : e->v2;
BM_ITER_ELEM (e2, &iter2, v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e2, BM_ELEM_SELECT))
continue;
/* This test is only relevant if object is not wire-drawn! See [#32068]. */
if (v3d && t->obedit->dt > OB_WIRE && v3d->drawtype > OB_WIRE &&
!BMBVH_EdgeVisible(btree, e2, ar, v3d, t->obedit))
{
continue;
}
j = GET_INT_FROM_POINTER(BLI_smallhash_lookup(&table, (uintptr_t)v));
if (sv_array[j].down) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].down->co, vec1, projectMat);
}
else {
add_v3_v3v3(vec1, v->co, sv_array[j].downvec);
ED_view3d_project_float_v3_m4(ar, vec1, vec1, projectMat);
}
if (sv_array[j].up) {
ED_view3d_project_float_v3_m4(ar, sv_array[j].up->co, vec2, projectMat);
}
else {
add_v3_v3v3(vec2, v->co, sv_array[j].upvec);
ED_view3d_project_float_v3_m4(ar, vec2, vec2, projectMat);
}
/* global direction */
d = dist_to_line_segment_v2(mval, vec1, vec2);
if (maxdist == -1.0f || d < maxdist) {
maxdist = d;
sub_v3_v3v3(dir, vec1, vec2);
}
/* per loop direction */
l_nr = sv_array[j].loop_nr;
if (loop_maxdist[l_nr] == -1.0f || d < loop_maxdist[l_nr]) {
loop_maxdist[l_nr] = d;
sub_v3_v3v3(loop_dir[l_nr], vec1, vec2);
}
}
}
}
}
bmesh_edit_begin(bm, BMO_OP_FLAG_UNTAN_MULTIRES);
/*create copies of faces for customdata projection*/
sv_array = sld->sv;
for (i = 0; i < sld->totsv; i++, sv_array++) {
BMIter fiter, liter;
BMFace *f;
BMLoop *l;
BM_ITER_ELEM (f, &fiter, sv_array->v, BM_FACES_OF_VERT) {
if (!BLI_smallhash_haskey(&sld->origfaces, (uintptr_t)f)) {
BMFace *copyf = BM_face_copy(bm, f, TRUE, TRUE);
BM_face_select_set(bm, copyf, FALSE);
BM_elem_flag_enable(copyf, BM_ELEM_HIDDEN);
BM_ITER_ELEM (l, &liter, copyf, BM_LOOPS_OF_FACE) {
BM_vert_select_set(bm, l->v, FALSE);
BM_elem_flag_enable(l->v, BM_ELEM_HIDDEN);
BM_edge_select_set(bm, l->e, FALSE);
BM_elem_flag_enable(l->e, BM_ELEM_HIDDEN);
}
BLI_smallhash_insert(&sld->origfaces, (uintptr_t)f, copyf);
}
}
BLI_smallhash_insert(&sld->vhash, (uintptr_t)sv_array->v, sv_array);
/* switch up/down if loop direction is different from global direction */
l_nr = sv_array->loop_nr;
if (dot_v3v3(loop_dir[l_nr], dir) < 0.0f) {
swap_v3_v3(sv_array->upvec, sv_array->downvec);
SWAP(BMVert, sv_array->vup, sv_array->vdown);
SWAP(BMVert*, sv_array->up, sv_array->down);
}
}
if (rv3d)
calcNonProportionalEdgeSlide(t, sld, mval);
sld->origfaces_init = TRUE;
sld->em = em;
/*zero out start*/
zero_v3(start);
/*dir holds a vector along edge loop*/
copy_v3_v3(end, dir);
mul_v3_fl(end, 0.5f);
sld->start[0] = t->mval[0] + start[0];
sld->start[1] = t->mval[1] + start[1];
sld->end[0] = t->mval[0] + end[0];
sld->end[1] = t->mval[1] + end[1];
sld->perc = 0.0f;
t->customData = sld;
BLI_smallhash_release(&table);
BMBVH_FreeBVH(btree);
MEM_freeN(loop_dir);
MEM_freeN(loop_maxdist);
return 1;
}
void projectSVData(TransInfo *t, int final)
{
SlideData *sld = t->customData;
TransDataSlideVert *sv;
BMEditMesh *em = sld->em;
SmallHash visit;
int i;
if (!em)
return;
if (!(t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT))
return;
/* don't do this at all for non-basis shape keys, too easy to
* accidentally break uv maps or vertex colors then */
if (em->bm->shapenr > 1)
return;
BLI_smallhash_init(&visit);
for (i = 0, sv = sld->sv; i < sld->totsv; sv++, i++) {
BMIter fiter;
BMFace *f;
/* BMESH_TODO, this interpolates between vertex/loops which are not moved
* (are only apart of a face attached to a slide vert), couldn't we iterate BM_LOOPS_OF_VERT
* here and only interpolate those? */
BM_ITER_ELEM (f, &fiter, sv->v, BM_FACES_OF_VERT) {
BMIter liter;
BMLoop *l;
BMFace *f_copy; /* the copy of 'f' */
BMFace *f_copy_flip; /* the copy of 'f' or detect if we need to flip to the shorter side. */
char is_sel, is_hide;
if (BLI_smallhash_haskey(&visit, (uintptr_t)f))
continue;
BLI_smallhash_insert(&visit, (uintptr_t)f, NULL);
/* the face attributes of the copied face will get
* copied over, so its necessary to save the selection
* and hidden state*/
is_sel = BM_elem_flag_test(f, BM_ELEM_SELECT);
is_hide = BM_elem_flag_test(f, BM_ELEM_HIDDEN);
f_copy = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)f);
/* project onto copied projection face */
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
/* only affected verts will get interpolated */
char affected = FALSE;
f_copy_flip = f_copy;
if (BM_elem_flag_test(l->e, BM_ELEM_SELECT) || BM_elem_flag_test(l->prev->e, BM_ELEM_SELECT)) {
/* the loop is attached of the selected edges that are sliding */
BMLoop *l_ed_sel = l;
if (!BM_elem_flag_test(l->e, BM_ELEM_SELECT))
l_ed_sel = l_ed_sel->prev;
if (sld->perc < 0.0f) {
if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->down)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)l_ed_sel->radial_next->f);
}
}
else if (sld->perc > 0.0f) {
if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->up)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)l_ed_sel->radial_next->f);
}
}
BLI_assert(f_copy_flip != NULL);
if (!f_copy_flip) {
continue; /* shouldn't happen, but protection */
}
affected = TRUE;
}
else {
/* the loop is attached to only one vertex and not a selected edge,
* this means we have to find a selected edges face going in the right direction
* to copy from else we get bad distortion see: [#31080] */
BMIter eiter;
BMEdge *e_sel;
BM_ITER_ELEM (e_sel, &eiter, l->v, BM_EDGES_OF_VERT) {
if (BM_elem_flag_test(e_sel, BM_ELEM_SELECT)) {
break;
}
}
if (e_sel) {
/* warning if the UV's are not contiguous, this will copy from the _wrong_ UVs
* in fact whenever the face being copied is not 'f_copy' this can happen,
* we could be a lot smarter about this but would need to deal with every UV channel or
* add a way to mask out lauers when calling #BM_loop_interp_from_face() */
if (sld->perc < 0.0f) {
if (BM_vert_in_face(e_sel->l->f, sv->down)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->f);
}
else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->down)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->radial_next->f);
}
}
else if (sld->perc > 0.0f) {
if (BM_vert_in_face(e_sel->l->f, sv->up)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->f);
}
else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->up)) {
f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->radial_next->f);
}
}
affected = TRUE;
}
}
if (!affected)
continue;
/* only loop data, no vertex data since that contains shape keys,
* and we do not want to mess up other shape keys */
BM_loop_interp_from_face(em->bm, l, f_copy_flip, FALSE, FALSE);
if (final) {
BM_loop_interp_multires(em->bm, l, f_copy_flip);
if (f_copy != f_copy_flip) {
BM_loop_interp_multires(em->bm, l, f_copy);
}
}
}
/* make sure face-attributes are correct (e.g. MTexPoly) */
BM_elem_attrs_copy(em->bm, em->bm, f_copy, f);
/* restore selection and hidden flags */
BM_face_select_set(em->bm, f, is_sel);
if (!is_hide) {
/* this check is a workaround for bug, see note - [#30735],
* without this edge can be hidden and selected */
BM_elem_hide_set(em->bm, f, is_hide);
}
}
}
BLI_smallhash_release(&visit);
}
void freeSlideTempFaces(SlideData *sld)
{
if (sld->origfaces_init) {
SmallHashIter hiter;
BMFace *copyf;
copyf = BLI_smallhash_iternew(&sld->origfaces, &hiter, NULL);
for (; copyf; copyf = BLI_smallhash_iternext(&hiter, NULL)) {
BM_face_verts_kill(sld->em->bm, copyf);
}
BLI_smallhash_release(&sld->origfaces);
sld->origfaces_init = FALSE;
}
}
void freeSlideVerts(TransInfo *t)
{
SlideData *sld = t->customData;
#if 0 /*BMESH_TODO*/
if (me->drawflag & ME_DRAWEXTRA_EDGELEN) {
TransDataSlideVert *sv;
LinkNode *look = sld->vertlist;
GHash *vertgh = sld->vhash;
while (look) {
sv = BLI_ghash_lookup(vertgh, (EditVert *)look->link);
if (sv != NULL) {
sv->up->f &= !SELECT;
sv->down->f &= !SELECT;
}
look = look->next;
}
}
#endif
if (!sld)
return;
freeSlideTempFaces(sld);
bmesh_edit_end(sld->em->bm, BMO_OP_FLAG_UNTAN_MULTIRES);
BLI_smallhash_release(&sld->vhash);
MEM_freeN(sld->sv);
MEM_freeN(sld);
t->customData = NULL;
recalcData(t);
}
void initEdgeSlide(TransInfo *t)
{
SlideData *sld;
t->mode = TFM_EDGE_SLIDE;
t->transform = EdgeSlide;
t->handleEvent = handleEventEdgeSlide;
if (!createSlideVerts(t)) {
t->state = TRANS_CANCEL;
return;
}
sld = t->customData;
if (!sld)
return;
t->customFree = freeSlideVerts;
/* set custom point first if you want value to be initialized by init */
setCustomPoints(t, &t->mouse, sld->end, sld->start);
initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 0.1f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int handleEventEdgeSlide(struct TransInfo *t, struct wmEvent *event)
{
if (t->mode == TFM_EDGE_SLIDE) {
SlideData *sld = t->customData;
if (sld) {
switch (event->type) {
case EKEY:
if (event->val == KM_PRESS) {
sld->is_proportional = !sld->is_proportional;
return 1;
}
break;
case FKEY:
{
if (event->val == KM_PRESS) {
if (sld->is_proportional == FALSE) {
sld->flipped_vtx = !sld->flipped_vtx;
}
return 1;
}
break;
}
case EVT_MODAL_MAP:
{
switch (event->val) {
case TFM_MODAL_EDGESLIDE_DOWN:
{
sld->curr_sv_index = ((sld->curr_sv_index - 1) + sld->totsv) % sld->totsv;
break;
}
case TFM_MODAL_EDGESLIDE_UP:
{
sld->curr_sv_index = (sld->curr_sv_index + 1) % sld->totsv;
break;
}
}
}
default:
break;
}
}
}
return 0;
}
void drawNonPropEdge(const struct bContext *C, TransInfo *t)
{
if (t->mode == TFM_EDGE_SLIDE) {
SlideData *sld = (SlideData *)t->customData;
/* Non-Prop mode */
if (sld && sld->is_proportional == FALSE) {
View3D *v3d = CTX_wm_view3d(C);
float marker[3];
float v1[3], v2[3];
float interp_v;
TransDataSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
const float ctrl_size = UI_GetThemeValuef(TH_FACEDOT_SIZE) + 1.5f;
const float guide_size = ctrl_size - 0.5f;
const float line_size = UI_GetThemeValuef(TH_OUTLINE_WIDTH) + 0.5f;
const int alpha_shade = -30;
add_v3_v3v3(v1, curr_sv->origvert.co, curr_sv->upvec);
add_v3_v3v3(v2, curr_sv->origvert.co, curr_sv->downvec);
interp_v = (sld->perc + 1.0f) / 2.0f;
interp_v3_v3v3(marker, v2, v1, interp_v);
if (v3d && v3d->zbuf)
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPushAttrib(GL_CURRENT_BIT | GL_LINE_BIT | GL_POINT_BIT);
glPushMatrix();
glMultMatrixf(t->obedit->obmat);
glLineWidth(line_size);
UI_ThemeColorShadeAlpha(TH_EDGE_SELECT, 80, alpha_shade);
glBegin(GL_LINES);
glVertex3fv(curr_sv->up->co);
glVertex3fv(curr_sv->origvert.co);
glVertex3fv(curr_sv->down->co);
glVertex3fv(curr_sv->origvert.co);
bglEnd();
UI_ThemeColorShadeAlpha(TH_SELECT, -30, alpha_shade);
glPointSize(ctrl_size);
if (sld->flipped_vtx) {
bglBegin(GL_POINTS);
bglVertex3fv(curr_sv->down->co);
bglEnd();
}
else {
bglBegin(GL_POINTS);
bglVertex3fv(curr_sv->up->co);
bglEnd();
}
UI_ThemeColorShadeAlpha(TH_SELECT, 255, alpha_shade);
glPointSize(guide_size);
bglBegin(GL_POINTS);
bglVertex3fv(marker);
bglEnd();
glPopMatrix();
glPopAttrib();
glDisable(GL_BLEND);
if (v3d && v3d->zbuf)
glEnable(GL_DEPTH_TEST);
}
}
}
static int doEdgeSlide(TransInfo *t, float perc)
{
SlideData *sld = t->customData;
TransDataSlideVert *svlist = sld->sv, *sv;
int i;
sld->perc = perc;
sv = svlist;
if (sld->is_proportional == TRUE) {
for (i = 0; i < sld->totsv; i++, sv++) {
float vec[3];
if (perc > 0.0f) {
copy_v3_v3(vec, sv->upvec);
mul_v3_fl(vec, perc);
add_v3_v3v3(sv->v->co, sv->origvert.co, vec);
}
else {
copy_v3_v3(vec, sv->downvec);
mul_v3_fl(vec, -perc);
add_v3_v3v3(sv->v->co, sv->origvert.co, vec);
}
}
}
else {
/**
* Implementation note, non proportional mode ignores the starting positions and uses only the
* up/down verts, this could be changed/improved so the distance is still met but the verts are moved along
* their original path (which may not be straight), however how it works now is OK and matches 2.4x - Campbell
*
* \note len_v3v3(curr_sv->upvec, curr_sv->downvec)
* is the same as the distance between the original vert locations, same goes for the lines below.
*/
TransDataSlideVert *curr_sv = &sld->sv[sld->curr_sv_index];
const float curr_length_perc = curr_sv->edge_len * (((sld->flipped_vtx ? perc : -perc) + 1.0f) / 2.0f);
float down_co[3];
float up_co[3];
for (i = 0; i < sld->totsv; i++, sv++) {
if (sv->edge_len > FLT_EPSILON) {
const float fac = min_ff(sv->edge_len, curr_length_perc) / sv->edge_len;
add_v3_v3v3(up_co, sv->origvert.co, sv->upvec);
add_v3_v3v3(down_co, sv->origvert.co, sv->downvec);
if (sld->flipped_vtx) {
interp_v3_v3v3(sv->v->co, down_co, up_co, fac);
}
else {
interp_v3_v3v3(sv->v->co, up_co, down_co, fac);
}
}
}
}
projectSVData(t, 0);
return 1;
}
int EdgeSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[128];
float final;
SlideData *sld = t->customData;
int flipped = sld->flipped_vtx;
int is_proportional = sld->is_proportional;
final = t->values[0];
snapGrid(t, &final);
/* only do this so out of range values are not displayed */
CLAMP(final, -1.0f, 1.0f);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
BLI_snprintf(str, sizeof(str), "Edge Slide: %s (E)ven: %s, (F)lipped: %s",
&c[0], !is_proportional ? "ON" : "OFF", flipped ? "ON" : "OFF");
}
else {
BLI_snprintf(str, sizeof(str), "Edge Slide: %.2f (E)ven: %s, (F)lipped: %s",
final, !is_proportional ? "ON" : "OFF", flipped ? "ON" : "OFF");
}
CLAMP(final, -1.0f, 1.0f);
t->values[0] = final;
/*do stuff here*/
if (t->customData)
doEdgeSlide(t, final);
else {
strcpy(str, "Invalid Edge Selection");
t->state = TRANS_CANCEL;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ******************** EditBone roll *************** */
void initBoneRoll(TransInfo *t)
{
t->mode = TFM_BONE_ROLL;
t->transform = BoneRoll;
initMouseInputMode(t, &t->mouse, INPUT_ANGLE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = (float)((5.0 / 180) * M_PI);
t->snap[2] = t->snap[1] * 0.2f;
t->num.increment = 1.0f;
t->flag |= T_NO_CONSTRAINT | T_NO_PROJECT;
}
int BoneRoll(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
int i;
char str[50];
float final;
final = t->values[0];
snapGrid(t, &final);
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
applyNumInput(&t->num, &final);
outputNumInput(&(t->num), c);
sprintf(str, "Roll: %s", &c[0]);
final = DEG2RADF(final);
}
else {
sprintf(str, "Roll: %.2f", RAD2DEGF(final));
}
/* set roll values */
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
*(td->val) = td->ival - final;
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** BAKE TIME ******************* */
void initBakeTime(TransInfo *t)
{
t->transform = BakeTime;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->idx_max = 0;
t->num.idx_max = 0;
t->snap[0] = 0.0f;
t->snap[1] = 1.0f;
t->snap[2] = t->snap[1] * 0.1f;
t->num.increment = t->snap[1];
}
int BakeTime(TransInfo *t, const int mval[2])
{
TransData *td = t->data;
float time;
int i;
char str[50];
float fac = 0.1f;
if (t->mouse.precision) {
/* calculate ratio for shiftkey pos, and for total, and blend these for precision */
time = (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac;
time += 0.1f * ((float)(t->center2d[0] * fac - mval[0]) - time);
}
else {
time = (float)(t->center2d[0] - mval[0]) * fac;
}
snapGrid(t, &time);
applyNumInput(&t->num, &time);
/* header print for NumInput */
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c);
if (time >= 0.0f)
sprintf(str, "Time: +%s %s", c, t->proptext);
else
sprintf(str, "Time: %s %s", c, t->proptext);
}
else {
/* default header print */
if (time >= 0.0f)
sprintf(str, "Time: +%.3f %s", time, t->proptext);
else
sprintf(str, "Time: %.3f %s", time, t->proptext);
}
for (i = 0; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
if (td->val) {
*td->val = td->ival + time * td->factor;
if (td->ext->size && *td->val < *td->ext->size) *td->val = *td->ext->size;
if (td->ext->quat && *td->val > *td->ext->quat) *td->val = *td->ext->quat;
}
}
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** MIRROR *************************** */
void initMirror(TransInfo *t)
{
t->transform = Mirror;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
t->flag |= T_NULL_ONE;
if (!t->obedit) {
t->flag |= T_NO_ZERO;
}
}
int Mirror(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td;
float size[3], mat[3][3];
int i;
char str[200];
/*
* OPTIMIZATION:
* This still recalcs transformation on mouse move
* while it should only recalc on constraint change
* */
/* if an axis has been selected */
if (t->con.mode & CON_APPLY) {
size[0] = size[1] = size[2] = -1;
size_to_mat3(mat, size);
if (t->con.applySize) {
t->con.applySize(t, NULL, mat);
}
sprintf(str, "Mirror%s", t->con.text);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
ED_area_headerprint(t->sa, str);
}
else {
size[0] = size[1] = size[2] = 1;
size_to_mat3(mat, size);
for (i = 0, td = t->data; i < t->total; i++, td++) {
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
ElementResize(t, td, mat);
}
recalcData(t);
if (t->flag & T_2D_EDIT)
ED_area_headerprint(t->sa, "Select a mirror axis (X, Y)");
else
ED_area_headerprint(t->sa, "Select a mirror axis (X, Y, Z)");
}
return 1;
}
/* ************************** ALIGN *************************** */
void initAlign(TransInfo *t)
{
t->flag |= T_NO_CONSTRAINT;
t->transform = Align;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
}
int Align(TransInfo *t, const int UNUSED(mval[2]))
{
TransData *td = t->data;
float center[3];
int i;
/* saving original center */
copy_v3_v3(center, t->center);
for (i = 0; i < t->total; i++, td++) {
float mat[3][3], invmat[3][3];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
/* around local centers */
if (t->flag & (T_OBJECT | T_POSE)) {
copy_v3_v3(t->center, td->center);
}
else {
if (t->settings->selectmode & SCE_SELECT_FACE) {
copy_v3_v3(t->center, td->center);
}
}
invert_m3_m3(invmat, td->axismtx);
mul_m3_m3m3(mat, t->spacemtx, invmat);
ElementRotation(t, td, mat, t->around);
}
/* restoring original center */
copy_v3_v3(t->center, center);
recalcData(t);
ED_area_headerprint(t->sa, "Align");
return 1;
}
/* ************************** SEQ SLIDE *************************** */
void initSeqSlide(TransInfo *t)
{
t->transform = SeqSlide;
initMouseInputMode(t, &t->mouse, INPUT_VECTOR);
t->idx_max = 1;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
t->snap[0] = 0.0f;
t->snap[1] = floor(t->scene->r.frs_sec / t->scene->r.frs_sec_base);
t->snap[2] = 10.0f;
t->num.increment = t->snap[1];
}
static void headerSeqSlide(TransInfo *t, float val[2], char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
sprintf(&tvec[0], "%.0f, %.0f", val[0], val[1]);
}
sprintf(str, "Sequence Slide: %s%s", &tvec[0], t->con.text);
}
static void applySeqSlide(TransInfo *t, float val[2])
{
TransData *td = t->data;
int i;
for (i = 0; i < t->total; i++, td++) {
float tvec[2];
if (td->flag & TD_NOACTION)
break;
if (td->flag & TD_SKIP)
continue;
copy_v2_v2(tvec, val);
mul_v2_fl(tvec, td->factor);
td->loc[0] = td->iloc[0] + tvec[0];
td->loc[1] = td->iloc[1] + tvec[1];
}
}
int SeqSlide(TransInfo *t, const int UNUSED(mval[2]))
{
char str[200];
if (t->con.mode & CON_APPLY) {
float pvec[3] = {0.0f, 0.0f, 0.0f};
float tvec[3];
t->con.applyVec(t, NULL, t->values, tvec, pvec);
copy_v3_v3(t->values, tvec);
}
else {
snapGrid(t, t->values);
applyNumInput(&t->num, t->values);
}
t->values[0] = floor(t->values[0] + 0.5f);
t->values[1] = floor(t->values[1] + 0.5f);
headerSeqSlide(t, t->values, str);
applySeqSlide(t, t->values);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************** ANIM EDITORS - TRANSFORM TOOLS *************************** */
/* ---------------- Special Helpers for Various Settings ------------- */
/* This function returns the snapping 'mode' for Animation Editors only
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*/
// XXX these modifier checks should be keymappable
static short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap = SACTSNAP_OFF;
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
if (saction)
autosnap = saction->autosnap;
}
else if (t->spacetype == SPACE_IPO) {
SpaceIpo *sipo = (SpaceIpo *)t->sa->spacedata.first;
if (sipo)
autosnap = sipo->autosnap;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla = (SpaceNla *)t->sa->spacedata.first;
if (snla)
autosnap = snla->autosnap;
}
else {
autosnap = SACTSNAP_OFF;
}
/* toggle autosnap on/off
* - when toggling on, prefer nearest frame over 1.0 frame increments
*/
if (t->modifiers & MOD_SNAP_INVERT) {
if (autosnap)
autosnap = SACTSNAP_OFF;
else
autosnap = SACTSNAP_FRAME;
}
return autosnap;
}
/* This function is used for testing if an Animation Editor is displaying
* its data in frames or seconds (and the data needing to be edited as such).
* Returns 1 if in seconds, 0 if in frames
*/
static short getAnimEdit_DrawTime(TransInfo *t)
{
short drawtime;
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
drawtime = (saction->flag & SACTION_DRAWTIME) ? 1 : 0;
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla = (SpaceNla *)t->sa->spacedata.first;
drawtime = (snla->flag & SNLA_DRAWTIME) ? 1 : 0;
}
else if (t->spacetype == SPACE_IPO) {
SpaceIpo *sipo = (SpaceIpo *)t->sa->spacedata.first;
drawtime = (sipo->flag & SIPO_DRAWTIME) ? 1 : 0;
}
else {
drawtime = 0;
}
return drawtime;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
static void doAnimEdit_SnapFrame(TransInfo *t, TransData *td, TransData2D *td2d, AnimData *adt, short autosnap)
{
/* snap key to nearest frame? */
if (autosnap == SACTSNAP_FRAME) {
#if 0 /* 'do_time' disabled for now */
const Scene *scene = t->scene;
const short do_time = 0; //getAnimEdit_DrawTime(t); // NOTE: this works, but may be confusing behavior given the option's label, hence disabled
const double secf = FPS;
#endif
double val;
/* convert frame to nla-action time (if needed) */
if (adt)
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val = *(td->val);
#if 0 /* 'do_time' disabled for now */
/* do the snapping to nearest frame/second */
if (do_time) {
val = (float)(floor((val / secf) + 0.5f) * secf);
}
else
#endif
{
val = floor(val + 0.5);
}
/* convert frame out of nla-action time */
if (adt)
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val) = val;
}
/* snap key to nearest marker? */
else if (autosnap == SACTSNAP_MARKER) {
float val;
/* convert frame to nla-action time (if needed) */
if (adt)
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
else
val = *(td->val);
/* snap to nearest marker */
// TODO: need some more careful checks for where data comes from
val = (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val);
/* convert frame out of nla-action time */
if (adt)
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
else
*(td->val) = val;
}
/* if the handles are to be moved too (as side-effect of keyframes moving, to keep the general effect)
* offset them by the same amount so that the general angles are maintained (i.e. won't change while
* handles are free-to-roam and keyframes are snap-locked)
*/
if ((td->flag & TD_MOVEHANDLE1) && td2d->h1) {
td2d->h1[0] = td2d->ih1[0] + *td->val - td->ival;
}
if ((td->flag & TD_MOVEHANDLE2) && td2d->h2) {
td2d->h2[0] = td2d->ih2[0] + *td->val - td->ival;
}
}
/* ----------------- Translation ----------------------- */
void initTimeTranslate(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (!ELEM(t->spacetype, SPACE_ACTION, SPACE_SEQ)) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_TRANSLATE;
t->transform = TimeTranslate;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
t->num.increment = t->snap[1];
}
static void headerTimeTranslate(TransInfo *t, char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
/* if numeric input is active, use results from that, otherwise apply snapping to result */
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
const Scene *scene = t->scene;
const short autosnap = getAnimEdit_SnapMode(t);
const short do_time = getAnimEdit_DrawTime(t);
const double secf = FPS;
float val = t->values[0];
/* apply snapping + frame->seconds conversions */
if (autosnap == SACTSNAP_STEP) {
if (do_time)
val = floorf((double)val / secf + 0.5);
else
val = floorf(val + 0.5f);
}
else {
if (do_time)
val = (float)((double)val / secf);
}
if (autosnap == SACTSNAP_FRAME)
sprintf(&tvec[0], "%d.00 (%.4f)", (int)val, val);
else
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "DeltaX: %s", &tvec[0]);
}
static void applyTimeTranslate(TransInfo *t, float UNUSED(sval))
{
TransData *td = t->data;
TransData2D *td2d = t->data2d;
Scene *scene = t->scene;
int i;
const short do_time = getAnimEdit_DrawTime(t);
const double secf = FPS;
const short autosnap = getAnimEdit_SnapMode(t);
float deltax, val /* , valprev */;
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0; i < t->total; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
/* valprev = *td->val; */ /* UNUSED */
/* check if any need to apply nla-mapping */
if (adt && t->spacetype != SPACE_SEQ) {
deltax = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (do_time)
deltax = (float)(floor(((double)deltax / secf) + 0.5) * secf);
else
deltax = (float)(floor(deltax + 0.5f));
}
val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP);
val += deltax;
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
deltax = val = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (do_time)
val = (float)(floor(((double)deltax / secf) + 0.5) * secf);
else
val = (float)(floor(val + 0.5f));
}
*(td->val) = td->ival + val;
}
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
int TimeTranslate(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
char str[200];
/* calculate translation amount from mouse movement - in 'time-grid space' */
UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]);
/* we only need to calculate effect for time (applyTimeTranslate only needs that) */
t->values[0] = cval[0] - sval[0];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeTranslate(t, str);
applyTimeTranslate(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Time Slide ----------------------- */
void initTimeSlide(TransInfo *t)
{
/* this tool is only really available in the Action Editor... */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
/* set flag for drawing stuff */
saction->flag |= SACTION_MOVING;
}
else {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SLIDE;
t->transform = TimeSlide;
t->flag |= T_FREE_CUSTOMDATA;
initMouseInputMode(t, &t->mouse, INPUT_NONE);
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
t->num.increment = t->snap[1];
}
static void headerTimeSlide(TransInfo *t, float sval, char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec);
}
else {
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
float cval = t->values[0];
float val;
val = 2.0f * (cval - sval) / (maxx - minx);
CLAMP(val, -1.0f, 1.0f);
sprintf(&tvec[0], "%.4f", val);
}
sprintf(str, "TimeSlide: %s", &tvec[0]);
}
static void applyTimeSlide(TransInfo *t, float sval)
{
TransData *td = t->data;
int i;
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
/* set value for drawing black line */
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->sa->spacedata.first;
float cvalf = t->values[0];
saction->timeslide = cvalf;
}
/* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */
for (i = 0; i < t->total; i++, td++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float cval = t->values[0];
/* apply NLA-mapping to necessary values */
if (adt)
cval = BKE_nla_tweakedit_remap(adt, cval, NLATIME_CONVERT_UNMAP);
/* only apply to data if in range */
if ((sval > minx) && (sval < maxx)) {
float cvalc = CLAMPIS(cval, minx, maxx);
float timefac;
/* left half? */
if (td->ival < sval) {
timefac = (sval - td->ival) / (sval - minx);
*(td->val) = cvalc - timefac * (cvalc - minx);
}
else {
timefac = (td->ival - sval) / (maxx - sval);
*(td->val) = cvalc + timefac * (maxx - cvalc);
}
}
}
}
int TimeSlide(TransInfo *t, const int mval[2])
{
View2D *v2d = (View2D *)t->view;
float cval[2], sval[2];
float minx = *((float *)(t->customData));
float maxx = *((float *)(t->customData) + 1);
char str[200];
/* calculate mouse co-ordinates */
UI_view2d_region_to_view(v2d, mval[0], mval[1], &cval[0], &cval[1]);
UI_view2d_region_to_view(v2d, t->imval[0], t->imval[1], &sval[0], &sval[1]);
/* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */
// XXX Need to be able to repeat this
t->values[0] = cval[0];
/* handle numeric-input stuff */
t->vec[0] = 2.0f * (cval[0] - sval[0]) / (maxx - minx);
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = (maxx - minx) * t->vec[0] / 2.0f + sval[0];
headerTimeSlide(t, sval[0], str);
applyTimeSlide(t, sval[0]);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ----------------- Scaling ----------------------- */
void initTimeScale(TransInfo *t)
{
int center[2];
/* this tool is only really available in the Action Editor
* AND NLA Editor (for strip scaling)
*/
if (ELEM(t->spacetype, SPACE_ACTION, SPACE_NLA) == 0) {
t->state = TRANS_CANCEL;
}
t->mode = TFM_TIME_SCALE;
t->transform = TimeScale;
/* recalculate center2d to use CFRA and mouse Y, since that's
* what is used in time scale */
t->center[0] = t->scene->r.cfra;
projectIntView(t, t->center, center);
center[1] = t->imval[1];
/* force a reinit with the center2d used here */
initMouseInput(t, &t->mouse, center, t->imval);
initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP);
t->flag |= T_NULL_ONE;
t->num.flag |= NUM_NULL_ONE;
/* num-input has max of (n-1) */
t->idx_max = 0;
t->num.flag = 0;
t->num.idx_max = t->idx_max;
/* initialize snap like for everything else */
t->snap[0] = 0.0f;
t->snap[1] = t->snap[2] = 1.0f;
t->num.increment = t->snap[1];
}
static void headerTimeScale(TransInfo *t, char *str)
{
char tvec[NUM_STR_REP_LEN * 3];
if (hasNumInput(&t->num))
outputNumInput(&(t->num), tvec);
else
sprintf(&tvec[0], "%.4f", t->values[0]);
sprintf(str, "ScaleX: %s", &tvec[0]);
}
static void applyTimeScale(TransInfo *t)
{
Scene *scene = t->scene;
TransData *td = t->data;
TransData2D *td2d = t->data2d;
int i;
const short autosnap = getAnimEdit_SnapMode(t);
const short do_time = getAnimEdit_DrawTime(t);
const double secf = FPS;
for (i = 0; i < t->total; i++, td++, td2d++) {
/* it is assumed that td->extra is a pointer to the AnimData,
* whose active action is where this keyframe comes from
* (this is only valid when not in NLA)
*/
AnimData *adt = (t->spacetype != SPACE_NLA) ? td->extra : NULL;
float startx = CFRA;
float fac = t->values[0];
if (autosnap == SACTSNAP_STEP) {
if (do_time)
fac = (float)(floor((double)fac / secf + 0.5) * secf);
else
fac = (float)(floor(fac + 0.5f));
}
/* check if any need to apply nla-mapping */
if (adt)
startx = BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP);
/* now, calculate the new value */
*(td->val) = ((td->ival - startx) * fac) + startx;
/* apply nearest snapping */
doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap);
}
}
int TimeScale(TransInfo *t, const int UNUSED(mval[2]))
{
char str[200];
/* handle numeric-input stuff */
t->vec[0] = t->values[0];
applyNumInput(&t->num, &t->vec[0]);
t->values[0] = t->vec[0];
headerTimeScale(t, str);
applyTimeScale(t);
recalcData(t);
ED_area_headerprint(t->sa, str);
return 1;
}
/* ************************************ */
void BIF_TransformSetUndo(const char *UNUSED(str))
{
// TRANSFORM_FIX_ME
//Trans.undostr = str;
}