
The new data structure uses open addressing instead of chaining to resolve collisions in the hash table. This new structure was never slower than the old implementation in my tests. Code that first inserts all edges and then iterates through all edges (e.g. to remove duplicates) benefits the most, because the `EdgeHashIterator` becomes a simple for loop over a continuous array. Reviewer: campbellbarton Differential Revision: D4050
629 lines
16 KiB
C
629 lines
16 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenlib/intern/edgehash.c
|
|
* \ingroup bli
|
|
*
|
|
* An (edge -> pointer) hash table.
|
|
* Using unordered int-pairs as keys.
|
|
*
|
|
* \note The API matches BLI_ghash.c, but the implementation is different.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_edgehash.h"
|
|
#include "BLI_strict_flags.h"
|
|
|
|
typedef struct _EdgeHash_Edge Edge;
|
|
typedef struct _EdgeHash_Entry EdgeHashEntry;
|
|
|
|
typedef struct EdgeHash {
|
|
EdgeHashEntry *entries;
|
|
int32_t *map;
|
|
uint32_t slot_mask;
|
|
uint capacity_exp;
|
|
uint length;
|
|
uint dummy_count;
|
|
} EdgeHash;
|
|
|
|
typedef struct EdgeSet {
|
|
Edge *entries;
|
|
int32_t *map;
|
|
uint32_t slot_mask;
|
|
uint capacity_exp;
|
|
uint length;
|
|
} EdgeSet;
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Internal Helper Macros & Defines
|
|
* \{ */
|
|
|
|
#define ENTRIES_CAPACITY(container) (uint)(1 << (container)->capacity_exp)
|
|
#define MAP_CAPACITY(container) (uint)(1 << ((container)->capacity_exp + 1))
|
|
#define CLEAR_MAP(container) memset(container->map, 0xFF, sizeof(int32_t) * MAP_CAPACITY(container))
|
|
#define UPDATE_SLOT_MASK(container) (container)->slot_mask = MAP_CAPACITY(container) - 1
|
|
#define PERTURB_SHIFT 5
|
|
|
|
#define ITER_SLOTS(CONTAINER, EDGE, SLOT, INDEX) \
|
|
uint32_t hash = calc_edge_hash(EDGE); \
|
|
uint32_t mask = (CONTAINER)->slot_mask; \
|
|
uint32_t perturb = hash; \
|
|
int32_t *map = (CONTAINER)->map; \
|
|
uint32_t SLOT = mask & hash; \
|
|
int INDEX = map[SLOT]; \
|
|
for (;;SLOT = mask & ((5 * SLOT) + 1 + perturb), perturb >>= PERTURB_SHIFT, INDEX = map[SLOT])
|
|
|
|
#define SLOT_EMPTY -1
|
|
#define SLOT_DUMMY -2
|
|
|
|
#define CAPACITY_EXP_DEFAULT 3
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Internal Edge API
|
|
* \{ */
|
|
|
|
BLI_INLINE uint32_t calc_edge_hash(Edge edge)
|
|
{
|
|
return (edge.v_low << 8) ^ edge.v_high;
|
|
}
|
|
|
|
BLI_INLINE Edge init_edge(uint v0, uint v1)
|
|
{
|
|
Edge edge;
|
|
if (v0 < v1) {
|
|
edge.v_low = v0;
|
|
edge.v_high = v1;
|
|
}
|
|
else {
|
|
edge.v_low = v1;
|
|
edge.v_high = v0;
|
|
}
|
|
return edge;
|
|
}
|
|
|
|
BLI_INLINE bool edges_equal(Edge e1, Edge e2)
|
|
{
|
|
return memcmp(&e1, &e2, sizeof(Edge)) == 0;
|
|
}
|
|
|
|
static uint calc_capacity_exp_for_reserve(uint reserve)
|
|
{
|
|
uint result = 1;
|
|
while (reserve >>= 1) result++;
|
|
return result;
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Internal Utility API
|
|
* \{ */
|
|
|
|
#define EH_INDEX_HAS_EDGE(eh, index, edge) (index) >= 0 && edges_equal((edge), (eh)->entries[index].edge)
|
|
|
|
static void edgehash_free_values(EdgeHash *eh, EdgeHashFreeFP free_value)
|
|
{
|
|
if (free_value) {
|
|
for (uint i = 0; i < eh->length; i++) {
|
|
free_value(eh->entries[i].value);
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void edgehash_insert_index(EdgeHash *eh, Edge edge, uint entry_index)
|
|
{
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (index == SLOT_EMPTY) {
|
|
eh->map[slot] = (int32_t)entry_index;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE EdgeHashEntry *edgehash_insert_at_slot(EdgeHash *eh, uint slot, Edge edge, void *value)
|
|
{
|
|
EdgeHashEntry *entry = &eh->entries[eh->length];
|
|
entry->edge = edge;
|
|
entry->value = value;
|
|
eh->map[slot] = (int32_t)eh->length;
|
|
eh->length++;
|
|
return entry;
|
|
}
|
|
|
|
BLI_INLINE bool edgehash_ensure_can_insert(EdgeHash *eh)
|
|
{
|
|
if (UNLIKELY(ENTRIES_CAPACITY(eh) <= eh->length + eh->dummy_count)) {
|
|
eh->capacity_exp++;
|
|
UPDATE_SLOT_MASK(eh);
|
|
eh->dummy_count = 0;
|
|
eh->entries = MEM_reallocN(eh->entries, sizeof(EdgeHashEntry) * ENTRIES_CAPACITY(eh));
|
|
eh->map = MEM_reallocN(eh->map, sizeof(int32_t) * MAP_CAPACITY(eh));
|
|
CLEAR_MAP(eh);
|
|
for (uint i = 0; i < eh->length; i++) {
|
|
edgehash_insert_index(eh, eh->entries[i].edge, i);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
BLI_INLINE EdgeHashEntry *edgehash_insert(EdgeHash *eh, Edge edge, void *value)
|
|
{
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (index == SLOT_EMPTY) {
|
|
return edgehash_insert_at_slot(eh, slot, edge, value);
|
|
}
|
|
else if (index == SLOT_DUMMY) {
|
|
eh->dummy_count--;
|
|
return edgehash_insert_at_slot(eh, slot, edge, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE EdgeHashEntry *edgehash_lookup_entry(EdgeHash *eh, uint v0, uint v1)
|
|
{
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (EH_INDEX_HAS_EDGE(eh, index, edge)) {
|
|
return &eh->entries[index];
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void edgehash_change_index(EdgeHash *eh, Edge edge, int new_index)
|
|
{
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (EH_INDEX_HAS_EDGE(eh, index, edge)) {
|
|
eh->map[slot] = new_index;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Edge Hash API
|
|
* \{ */
|
|
|
|
EdgeHash *BLI_edgehash_new_ex(const char *info, const uint reserve)
|
|
{
|
|
EdgeHash *eh = MEM_mallocN(sizeof(EdgeHash), info);
|
|
eh->capacity_exp = calc_capacity_exp_for_reserve(reserve);
|
|
UPDATE_SLOT_MASK(eh);
|
|
eh->length = 0;
|
|
eh->dummy_count = 0;
|
|
eh->entries = MEM_calloc_arrayN(sizeof(EdgeHashEntry), ENTRIES_CAPACITY(eh), "eh entries");
|
|
eh->map = MEM_malloc_arrayN(sizeof(int32_t), MAP_CAPACITY(eh), "eh map");
|
|
CLEAR_MAP(eh);
|
|
return eh;
|
|
}
|
|
|
|
EdgeHash *BLI_edgehash_new(const char *info)
|
|
{
|
|
return BLI_edgehash_new_ex(info, 1 << CAPACITY_EXP_DEFAULT);
|
|
}
|
|
|
|
void BLI_edgehash_free(EdgeHash *eh, EdgeHashFreeFP free_value)
|
|
{
|
|
edgehash_free_values(eh, free_value);
|
|
MEM_freeN(eh->map);
|
|
MEM_freeN(eh->entries);
|
|
MEM_freeN(eh);
|
|
}
|
|
|
|
void BLI_edgehash_print(EdgeHash *eh)
|
|
{
|
|
printf("Edgehash at %p:\n", eh);
|
|
printf(" Map:\n");
|
|
for (uint i = 0; i < MAP_CAPACITY(eh); i++) {
|
|
int index = eh->map[i];
|
|
printf(" %u: %d", i, index);
|
|
if (index >= 0) {
|
|
EdgeHashEntry entry = eh->entries[index];
|
|
printf(" -> (%u, %u) -> %p", entry.edge.v_low, entry.edge.v_high, entry.value);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf(" Entries:\n");
|
|
for (uint i = 0; i < ENTRIES_CAPACITY(eh); i++) {
|
|
if (i == eh->length) printf(" **** below is rest capacity ****\n");
|
|
EdgeHashEntry entry = eh->entries[i];
|
|
printf(" %u: (%u, %u) -> %p\n", i, entry.edge.v_low, entry.edge.v_high, entry.value);
|
|
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Insert edge (\a v0, \a v1) into hash with given value, does
|
|
* not check for duplicates.
|
|
*/
|
|
void BLI_edgehash_insert(EdgeHash *eh, uint v0, uint v1, void *value)
|
|
{
|
|
edgehash_ensure_can_insert(eh);
|
|
Edge edge = init_edge(v0, v1);
|
|
edgehash_insert(eh, edge, value);
|
|
}
|
|
|
|
/**
|
|
* Assign a new value to a key that may already be in edgehash.
|
|
*/
|
|
bool BLI_edgehash_reinsert(EdgeHash *eh, uint v0, uint v1, void *value)
|
|
{
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (EH_INDEX_HAS_EDGE(eh, index, edge)) {
|
|
eh->entries[index].value = value;
|
|
return false;
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
if (edgehash_ensure_can_insert(eh)) {
|
|
edgehash_insert(eh, edge, value);
|
|
}
|
|
else {
|
|
edgehash_insert_at_slot(eh, slot, edge, value);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A version of #BLI_edgehash_lookup which accepts a fallback argument.
|
|
*/
|
|
void *BLI_edgehash_lookup_default(EdgeHash *eh, uint v0, uint v1, void *default_value)
|
|
{
|
|
EdgeHashEntry *entry = edgehash_lookup_entry(eh, v0, v1);
|
|
return entry ? entry->value : default_value;
|
|
}
|
|
|
|
/**
|
|
* Return value for given edge (\a v0, \a v1), or NULL if
|
|
* if key does not exist in hash. (If need exists
|
|
* to differentiate between key-value being NULL and
|
|
* lack of key then see BLI_edgehash_lookup_p().
|
|
*/
|
|
void *BLI_edgehash_lookup(EdgeHash *eh, uint v0, uint v1)
|
|
{
|
|
EdgeHashEntry *entry = edgehash_lookup_entry(eh, v0, v1);
|
|
return entry ? entry->value : NULL;
|
|
}
|
|
|
|
/**
|
|
* Return pointer to value for given edge (\a v0, \a v1),
|
|
* or NULL if key does not exist in hash.
|
|
*/
|
|
void **BLI_edgehash_lookup_p(EdgeHash *eh, uint v0, uint v1)
|
|
{
|
|
EdgeHashEntry *entry = edgehash_lookup_entry(eh, v0, v1);
|
|
return entry ? &entry->value : NULL;
|
|
}
|
|
|
|
/**
|
|
* Ensure \a (v0, v1) is exists in \a eh.
|
|
*
|
|
* This handles the common situation where the caller needs ensure a key is added to \a eh,
|
|
* constructing a new value in the case the key isn't found.
|
|
* Otherwise use the existing value.
|
|
*
|
|
* Such situations typically incur multiple lookups, however this function
|
|
* avoids them by ensuring the key is added,
|
|
* returning a pointer to the value so it can be used or initialized by the caller.
|
|
*
|
|
* \returns true when the value didn't need to be added.
|
|
* (when false, the caller _must_ initialize the value).
|
|
*/
|
|
bool BLI_edgehash_ensure_p(EdgeHash *eh, uint v0, uint v1, void ***r_value)
|
|
{
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (EH_INDEX_HAS_EDGE(eh, index, edge)) {
|
|
*r_value = &eh->entries[index].value;
|
|
return true;
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
if (edgehash_ensure_can_insert(eh)) {
|
|
edgehash_insert(eh, edge, NULL);
|
|
}
|
|
else {
|
|
*r_value = &edgehash_insert_at_slot(eh, slot, edge, NULL)->value;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove \a key (v0, v1) from \a eh, or return false if the key wasn't found.
|
|
*
|
|
* \param v0, v1: The key to remove.
|
|
* \param valfreefp: Optional callback to free the value.
|
|
* \return true if \a key was removed from \a eh.
|
|
*/
|
|
bool BLI_edgehash_remove(EdgeHash *eh, uint v0, uint v1, EdgeHashFreeFP free_value)
|
|
{
|
|
uint old_length = eh->length;
|
|
void *value = BLI_edgehash_popkey(eh, v0, v1);
|
|
if (free_value && value) free_value(value);
|
|
return old_length > eh->length;
|
|
}
|
|
|
|
/* same as above but return the value,
|
|
* no free value argument since it will be returned */
|
|
/**
|
|
* Remove \a key (v0, v1) from \a eh, returning the value or NULL if the key wasn't found.
|
|
*
|
|
* \param v0, v1: The key to remove.
|
|
* \return the value of \a key int \a eh or NULL.
|
|
*/
|
|
void *BLI_edgehash_popkey(EdgeHash *eh, uint v0, uint v1)
|
|
{
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(eh, edge, slot, index) {
|
|
if (EH_INDEX_HAS_EDGE(eh, index, edge)) {
|
|
void *value = eh->entries[index].value;
|
|
eh->length--;
|
|
eh->dummy_count++;
|
|
eh->map[slot] = SLOT_DUMMY;
|
|
eh->entries[index] = eh->entries[eh->length];
|
|
if ((uint)index < eh->length) {
|
|
edgehash_change_index(eh, eh->entries[index].edge, index);
|
|
}
|
|
return value;
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return boolean true/false if edge (v0,v1) in hash.
|
|
*/
|
|
bool BLI_edgehash_haskey(EdgeHash *eh, uint v0, uint v1)
|
|
{
|
|
return edgehash_lookup_entry(eh, v0, v1) != NULL;
|
|
}
|
|
|
|
/**
|
|
* Return number of keys in hash.
|
|
*/
|
|
int BLI_edgehash_len(EdgeHash *eh)
|
|
{
|
|
return (int)eh->length;
|
|
}
|
|
|
|
/**
|
|
* Remove all edges from hash.
|
|
*/
|
|
void BLI_edgehash_clear_ex(EdgeHash *eh, EdgeHashFreeFP free_value, const uint UNUSED(reserve))
|
|
{
|
|
/* TODO: handle reserve */
|
|
edgehash_free_values(eh, free_value);
|
|
eh->length = 0;
|
|
eh->dummy_count = 0;
|
|
eh->capacity_exp = CAPACITY_EXP_DEFAULT;
|
|
CLEAR_MAP(eh);
|
|
}
|
|
|
|
/**
|
|
* Wraps #BLI_edgehash_clear_ex with zero entries reserved.
|
|
*/
|
|
void BLI_edgehash_clear(EdgeHash *eh, EdgeHashFreeFP free_value)
|
|
{
|
|
BLI_edgehash_clear_ex(eh, free_value, 0);
|
|
}
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name Edge Hash Iterator API
|
|
* \{ */
|
|
|
|
/**
|
|
* Create a new EdgeHashIterator. The hash table must not be mutated
|
|
* while the iterator is in use, and the iterator will step exactly
|
|
* BLI_edgehash_len(eh) times before becoming done.
|
|
*/
|
|
EdgeHashIterator *BLI_edgehashIterator_new(EdgeHash *eh)
|
|
{
|
|
EdgeHashIterator *ehi = MEM_mallocN(sizeof(EdgeHashIterator), __func__);
|
|
BLI_edgehashIterator_init(ehi, eh);
|
|
return ehi;
|
|
}
|
|
|
|
/**
|
|
* Init an already allocated EdgeHashIterator. The hash table must not
|
|
* be mutated while the iterator is in use, and the iterator will
|
|
* step exactly BLI_edgehash_len(eh) times before becoming done.
|
|
*
|
|
* \param ehi: The EdgeHashIterator to initialize.
|
|
* \param eh: The EdgeHash to iterate over.
|
|
*/
|
|
void BLI_edgehashIterator_init(EdgeHashIterator *ehi, EdgeHash *eh)
|
|
{
|
|
ehi->entries = eh->entries;
|
|
ehi->length = eh->length;
|
|
ehi->index = 0;
|
|
}
|
|
|
|
/**
|
|
* Free an EdgeHashIterator.
|
|
*/
|
|
void BLI_edgehashIterator_free(EdgeHashIterator *ehi)
|
|
{
|
|
MEM_freeN(ehi);
|
|
}
|
|
|
|
|
|
/** \} */
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/** \name EdgeSet API
|
|
*
|
|
* Use edgehash API to give 'set' functionality
|
|
* \{ */
|
|
|
|
#define ES_INDEX_HAS_EDGE(es, index, edge) (index) >= 0 && edges_equal((edge), (es)->entries[index])
|
|
|
|
EdgeSet *BLI_edgeset_new_ex(const char *info, const uint reserve)
|
|
{
|
|
EdgeSet *es = MEM_mallocN(sizeof(EdgeSet), info);
|
|
es->capacity_exp = calc_capacity_exp_for_reserve(reserve);
|
|
UPDATE_SLOT_MASK(es);
|
|
es->length = 0;
|
|
es->entries = MEM_malloc_arrayN(sizeof(Edge), ENTRIES_CAPACITY(es), "es entries");
|
|
es->map = MEM_malloc_arrayN(sizeof(int32_t), MAP_CAPACITY(es), "es map");
|
|
CLEAR_MAP(es);
|
|
return es;
|
|
}
|
|
|
|
EdgeSet *BLI_edgeset_new(const char *info)
|
|
{
|
|
return BLI_edgeset_new_ex(info, 1 << CAPACITY_EXP_DEFAULT);
|
|
}
|
|
|
|
void BLI_edgeset_free(EdgeSet *es)
|
|
{
|
|
MEM_freeN(es->entries);
|
|
MEM_freeN(es->map);
|
|
MEM_freeN(es);
|
|
}
|
|
|
|
int BLI_edgeset_len(EdgeSet *es)
|
|
{
|
|
return (int)es->length;
|
|
}
|
|
|
|
static void edgeset_insert_index(EdgeSet *es, Edge edge, uint entry_index)
|
|
{
|
|
ITER_SLOTS(es, edge, slot, index) {
|
|
if (index == SLOT_EMPTY) {
|
|
es->map[slot] = (int)entry_index;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void edgeset_ensure_can_insert(EdgeSet *es)
|
|
{
|
|
if (UNLIKELY(ENTRIES_CAPACITY(es) <= es->length)) {
|
|
es->capacity_exp++;
|
|
UPDATE_SLOT_MASK(es);
|
|
es->entries = MEM_reallocN(es->entries, sizeof(Edge) * ENTRIES_CAPACITY(es));
|
|
es->map = MEM_reallocN(es->map, sizeof(int32_t) * MAP_CAPACITY(es));
|
|
CLEAR_MAP(es);
|
|
for (uint i = 0; i < es->length; i++) {
|
|
edgeset_insert_index(es, es->entries[i], i);
|
|
}
|
|
}
|
|
}
|
|
|
|
BLI_INLINE void edgeset_insert_at_slot(EdgeSet *es, uint slot, Edge edge)
|
|
{
|
|
es->entries[es->length] = edge;
|
|
es->map[slot] = (int)es->length;
|
|
es->length++;
|
|
}
|
|
|
|
/**
|
|
* A version of BLI_edgeset_insert which checks first if the key is in the set.
|
|
* \returns true if a new key has been added.
|
|
*
|
|
* \note EdgeHash has no equivalent to this because typically the value would be different.
|
|
*/
|
|
bool BLI_edgeset_add(EdgeSet *es, uint v0, uint v1)
|
|
{
|
|
edgeset_ensure_can_insert(es);
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(es, edge, slot, index) {
|
|
if (ES_INDEX_HAS_EDGE(es, index, edge)) {
|
|
return false;
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
edgeset_insert_at_slot(es, slot, edge);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adds the key to the set (no checks for unique keys!).
|
|
* Matching #BLI_edgehash_insert
|
|
*/
|
|
void BLI_edgeset_insert(EdgeSet *es, uint v0, uint v1)
|
|
{
|
|
edgeset_ensure_can_insert(es);
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(es, edge, slot, index) {
|
|
if (index == SLOT_EMPTY) {
|
|
edgeset_insert_at_slot(es, slot, edge);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BLI_edgeset_haskey(EdgeSet *es, uint v0, uint v1)
|
|
{
|
|
Edge edge = init_edge(v0, v1);
|
|
|
|
ITER_SLOTS(es, edge, slot, index) {
|
|
if (ES_INDEX_HAS_EDGE(es, index, edge)) {
|
|
return true;
|
|
}
|
|
else if (index == SLOT_EMPTY) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
EdgeSetIterator *BLI_edgesetIterator_new(EdgeSet *es)
|
|
{
|
|
EdgeSetIterator *esi = MEM_mallocN(sizeof(EdgeSetIterator), __func__);
|
|
esi->edges = es->entries;
|
|
esi->length = es->length;
|
|
esi->index = 0;
|
|
return esi;
|
|
}
|
|
|
|
void BLI_edgesetIterator_free(EdgeSetIterator *esi)
|
|
{
|
|
MEM_freeN(esi);
|
|
}
|
|
|
|
/** \} */
|