
Own regression from rB019ce363b01bba0af, not totally sure why removing the heading zero value in element_sum broke binary search distribution in random branch, but... New code makes thing sooo much simpler, by simply getting rid of all zero-weight items in element_sum (at the cost of adding a temporary extra index mapping array), that way neither random nor 'even ordered' distribution code has to wory anymore about skipping zero-weighted items!
1471 lines
40 KiB
C
1471 lines
40 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2007 by Janne Karhu.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): Raul Fernandez Hernandez (Farsthary),
|
|
* Stephen Swhitehorn,
|
|
* Lukas Toenne
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/blenkernel/intern/particle_distribute.c
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_utildefines.h"
|
|
#include "BLI_jitter.h"
|
|
#include "BLI_kdtree.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_rand.h"
|
|
#include "BLI_sort.h"
|
|
#include "BLI_task.h"
|
|
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_modifier_types.h"
|
|
#include "DNA_particle_types.h"
|
|
#include "DNA_scene_types.h"
|
|
|
|
#include "BKE_cdderivedmesh.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_particle.h"
|
|
|
|
static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot);
|
|
|
|
static void alloc_child_particles(ParticleSystem *psys, int tot)
|
|
{
|
|
if (psys->child) {
|
|
/* only re-allocate if we have to */
|
|
if (psys->part->childtype && psys->totchild == tot) {
|
|
memset(psys->child, 0, tot*sizeof(ChildParticle));
|
|
return;
|
|
}
|
|
|
|
MEM_freeN(psys->child);
|
|
psys->child=NULL;
|
|
psys->totchild=0;
|
|
}
|
|
|
|
if (psys->part->childtype) {
|
|
psys->totchild= tot;
|
|
if (psys->totchild)
|
|
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
|
|
}
|
|
}
|
|
|
|
static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, DerivedMesh *deformdm, ParticleSystem *psys)
|
|
{
|
|
ChildParticle *cpa = NULL;
|
|
int i, p;
|
|
int child_nbr= psys_get_child_number(scene, psys);
|
|
int totpart= psys_get_tot_child(scene, psys);
|
|
|
|
alloc_child_particles(psys, totpart);
|
|
|
|
cpa = psys->child;
|
|
for (i=0; i<child_nbr; i++) {
|
|
for (p=0; p<psys->totpart; p++,cpa++) {
|
|
float length=2.0;
|
|
cpa->parent=p;
|
|
|
|
/* create even spherical distribution inside unit sphere */
|
|
while (length>=1.0f) {
|
|
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
|
|
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
|
|
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
|
|
length=len_v3(cpa->fuv);
|
|
}
|
|
|
|
cpa->num=-1;
|
|
}
|
|
}
|
|
/* dmcache must be updated for parent particles if children from faces is used */
|
|
psys_calc_dmcache(ob, finaldm, deformdm, psys);
|
|
}
|
|
static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
|
|
{
|
|
ParticleData *pa=NULL;
|
|
float min[3], max[3], delta[3], d;
|
|
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
|
|
int totvert=dm->getNumVerts(dm), from=psys->part->from;
|
|
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
|
|
|
|
/* find bounding box of dm */
|
|
if (totvert > 0) {
|
|
mv=mvert;
|
|
copy_v3_v3(min, mv->co);
|
|
copy_v3_v3(max, mv->co);
|
|
mv++;
|
|
for (i = 1; i < totvert; i++, mv++) {
|
|
minmax_v3v3_v3(min, max, mv->co);
|
|
}
|
|
}
|
|
else {
|
|
zero_v3(min);
|
|
zero_v3(max);
|
|
}
|
|
|
|
sub_v3_v3v3(delta, max, min);
|
|
|
|
/* determine major axis */
|
|
axis = axis_dominant_v3_single(delta);
|
|
|
|
d = delta[axis]/(float)res;
|
|
|
|
size[axis] = res;
|
|
size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
|
|
size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
|
|
|
|
/* float errors grrr.. */
|
|
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
|
|
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
|
|
|
|
size[0] = MAX2(size[0], 1);
|
|
size[1] = MAX2(size[1], 1);
|
|
size[2] = MAX2(size[2], 1);
|
|
|
|
/* no full offset for flat/thin objects */
|
|
min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
|
|
min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
|
|
min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
|
|
|
|
for (i=0,p=0,pa=psys->particles; i<res; i++) {
|
|
for (j=0; j<res; j++) {
|
|
for (k=0; k<res; k++,p++,pa++) {
|
|
pa->fuv[0] = min[0] + (float)i*d;
|
|
pa->fuv[1] = min[1] + (float)j*d;
|
|
pa->fuv[2] = min[2] + (float)k*d;
|
|
pa->flag |= PARS_UNEXIST;
|
|
pa->hair_index = 0; /* abused in volume calculation */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* enable particles near verts/edges/faces/inside surface */
|
|
if (from==PART_FROM_VERT) {
|
|
float vec[3];
|
|
|
|
pa=psys->particles;
|
|
|
|
min[0] -= d/2.0f;
|
|
min[1] -= d/2.0f;
|
|
min[2] -= d/2.0f;
|
|
|
|
for (i=0,mv=mvert; i<totvert; i++,mv++) {
|
|
sub_v3_v3v3(vec,mv->co,min);
|
|
vec[0]/=delta[0];
|
|
vec[1]/=delta[1];
|
|
vec[2]/=delta[2];
|
|
pa[((int)(vec[0] * (size[0] - 1)) * res +
|
|
(int)(vec[1] * (size[1] - 1))) * res +
|
|
(int)(vec[2] * (size[2] - 1))].flag &= ~PARS_UNEXIST;
|
|
}
|
|
}
|
|
else if (ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
|
|
float co1[3], co2[3];
|
|
|
|
MFace *mface= NULL, *mface_array;
|
|
float v1[3], v2[3], v3[3], v4[4], lambda;
|
|
int a, a1, a2, a0mul, a1mul, a2mul, totface;
|
|
int amax= from==PART_FROM_FACE ? 3 : 1;
|
|
|
|
totface=dm->getNumTessFaces(dm);
|
|
mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
|
|
|
|
for (a=0; a<amax; a++) {
|
|
if (a==0) { a0mul=res*res; a1mul=res; a2mul=1; }
|
|
else if (a==1) { a0mul=res; a1mul=1; a2mul=res*res; }
|
|
else { a0mul=1; a1mul=res*res; a2mul=res; }
|
|
|
|
for (a1=0; a1<size[(a+1)%3]; a1++) {
|
|
for (a2=0; a2<size[(a+2)%3]; a2++) {
|
|
mface= mface_array;
|
|
|
|
pa = psys->particles + a1*a1mul + a2*a2mul;
|
|
copy_v3_v3(co1, pa->fuv);
|
|
co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
|
|
copy_v3_v3(co2, co1);
|
|
co2[a] += delta[a] + 0.001f*d;
|
|
co1[a] -= 0.001f*d;
|
|
|
|
/* lets intersect the faces */
|
|
for (i=0; i<totface; i++,mface++) {
|
|
copy_v3_v3(v1, mvert[mface->v1].co);
|
|
copy_v3_v3(v2, mvert[mface->v2].co);
|
|
copy_v3_v3(v3, mvert[mface->v3].co);
|
|
|
|
bool intersects_tri = isect_axial_line_segment_tri_v3(a, co1, co2, v2, v3, v1, &lambda);
|
|
if (intersects_tri) {
|
|
if (from==PART_FROM_FACE)
|
|
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
|
|
else /* store number of intersections */
|
|
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
|
|
}
|
|
|
|
if (mface->v4 && (!intersects_tri || from==PART_FROM_VOLUME)) {
|
|
copy_v3_v3(v4, mvert[mface->v4].co);
|
|
|
|
if (isect_axial_line_segment_tri_v3(a, co1, co2, v4, v1, v3, &lambda)) {
|
|
if (from==PART_FROM_FACE)
|
|
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
|
|
else
|
|
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (from==PART_FROM_VOLUME) {
|
|
int in=pa->hair_index%2;
|
|
if (in) pa->hair_index++;
|
|
for (i=0; i<size[0]; i++) {
|
|
if (in || (pa+i*a0mul)->hair_index%2)
|
|
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
|
|
/* odd intersections == in->out / out->in */
|
|
/* even intersections -> in stays same */
|
|
in=(in + (pa+i*a0mul)->hair_index) % 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (psys->part->flag & PART_GRID_HEXAGONAL) {
|
|
for (i=0,p=0,pa=psys->particles; i<res; i++) {
|
|
for (j=0; j<res; j++) {
|
|
for (k=0; k<res; k++,p++,pa++) {
|
|
if (j%2)
|
|
pa->fuv[0] += d/2.f;
|
|
|
|
if (k%2) {
|
|
pa->fuv[0] += d/2.f;
|
|
pa->fuv[1] += d/2.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (psys->part->flag & PART_GRID_INVERT) {
|
|
for (i=0; i<size[0]; i++) {
|
|
for (j=0; j<size[1]; j++) {
|
|
pa=psys->particles + res*(i*res + j);
|
|
for (k=0; k<size[2]; k++, pa++) {
|
|
pa->flag ^= PARS_UNEXIST;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (psys->part->grid_rand > 0.f) {
|
|
float rfac = d * psys->part->grid_rand;
|
|
for (p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
|
|
if (pa->flag & PARS_UNEXIST)
|
|
continue;
|
|
|
|
pa->fuv[0] += rfac * (psys_frand(psys, p + 31) - 0.5f);
|
|
pa->fuv[1] += rfac * (psys_frand(psys, p + 32) - 0.5f);
|
|
pa->fuv[2] += rfac * (psys_frand(psys, p + 33) - 0.5f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* modified copy from rayshade.c */
|
|
static void hammersley_create(float *out, int n, int seed, float amount)
|
|
{
|
|
RNG *rng;
|
|
double p, t, offs[2];
|
|
int k, kk;
|
|
|
|
rng = BLI_rng_new(31415926 + n + seed);
|
|
offs[0] = BLI_rng_get_double(rng) + (double)amount;
|
|
offs[1] = BLI_rng_get_double(rng) + (double)amount;
|
|
BLI_rng_free(rng);
|
|
|
|
for (k = 0; k < n; k++) {
|
|
t = 0;
|
|
for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
|
|
if (kk & 1) /* kk mod 2 = 1 */
|
|
t += p;
|
|
|
|
out[2*k + 0] = fmod((double)k/(double)n + offs[0], 1.0);
|
|
out[2*k + 1] = fmod(t + offs[1], 1.0);
|
|
}
|
|
}
|
|
|
|
/* almost exact copy of BLI_jitter_init */
|
|
static void init_mv_jit(float *jit, int num, int seed2, float amount)
|
|
{
|
|
RNG *rng;
|
|
float *jit2, x, rad1, rad2, rad3;
|
|
int i, num2;
|
|
|
|
if (num==0) return;
|
|
|
|
rad1= (float)(1.0f/sqrtf((float)num));
|
|
rad2= (float)(1.0f/((float)num));
|
|
rad3= (float)sqrtf((float)num)/((float)num);
|
|
|
|
rng = BLI_rng_new(31415926 + num + seed2);
|
|
x= 0;
|
|
num2 = 2 * num;
|
|
for (i=0; i<num2; i+=2) {
|
|
|
|
jit[i] = x + amount*rad1*(0.5f - BLI_rng_get_float(rng));
|
|
jit[i+1] = i/(2.0f*num) + amount*rad1*(0.5f - BLI_rng_get_float(rng));
|
|
|
|
jit[i]-= (float)floor(jit[i]);
|
|
jit[i+1]-= (float)floor(jit[i+1]);
|
|
|
|
x+= rad3;
|
|
x -= (float)floor(x);
|
|
}
|
|
|
|
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
|
|
|
|
for (i=0 ; i<4 ; i++) {
|
|
BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
|
|
BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
|
|
BLI_jitterate2((float (*)[2])jit, (float (*)[2])jit2, num, rad2);
|
|
}
|
|
MEM_freeN(jit2);
|
|
BLI_rng_free(rng);
|
|
}
|
|
|
|
static void psys_uv_to_w(float u, float v, int quad, float *w)
|
|
{
|
|
float vert[4][3], co[3];
|
|
|
|
if (!quad) {
|
|
if (u+v > 1.0f)
|
|
v= 1.0f-v;
|
|
else
|
|
u= 1.0f-u;
|
|
}
|
|
|
|
vert[0][0] = 0.0f; vert[0][1] = 0.0f; vert[0][2] = 0.0f;
|
|
vert[1][0] = 1.0f; vert[1][1] = 0.0f; vert[1][2] = 0.0f;
|
|
vert[2][0] = 1.0f; vert[2][1] = 1.0f; vert[2][2] = 0.0f;
|
|
|
|
co[0] = u;
|
|
co[1] = v;
|
|
co[2] = 0.0f;
|
|
|
|
if (quad) {
|
|
vert[3][0] = 0.0f; vert[3][1] = 1.0f; vert[3][2] = 0.0f;
|
|
interp_weights_poly_v3( w,vert, 4, co);
|
|
}
|
|
else {
|
|
interp_weights_poly_v3( w,vert, 3, co);
|
|
w[3] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/* Find the index in "sum" array before "value" is crossed. */
|
|
static int distribute_binary_search(float *sum, int n, float value)
|
|
{
|
|
int mid, low = 0, high = n - 1;
|
|
|
|
if (sum[low] >= value)
|
|
return low;
|
|
|
|
if (sum[high] < value)
|
|
return high;
|
|
|
|
while (low < high) {
|
|
mid = (low + high) / 2;
|
|
|
|
if ((sum[mid] < value) && (sum[mid + 1] >= value))
|
|
return mid;
|
|
|
|
if (sum[mid] >= value) {
|
|
high = mid - 1;
|
|
}
|
|
else if (sum[mid] < value) {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
|
|
return low;
|
|
}
|
|
|
|
/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
|
|
* be sure to keep up to date if this changes */
|
|
#define PSYS_RND_DIST_SKIP 2
|
|
|
|
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
|
|
#define ONLY_WORKING_WITH_PA_VERTS 0
|
|
static void distribute_from_verts_exec(ParticleTask *thread, ParticleData *pa, int p)
|
|
{
|
|
ParticleThreadContext *ctx= thread->ctx;
|
|
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
|
|
|
|
/* TODO_PARTICLE - use original index */
|
|
pa->num= ctx->index[p];
|
|
pa->fuv[0] = 1.0f;
|
|
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
|
|
|
|
#if ONLY_WORKING_WITH_PA_VERTS
|
|
if (ctx->tree) {
|
|
KDTreeNearest ptn[3];
|
|
int w, maxw;
|
|
|
|
psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
|
|
maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
|
|
|
|
for (w=0; w<maxw; w++) {
|
|
pa->verts[w]=ptn->num;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (rng_skip_tot > 0) /* should never be below zero */
|
|
BLI_rng_skip(thread->rng, rng_skip_tot);
|
|
}
|
|
|
|
static void distribute_from_faces_exec(ParticleTask *thread, ParticleData *pa, int p) {
|
|
ParticleThreadContext *ctx= thread->ctx;
|
|
DerivedMesh *dm= ctx->dm;
|
|
float randu, randv;
|
|
int distr= ctx->distr;
|
|
int i;
|
|
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
|
|
|
|
MFace *mface;
|
|
|
|
pa->num = i = ctx->index[p];
|
|
mface = dm->getTessFaceData(dm,i,CD_MFACE);
|
|
|
|
switch (distr) {
|
|
case PART_DISTR_JIT:
|
|
if (ctx->jitlevel == 1) {
|
|
if (mface->v4)
|
|
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
|
|
else
|
|
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
|
|
}
|
|
else {
|
|
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
|
|
if (!isnan(offset)) {
|
|
psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
|
|
}
|
|
}
|
|
break;
|
|
case PART_DISTR_RAND:
|
|
randu= BLI_rng_get_float(thread->rng);
|
|
randv= BLI_rng_get_float(thread->rng);
|
|
rng_skip_tot -= 2;
|
|
|
|
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
|
|
break;
|
|
}
|
|
pa->foffset= 0.0f;
|
|
|
|
if (rng_skip_tot > 0) /* should never be below zero */
|
|
BLI_rng_skip(thread->rng, rng_skip_tot);
|
|
}
|
|
|
|
static void distribute_from_volume_exec(ParticleTask *thread, ParticleData *pa, int p) {
|
|
ParticleThreadContext *ctx= thread->ctx;
|
|
DerivedMesh *dm= ctx->dm;
|
|
float *v1, *v2, *v3, *v4, nor[3], co[3];
|
|
float cur_d, min_d, randu, randv;
|
|
int distr= ctx->distr;
|
|
int i, intersect, tot;
|
|
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
|
|
|
|
MFace *mface;
|
|
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
|
|
|
|
pa->num = i = ctx->index[p];
|
|
mface = dm->getTessFaceData(dm,i,CD_MFACE);
|
|
|
|
switch (distr) {
|
|
case PART_DISTR_JIT:
|
|
if (ctx->jitlevel == 1) {
|
|
if (mface->v4)
|
|
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
|
|
else
|
|
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
|
|
}
|
|
else {
|
|
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
|
|
if (!isnan(offset)) {
|
|
psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
|
|
}
|
|
}
|
|
break;
|
|
case PART_DISTR_RAND:
|
|
randu= BLI_rng_get_float(thread->rng);
|
|
randv= BLI_rng_get_float(thread->rng);
|
|
rng_skip_tot -= 2;
|
|
|
|
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
|
|
break;
|
|
}
|
|
pa->foffset= 0.0f;
|
|
|
|
/* experimental */
|
|
tot=dm->getNumTessFaces(dm);
|
|
|
|
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co,nor,0,0,0,0);
|
|
|
|
normalize_v3(nor);
|
|
negate_v3(nor);
|
|
|
|
min_d=FLT_MAX;
|
|
intersect=0;
|
|
|
|
for (i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++) {
|
|
if (i==pa->num) continue;
|
|
|
|
v1=mvert[mface->v1].co;
|
|
v2=mvert[mface->v2].co;
|
|
v3=mvert[mface->v3].co;
|
|
|
|
if (isect_ray_tri_v3(co, nor, v2, v3, v1, &cur_d, NULL)) {
|
|
if (cur_d<min_d) {
|
|
min_d=cur_d;
|
|
pa->foffset=cur_d*0.5f; /* to the middle of volume */
|
|
intersect=1;
|
|
}
|
|
}
|
|
if (mface->v4) {
|
|
v4=mvert[mface->v4].co;
|
|
|
|
if (isect_ray_tri_v3(co, nor, v4, v1, v3, &cur_d, NULL)) {
|
|
if (cur_d<min_d) {
|
|
min_d=cur_d;
|
|
pa->foffset=cur_d*0.5f; /* to the middle of volume */
|
|
intersect=1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (intersect==0)
|
|
pa->foffset=0.0;
|
|
else {
|
|
switch (distr) {
|
|
case PART_DISTR_JIT:
|
|
pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
|
|
break;
|
|
case PART_DISTR_RAND:
|
|
pa->foffset *= BLI_frand();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rng_skip_tot > 0) /* should never be below zero */
|
|
BLI_rng_skip(thread->rng, rng_skip_tot);
|
|
}
|
|
|
|
static void distribute_children_exec(ParticleTask *thread, ChildParticle *cpa, int p) {
|
|
ParticleThreadContext *ctx= thread->ctx;
|
|
Object *ob= ctx->sim.ob;
|
|
DerivedMesh *dm= ctx->dm;
|
|
float orco1[3], co1[3], nor1[3];
|
|
float randu, randv;
|
|
int cfrom= ctx->cfrom;
|
|
int i;
|
|
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
|
|
|
|
MFace *mf;
|
|
|
|
if (ctx->index[p] < 0) {
|
|
cpa->num=0;
|
|
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
|
|
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
|
|
return;
|
|
}
|
|
|
|
mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
|
|
|
|
randu= BLI_rng_get_float(thread->rng);
|
|
randv= BLI_rng_get_float(thread->rng);
|
|
rng_skip_tot -= 2;
|
|
|
|
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
|
|
|
|
cpa->num = ctx->index[p];
|
|
|
|
if (ctx->tree) {
|
|
KDTreeNearest ptn[10];
|
|
int w,maxw;//, do_seams;
|
|
float maxd /*, mind,dd */, totw= 0.0f;
|
|
int parent[10];
|
|
float pweight[10];
|
|
|
|
psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
|
|
maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
|
|
|
|
maxd=ptn[maxw-1].dist;
|
|
/* mind=ptn[0].dist; */ /* UNUSED */
|
|
|
|
/* the weights here could be done better */
|
|
for (w=0; w<maxw; w++) {
|
|
parent[w]=ptn[w].index;
|
|
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
|
|
}
|
|
for (;w<10; w++) {
|
|
parent[w]=-1;
|
|
pweight[w]=0.0f;
|
|
}
|
|
|
|
for (w=0,i=0; w<maxw && i<4; w++) {
|
|
if (parent[w]>=0) {
|
|
cpa->pa[i]=parent[w];
|
|
cpa->w[i]=pweight[w];
|
|
totw+=pweight[w];
|
|
i++;
|
|
}
|
|
}
|
|
for (;i<4; i++) {
|
|
cpa->pa[i]=-1;
|
|
cpa->w[i]=0.0f;
|
|
}
|
|
|
|
if (totw > 0.0f) {
|
|
for (w = 0; w < 4; w++) {
|
|
cpa->w[w] /= totw;
|
|
}
|
|
}
|
|
|
|
cpa->parent=cpa->pa[0];
|
|
}
|
|
|
|
if (rng_skip_tot > 0) /* should never be below zero */
|
|
BLI_rng_skip(thread->rng, rng_skip_tot);
|
|
}
|
|
|
|
static void exec_distribute_parent(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
|
|
{
|
|
ParticleTask *task = taskdata;
|
|
ParticleSystem *psys= task->ctx->sim.psys;
|
|
ParticleData *pa;
|
|
int p;
|
|
|
|
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->begin);
|
|
|
|
pa= psys->particles + task->begin;
|
|
switch (psys->part->from) {
|
|
case PART_FROM_FACE:
|
|
for (p = task->begin; p < task->end; ++p, ++pa)
|
|
distribute_from_faces_exec(task, pa, p);
|
|
break;
|
|
case PART_FROM_VOLUME:
|
|
for (p = task->begin; p < task->end; ++p, ++pa)
|
|
distribute_from_volume_exec(task, pa, p);
|
|
break;
|
|
case PART_FROM_VERT:
|
|
for (p = task->begin; p < task->end; ++p, ++pa)
|
|
distribute_from_verts_exec(task, pa, p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void exec_distribute_child(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
|
|
{
|
|
ParticleTask *task = taskdata;
|
|
ParticleSystem *psys = task->ctx->sim.psys;
|
|
ChildParticle *cpa;
|
|
int p;
|
|
|
|
/* RNG skipping at the beginning */
|
|
cpa = psys->child;
|
|
for (p = 0; p < task->begin; ++p, ++cpa) {
|
|
if (task->ctx->skip) /* simplification skip */
|
|
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
|
|
|
|
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP);
|
|
}
|
|
|
|
for (; p < task->end; ++p, ++cpa) {
|
|
if (task->ctx->skip) /* simplification skip */
|
|
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
|
|
|
|
distribute_children_exec(task, cpa, p);
|
|
}
|
|
}
|
|
|
|
static int distribute_compare_orig_index(const void *p1, const void *p2, void *user_data)
|
|
{
|
|
int *orig_index = (int *) user_data;
|
|
int index1 = orig_index[*(const int *)p1];
|
|
int index2 = orig_index[*(const int *)p2];
|
|
|
|
if (index1 < index2)
|
|
return -1;
|
|
else if (index1 == index2) {
|
|
/* this pointer comparison appears to make qsort stable for glibc,
|
|
* and apparently on solaris too, makes the renders reproducible */
|
|
if (p1 < p2)
|
|
return -1;
|
|
else if (p1 == p2)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
|
|
{
|
|
if (from == PART_FROM_CHILD) {
|
|
ChildParticle *cpa;
|
|
int p, totchild = psys_get_tot_child(scene, psys);
|
|
|
|
if (psys->child && totchild) {
|
|
for (p=0,cpa=psys->child; p<totchild; p++,cpa++) {
|
|
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3] = 0.0;
|
|
cpa->foffset= 0.0f;
|
|
cpa->parent=0;
|
|
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
|
|
cpa->num= -1;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PARTICLE_P;
|
|
LOOP_PARTICLES {
|
|
pa->fuv[0] = pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
|
|
pa->foffset= 0.0f;
|
|
pa->num= -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Creates a distribution of coordinates on a DerivedMesh */
|
|
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
|
|
static int psys_thread_context_init_distribute(ParticleThreadContext *ctx, ParticleSimulationData *sim, int from)
|
|
{
|
|
Scene *scene = sim->scene;
|
|
DerivedMesh *finaldm = sim->psmd->dm_final;
|
|
Object *ob = sim->ob;
|
|
ParticleSystem *psys= sim->psys;
|
|
ParticleData *pa=0, *tpars= 0;
|
|
ParticleSettings *part;
|
|
ParticleSeam *seams= 0;
|
|
KDTree *tree=0;
|
|
DerivedMesh *dm= NULL;
|
|
float *jit= NULL;
|
|
int i, p=0;
|
|
int cfrom=0;
|
|
int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
|
|
int jitlevel= 1, distr;
|
|
float *element_weight=NULL,*jitter_offset=NULL, *vweight=NULL;
|
|
float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3];
|
|
|
|
if (ELEM(NULL, ob, psys, psys->part))
|
|
return 0;
|
|
|
|
part=psys->part;
|
|
totpart=psys->totpart;
|
|
if (totpart==0)
|
|
return 0;
|
|
|
|
if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
|
|
printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
|
|
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
|
|
return 0;
|
|
}
|
|
|
|
/* XXX This distribution code is totally broken in case from == PART_FROM_CHILD, it's always using finaldm
|
|
* even if use_modifier_stack is unset... But making things consistent here break all existing edited
|
|
* hair systems, so better wait for complete rewrite.
|
|
*/
|
|
|
|
psys_thread_context_init(ctx, sim);
|
|
|
|
/* First handle special cases */
|
|
if (from == PART_FROM_CHILD) {
|
|
/* Simple children */
|
|
if (part->childtype != PART_CHILD_FACES) {
|
|
BLI_srandom(31415926 + psys->seed + psys->child_seed);
|
|
distribute_simple_children(scene, ob, finaldm, sim->psmd->dm_deformed, psys);
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
/* Grid distribution */
|
|
if (part->distr==PART_DISTR_GRID && from != PART_FROM_VERT) {
|
|
BLI_srandom(31415926 + psys->seed);
|
|
|
|
if (psys->part->use_modifier_stack) {
|
|
dm = finaldm;
|
|
}
|
|
else {
|
|
dm = CDDM_from_mesh((Mesh*)ob->data);
|
|
}
|
|
DM_ensure_tessface(dm);
|
|
|
|
distribute_grid(dm,psys);
|
|
|
|
if (dm != finaldm) {
|
|
dm->release(dm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Create trees and original coordinates if needed */
|
|
if (from == PART_FROM_CHILD) {
|
|
distr=PART_DISTR_RAND;
|
|
BLI_srandom(31415926 + psys->seed + psys->child_seed);
|
|
dm= finaldm;
|
|
|
|
/* BMESH ONLY */
|
|
DM_ensure_tessface(dm);
|
|
|
|
children=1;
|
|
|
|
tree=BLI_kdtree_new(totpart);
|
|
|
|
for (p=0,pa=psys->particles; p<totpart; p++,pa++) {
|
|
psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,NULL);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco, 1, 1);
|
|
BLI_kdtree_insert(tree, p, orco);
|
|
}
|
|
|
|
BLI_kdtree_balance(tree);
|
|
|
|
totpart = psys_get_tot_child(scene, psys);
|
|
cfrom = from = PART_FROM_FACE;
|
|
}
|
|
else {
|
|
distr = part->distr;
|
|
BLI_srandom(31415926 + psys->seed);
|
|
|
|
if (psys->part->use_modifier_stack)
|
|
dm = finaldm;
|
|
else
|
|
dm= CDDM_from_mesh((Mesh*)ob->data);
|
|
|
|
/* BMESH ONLY, for verts we don't care about tessfaces */
|
|
if (from != PART_FROM_VERT) {
|
|
DM_ensure_tessface(dm);
|
|
}
|
|
|
|
/* we need orco for consistent distributions */
|
|
if (!CustomData_has_layer(&dm->vertData, CD_ORCO))
|
|
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, BKE_mesh_orco_verts_get(ob));
|
|
|
|
if (from == PART_FROM_VERT) {
|
|
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
|
|
float (*orcodata)[3] = dm->getVertDataArray(dm, CD_ORCO);
|
|
int totvert = dm->getNumVerts(dm);
|
|
|
|
tree=BLI_kdtree_new(totvert);
|
|
|
|
for (p=0; p<totvert; p++) {
|
|
if (orcodata) {
|
|
copy_v3_v3(co,orcodata[p]);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co, 1, 1);
|
|
}
|
|
else
|
|
copy_v3_v3(co,mv[p].co);
|
|
BLI_kdtree_insert(tree, p, co);
|
|
}
|
|
|
|
BLI_kdtree_balance(tree);
|
|
}
|
|
}
|
|
|
|
/* Get total number of emission elements and allocate needed arrays */
|
|
totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
|
|
|
|
if (totelem == 0) {
|
|
distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
|
|
|
|
if (G.debug & G_DEBUG)
|
|
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
|
|
|
|
if (dm != finaldm) dm->release(dm);
|
|
|
|
BLI_kdtree_free(tree);
|
|
|
|
return 0;
|
|
}
|
|
|
|
element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
|
|
particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
|
|
jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
|
|
|
|
/* Calculate weights from face areas */
|
|
if ((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT) {
|
|
MVert *v1, *v2, *v3, *v4;
|
|
float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
|
|
float (*orcodata)[3];
|
|
|
|
orcodata= dm->getVertDataArray(dm, CD_ORCO);
|
|
|
|
for (i=0; i<totelem; i++) {
|
|
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
|
|
|
|
if (orcodata) {
|
|
copy_v3_v3(co1, orcodata[mf->v1]);
|
|
copy_v3_v3(co2, orcodata[mf->v2]);
|
|
copy_v3_v3(co3, orcodata[mf->v3]);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co1, 1, 1);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co2, 1, 1);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co3, 1, 1);
|
|
if (mf->v4) {
|
|
copy_v3_v3(co4, orcodata[mf->v4]);
|
|
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co4, 1, 1);
|
|
}
|
|
}
|
|
else {
|
|
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
|
|
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
|
|
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
|
|
copy_v3_v3(co1, v1->co);
|
|
copy_v3_v3(co2, v2->co);
|
|
copy_v3_v3(co3, v3->co);
|
|
if (mf->v4) {
|
|
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
|
|
copy_v3_v3(co4, v4->co);
|
|
}
|
|
}
|
|
|
|
cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
|
|
|
|
if (cur > maxweight)
|
|
maxweight = cur;
|
|
|
|
element_weight[i] = cur;
|
|
totarea += cur;
|
|
}
|
|
|
|
for (i=0; i<totelem; i++)
|
|
element_weight[i] /= totarea;
|
|
|
|
maxweight /= totarea;
|
|
}
|
|
else {
|
|
float min=1.0f/(float)(MIN2(totelem,totpart));
|
|
for (i=0; i<totelem; i++)
|
|
element_weight[i]=min;
|
|
maxweight=min;
|
|
}
|
|
|
|
/* Calculate weights from vgroup */
|
|
vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
|
|
|
|
if (vweight) {
|
|
if (from==PART_FROM_VERT) {
|
|
for (i=0;i<totelem; i++)
|
|
element_weight[i]*=vweight[i];
|
|
}
|
|
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
|
|
for (i=0;i<totelem; i++) {
|
|
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
|
|
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
|
|
|
|
if (mf->v4) {
|
|
tweight += vweight[mf->v4];
|
|
tweight /= 4.0f;
|
|
}
|
|
else {
|
|
tweight /= 3.0f;
|
|
}
|
|
|
|
element_weight[i]*=tweight;
|
|
}
|
|
}
|
|
MEM_freeN(vweight);
|
|
}
|
|
|
|
/* Calculate total weight of all elements */
|
|
int totmapped = 0;
|
|
totweight = 0.0f;
|
|
for (i = 0; i < totelem; i++) {
|
|
if (element_weight[i] != 0.0f) {
|
|
totmapped++;
|
|
}
|
|
totweight += element_weight[i];
|
|
}
|
|
|
|
if (totweight == 0.0f) {
|
|
/* We are not allowed to distribute particles anywhere... */
|
|
return 0;
|
|
}
|
|
|
|
inv_totweight = (totweight > 0.f ? 1.f/totweight : 0.f);
|
|
|
|
/* Calculate cumulative weights.
|
|
* We remove all null-weighted elements from element_sum, and create a new mapping
|
|
* 'activ'_elem_index -> orig_elem_index.
|
|
* This simplifies greatly the filtering of zero-weighted items - and can be much mor efficient
|
|
* especially in random case (reducing a lot the size of binary-searched array)...
|
|
*/
|
|
float *element_sum = MEM_mallocN(sizeof(*element_sum) * totmapped, __func__);
|
|
int *element_map = MEM_mallocN(sizeof(*element_map) * totmapped, __func__);
|
|
int i_mapped = 0;
|
|
|
|
for (i = 0; i < totelem && element_weight[i] == 0.0f; i++);
|
|
element_sum[i_mapped] = element_weight[i] * inv_totweight;
|
|
element_map[i_mapped] = i;
|
|
i_mapped++;
|
|
for (i++; i < totelem; i++) {
|
|
if (element_weight[i] != 0.0f) {
|
|
element_sum[i_mapped] = element_sum[i_mapped - 1] + element_weight[i] * inv_totweight;
|
|
element_map[i_mapped] = i;
|
|
i_mapped++;
|
|
}
|
|
}
|
|
|
|
BLI_assert(i_mapped == totmapped);
|
|
|
|
/* Finally assign elements to particles */
|
|
if ((part->flag & PART_TRAND) || (part->simplify_flag & PART_SIMPLIFY_ENABLE)) {
|
|
float pos;
|
|
|
|
for (p = 0; p < totpart; p++) {
|
|
/* In theory element_sum[totelem - 1] should be 1.0,
|
|
* but due to float errors this is not necessarily always true, so scale pos accordingly. */
|
|
pos = BLI_frand() * element_sum[totmapped - 1];
|
|
particle_element[p] = element_map[distribute_binary_search(element_sum, totmapped, pos)];
|
|
jitter_offset[particle_element[p]] = pos;
|
|
}
|
|
}
|
|
else {
|
|
double step, pos;
|
|
|
|
step = (totpart < 2) ? 0.5 : 1.0 / (double)totpart;
|
|
/* This is to address tricky issues with vertex-emitting when user tries (and expects) exact 1-1 vert/part
|
|
* distribution (see T47983 and its two example files). It allows us to consider pos as
|
|
* 'midpoint between v and v+1' (or 'p and p+1', depending whether we have more vertices than particles or not),
|
|
* and avoid stumbling over float imprecisions in element_sum. */
|
|
if (from == PART_FROM_VERT) {
|
|
pos = (totpart < totmapped) ? 0.5 / (double)totmapped : step * 0.5; /* We choose the smaller step. */
|
|
}
|
|
else {
|
|
pos = 0.0;
|
|
}
|
|
|
|
for (i = 0, p = 0; p < totpart; p++, pos += step) {
|
|
for ( ; (i < totmapped - 1) && (pos > (double)element_sum[i]); i++);
|
|
|
|
particle_element[p] = element_map[i];
|
|
|
|
jitter_offset[particle_element[p]] = pos;
|
|
}
|
|
}
|
|
|
|
MEM_freeN(element_sum);
|
|
MEM_freeN(element_map);
|
|
|
|
/* For hair, sort by origindex (allows optimization's in rendering), */
|
|
/* however with virtual parents the children need to be in random order. */
|
|
if (part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
|
|
int *orig_index = NULL;
|
|
|
|
if (from == PART_FROM_VERT) {
|
|
if (dm->numVertData)
|
|
orig_index = dm->getVertDataArray(dm, CD_ORIGINDEX);
|
|
}
|
|
else {
|
|
if (dm->numTessFaceData)
|
|
orig_index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
|
|
}
|
|
|
|
if (orig_index) {
|
|
BLI_qsort_r(particle_element, totpart, sizeof(int), distribute_compare_orig_index, orig_index);
|
|
}
|
|
}
|
|
|
|
/* Create jittering if needed */
|
|
if (distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
|
|
jitlevel= part->userjit;
|
|
|
|
if (jitlevel == 0) {
|
|
jitlevel= totpart/totelem;
|
|
if (part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
|
|
if (jitlevel<3) jitlevel= 3;
|
|
}
|
|
|
|
jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
|
|
|
|
/* for small amounts of particles we use regular jitter since it looks
|
|
* a bit better, for larger amounts we switch to hammersley sequence
|
|
* because it is much faster */
|
|
if (jitlevel < 25)
|
|
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
|
|
else
|
|
hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
|
|
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
|
|
}
|
|
|
|
/* Setup things for threaded distribution */
|
|
ctx->tree= tree;
|
|
ctx->seams= seams;
|
|
ctx->totseam= totseam;
|
|
ctx->sim.psys= psys;
|
|
ctx->index= particle_element;
|
|
ctx->jit= jit;
|
|
ctx->jitlevel= jitlevel;
|
|
ctx->jitoff= jitter_offset;
|
|
ctx->weight= element_weight;
|
|
ctx->maxweight= maxweight;
|
|
ctx->cfrom= cfrom;
|
|
ctx->distr= distr;
|
|
ctx->dm= dm;
|
|
ctx->tpars= tpars;
|
|
|
|
if (children) {
|
|
totpart= psys_render_simplify_distribution(ctx, totpart);
|
|
alloc_child_particles(psys, totpart);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void psys_task_init_distribute(ParticleTask *task, ParticleSimulationData *sim)
|
|
{
|
|
/* init random number generator */
|
|
int seed = 31415926 + sim->psys->seed;
|
|
|
|
task->rng = BLI_rng_new(seed);
|
|
}
|
|
|
|
static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
|
|
{
|
|
TaskScheduler *task_scheduler;
|
|
TaskPool *task_pool;
|
|
ParticleThreadContext ctx;
|
|
ParticleTask *tasks;
|
|
DerivedMesh *finaldm = sim->psmd->dm_final;
|
|
int i, totpart, numtasks;
|
|
|
|
/* create a task pool for distribution tasks */
|
|
if (!psys_thread_context_init_distribute(&ctx, sim, from))
|
|
return;
|
|
|
|
task_scheduler = BLI_task_scheduler_get();
|
|
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
|
|
|
|
totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
|
|
psys_tasks_create(&ctx, 0, totpart, &tasks, &numtasks);
|
|
for (i = 0; i < numtasks; ++i) {
|
|
ParticleTask *task = &tasks[i];
|
|
|
|
psys_task_init_distribute(task, sim);
|
|
if (from == PART_FROM_CHILD)
|
|
BLI_task_pool_push(task_pool, exec_distribute_child, task, false, TASK_PRIORITY_LOW);
|
|
else
|
|
BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, TASK_PRIORITY_LOW);
|
|
}
|
|
BLI_task_pool_work_and_wait(task_pool);
|
|
|
|
BLI_task_pool_free(task_pool);
|
|
|
|
psys_calc_dmcache(sim->ob, finaldm, sim->psmd->dm_deformed, sim->psys);
|
|
|
|
if (ctx.dm != finaldm)
|
|
ctx.dm->release(ctx.dm);
|
|
|
|
psys_tasks_free(tasks, numtasks);
|
|
|
|
psys_thread_context_free(&ctx);
|
|
}
|
|
|
|
/* ready for future use, to emit particles without geometry */
|
|
static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
|
|
{
|
|
distribute_invalid(sim->scene, sim->psys, 0);
|
|
|
|
fprintf(stderr,"Shape emission not yet possible!\n");
|
|
}
|
|
|
|
void distribute_particles(ParticleSimulationData *sim, int from)
|
|
{
|
|
PARTICLE_PSMD;
|
|
int distr_error=0;
|
|
|
|
if (psmd) {
|
|
if (psmd->dm_final)
|
|
distribute_particles_on_dm(sim, from);
|
|
else
|
|
distr_error=1;
|
|
}
|
|
else
|
|
distribute_particles_on_shape(sim, from);
|
|
|
|
if (distr_error) {
|
|
distribute_invalid(sim->scene, sim->psys, from);
|
|
|
|
fprintf(stderr,"Particle distribution error!\n");
|
|
}
|
|
}
|
|
|
|
/* ======== Simplify ======== */
|
|
|
|
static float psys_render_viewport_falloff(double rate, float dist, float width)
|
|
{
|
|
return pow(rate, dist / width);
|
|
}
|
|
|
|
static float psys_render_projected_area(ParticleSystem *psys, const float center[3], float area, double vprate, float *viewport)
|
|
{
|
|
ParticleRenderData *data = psys->renderdata;
|
|
float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
|
|
|
|
/* transform to view space */
|
|
copy_v3_v3(co, center);
|
|
co[3] = 1.0f;
|
|
mul_m4_v4(data->viewmat, co);
|
|
|
|
/* compute two vectors orthogonal to view vector */
|
|
normalize_v3_v3(view, co);
|
|
ortho_basis_v3v3_v3(ortho1, ortho2, view);
|
|
|
|
/* compute on screen minification */
|
|
w = co[2] * data->winmat[2][3] + data->winmat[3][3];
|
|
dx = data->winx * ortho2[0] * data->winmat[0][0];
|
|
dy = data->winy * ortho2[1] * data->winmat[1][1];
|
|
w = sqrtf(dx * dx + dy * dy) / w;
|
|
|
|
/* w squared because we are working with area */
|
|
area = area * w * w;
|
|
|
|
/* viewport of the screen test */
|
|
|
|
/* project point on screen */
|
|
mul_m4_v4(data->winmat, co);
|
|
if (co[3] != 0.0f) {
|
|
co[0] = 0.5f * data->winx * (1.0f + co[0] / co[3]);
|
|
co[1] = 0.5f * data->winy * (1.0f + co[1] / co[3]);
|
|
}
|
|
|
|
/* screen space radius */
|
|
radius = sqrtf(area / (float)M_PI);
|
|
|
|
/* make smaller using fallof once over screen edge */
|
|
*viewport = 1.0f;
|
|
|
|
if (co[0] + radius < 0.0f)
|
|
*viewport *= psys_render_viewport_falloff(vprate, -(co[0] + radius), data->winx);
|
|
else if (co[0] - radius > data->winx)
|
|
*viewport *= psys_render_viewport_falloff(vprate, (co[0] - radius) - data->winx, data->winx);
|
|
|
|
if (co[1] + radius < 0.0f)
|
|
*viewport *= psys_render_viewport_falloff(vprate, -(co[1] + radius), data->winy);
|
|
else if (co[1] - radius > data->winy)
|
|
*viewport *= psys_render_viewport_falloff(vprate, (co[1] - radius) - data->winy, data->winy);
|
|
|
|
return area;
|
|
}
|
|
|
|
/* BMESH_TODO, for orig face data, we need to use MPoly */
|
|
static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
|
|
{
|
|
DerivedMesh *dm = ctx->dm;
|
|
Mesh *me = (Mesh *)(ctx->sim.ob->data);
|
|
MFace *mf, *mface;
|
|
MVert *mvert;
|
|
ParticleRenderData *data;
|
|
ParticleRenderElem *elems, *elem;
|
|
ParticleSettings *part = ctx->sim.psys->part;
|
|
float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
|
|
float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
|
|
double vprate;
|
|
int *facetotvert;
|
|
int a, b, totorigface, totface, newtot, skipped;
|
|
|
|
/* double lookup */
|
|
const int *index_mf_to_mpoly;
|
|
const int *index_mp_to_orig;
|
|
|
|
if (part->ren_as != PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
|
|
return tot;
|
|
if (!ctx->sim.psys->renderdata)
|
|
return tot;
|
|
|
|
data = ctx->sim.psys->renderdata;
|
|
if (data->timeoffset)
|
|
return 0;
|
|
if (!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
|
|
return tot;
|
|
|
|
mvert = dm->getVertArray(dm);
|
|
mface = dm->getTessFaceArray(dm);
|
|
totface = dm->getNumTessFaces(dm);
|
|
totorigface = me->totpoly;
|
|
|
|
if (totface == 0 || totorigface == 0)
|
|
return tot;
|
|
|
|
index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
|
|
index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
|
|
if (index_mf_to_mpoly == NULL) {
|
|
index_mp_to_orig = NULL;
|
|
}
|
|
|
|
facearea = MEM_callocN(sizeof(float) * totorigface, "SimplifyFaceArea");
|
|
facecenter = MEM_callocN(sizeof(float[3]) * totorigface, "SimplifyFaceCenter");
|
|
facetotvert = MEM_callocN(sizeof(int) * totorigface, "SimplifyFaceArea");
|
|
elems = MEM_callocN(sizeof(ParticleRenderElem) * totorigface, "SimplifyFaceElem");
|
|
|
|
if (data->elems)
|
|
MEM_freeN(data->elems);
|
|
|
|
data->do_simplify = true;
|
|
data->elems = elems;
|
|
data->index_mf_to_mpoly = index_mf_to_mpoly;
|
|
data->index_mp_to_orig = index_mp_to_orig;
|
|
|
|
/* compute number of children per original face */
|
|
for (a = 0; a < tot; a++) {
|
|
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
|
|
if (b != ORIGINDEX_NONE) {
|
|
elems[b].totchild++;
|
|
}
|
|
}
|
|
|
|
/* compute areas and centers of original faces */
|
|
for (mf = mface, a = 0; a < totface; a++, mf++) {
|
|
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
|
|
|
|
if (b != ORIGINDEX_NONE) {
|
|
copy_v3_v3(co1, mvert[mf->v1].co);
|
|
copy_v3_v3(co2, mvert[mf->v2].co);
|
|
copy_v3_v3(co3, mvert[mf->v3].co);
|
|
|
|
add_v3_v3(facecenter[b], co1);
|
|
add_v3_v3(facecenter[b], co2);
|
|
add_v3_v3(facecenter[b], co3);
|
|
|
|
if (mf->v4) {
|
|
copy_v3_v3(co4, mvert[mf->v4].co);
|
|
add_v3_v3(facecenter[b], co4);
|
|
facearea[b] += area_quad_v3(co1, co2, co3, co4);
|
|
facetotvert[b] += 4;
|
|
}
|
|
else {
|
|
facearea[b] += area_tri_v3(co1, co2, co3);
|
|
facetotvert[b] += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (a = 0; a < totorigface; a++)
|
|
if (facetotvert[a] > 0)
|
|
mul_v3_fl(facecenter[a], 1.0f / facetotvert[a]);
|
|
|
|
/* for conversion from BU area / pixel area to reference screen size */
|
|
BKE_mesh_texspace_get(me, 0, 0, size);
|
|
fac = ((size[0] + size[1] + size[2]) / 3.0f) / part->simplify_refsize;
|
|
fac = fac * fac;
|
|
|
|
powrate = log(0.5f) / log(part->simplify_rate * 0.5f);
|
|
if (part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
|
|
vprate = pow(1.0f - part->simplify_viewport, 5.0);
|
|
else
|
|
vprate = 1.0;
|
|
|
|
/* set simplification parameters per original face */
|
|
for (a = 0, elem = elems; a < totorigface; a++, elem++) {
|
|
area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
|
|
arearatio = fac * area / facearea[a];
|
|
|
|
if ((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
|
|
/* lambda is percentage of elements to keep */
|
|
lambda = (arearatio < 1.0f) ? powf(arearatio, powrate) : 1.0f;
|
|
lambda *= viewport;
|
|
|
|
lambda = MAX2(lambda, 1.0f / elem->totchild);
|
|
|
|
/* compute transition region */
|
|
t = part->simplify_transition;
|
|
elem->t = (lambda - t < 0.0f) ? lambda : (lambda + t > 1.0f) ? 1.0f - lambda : t;
|
|
elem->reduce = 1;
|
|
|
|
/* scale at end and beginning of the transition region */
|
|
elem->scalemax = (lambda + t < 1.0f) ? 1.0f / lambda : 1.0f / (1.0f - elem->t * elem->t / t);
|
|
elem->scalemin = (lambda + t < 1.0f) ? 0.0f : elem->scalemax * (1.0f - elem->t / t);
|
|
|
|
elem->scalemin = sqrtf(elem->scalemin);
|
|
elem->scalemax = sqrtf(elem->scalemax);
|
|
|
|
/* clamp scaling */
|
|
scaleclamp = (float)min_ii(elem->totchild, 10);
|
|
elem->scalemin = MIN2(scaleclamp, elem->scalemin);
|
|
elem->scalemax = MIN2(scaleclamp, elem->scalemax);
|
|
|
|
/* extend lambda to include transition */
|
|
lambda = lambda + elem->t;
|
|
if (lambda > 1.0f)
|
|
lambda = 1.0f;
|
|
}
|
|
else {
|
|
lambda = arearatio;
|
|
|
|
elem->scalemax = 1.0f; //sqrt(lambda);
|
|
elem->scalemin = 1.0f; //sqrt(lambda);
|
|
elem->reduce = 0;
|
|
}
|
|
|
|
elem->lambda = lambda;
|
|
elem->scalemin = sqrtf(elem->scalemin);
|
|
elem->scalemax = sqrtf(elem->scalemax);
|
|
elem->curchild = 0;
|
|
}
|
|
|
|
MEM_freeN(facearea);
|
|
MEM_freeN(facecenter);
|
|
MEM_freeN(facetotvert);
|
|
|
|
/* move indices and set random number skipping */
|
|
ctx->skip = MEM_callocN(sizeof(int) * tot, "SimplificationSkip");
|
|
|
|
skipped = 0;
|
|
for (a = 0, newtot = 0; a < tot; a++) {
|
|
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
|
|
|
|
if (b != ORIGINDEX_NONE) {
|
|
if (elems[b].curchild++ < ceil(elems[b].lambda * elems[b].totchild)) {
|
|
ctx->index[newtot] = ctx->index[a];
|
|
ctx->skip[newtot] = skipped;
|
|
skipped = 0;
|
|
newtot++;
|
|
}
|
|
else skipped++;
|
|
}
|
|
else skipped++;
|
|
}
|
|
|
|
for (a = 0, elem = elems; a < totorigface; a++, elem++)
|
|
elem->curchild = 0;
|
|
|
|
return newtot;
|
|
}
|