Files
blender/source/blender/blenkernel/intern/particle_distribute.c
Bastien Montagne abf6f9f6cf Fix T48118: Vertex Groups not masking particle hair emission correctly
Own regression from rB019ce363b01bba0af, not totally sure why removing the heading
zero value in element_sum broke binary search distribution in random branch, but...

New code makes thing sooo much simpler, by simply getting rid of all zero-weight
items in element_sum (at the cost of adding a temporary extra index mapping array),
that way neither random nor 'even ordered' distribution code has to wory anymore
about skipping zero-weighted items!
2016-04-30 16:56:19 +02:00

1471 lines
40 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Raul Fernandez Hernandez (Farsthary),
* Stephen Swhitehorn,
* Lukas Toenne
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle_distribute.c
* \ingroup bke
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_utildefines.h"
#include "BLI_jitter.h"
#include "BLI_kdtree.h"
#include "BLI_math.h"
#include "BLI_rand.h"
#include "BLI_sort.h"
#include "BLI_task.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_particle.h"
static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot);
static void alloc_child_particles(ParticleSystem *psys, int tot)
{
if (psys->child) {
/* only re-allocate if we have to */
if (psys->part->childtype && psys->totchild == tot) {
memset(psys->child, 0, tot*sizeof(ChildParticle));
return;
}
MEM_freeN(psys->child);
psys->child=NULL;
psys->totchild=0;
}
if (psys->part->childtype) {
psys->totchild= tot;
if (psys->totchild)
psys->child= MEM_callocN(psys->totchild*sizeof(ChildParticle), "child_particles");
}
}
static void distribute_simple_children(Scene *scene, Object *ob, DerivedMesh *finaldm, DerivedMesh *deformdm, ParticleSystem *psys)
{
ChildParticle *cpa = NULL;
int i, p;
int child_nbr= psys_get_child_number(scene, psys);
int totpart= psys_get_tot_child(scene, psys);
alloc_child_particles(psys, totpart);
cpa = psys->child;
for (i=0; i<child_nbr; i++) {
for (p=0; p<psys->totpart; p++,cpa++) {
float length=2.0;
cpa->parent=p;
/* create even spherical distribution inside unit sphere */
while (length>=1.0f) {
cpa->fuv[0]=2.0f*BLI_frand()-1.0f;
cpa->fuv[1]=2.0f*BLI_frand()-1.0f;
cpa->fuv[2]=2.0f*BLI_frand()-1.0f;
length=len_v3(cpa->fuv);
}
cpa->num=-1;
}
}
/* dmcache must be updated for parent particles if children from faces is used */
psys_calc_dmcache(ob, finaldm, deformdm, psys);
}
static void distribute_grid(DerivedMesh *dm, ParticleSystem *psys)
{
ParticleData *pa=NULL;
float min[3], max[3], delta[3], d;
MVert *mv, *mvert = dm->getVertDataArray(dm,0);
int totvert=dm->getNumVerts(dm), from=psys->part->from;
int i, j, k, p, res=psys->part->grid_res, size[3], axis;
/* find bounding box of dm */
if (totvert > 0) {
mv=mvert;
copy_v3_v3(min, mv->co);
copy_v3_v3(max, mv->co);
mv++;
for (i = 1; i < totvert; i++, mv++) {
minmax_v3v3_v3(min, max, mv->co);
}
}
else {
zero_v3(min);
zero_v3(max);
}
sub_v3_v3v3(delta, max, min);
/* determine major axis */
axis = axis_dominant_v3_single(delta);
d = delta[axis]/(float)res;
size[axis] = res;
size[(axis+1)%3] = (int)ceil(delta[(axis+1)%3]/d);
size[(axis+2)%3] = (int)ceil(delta[(axis+2)%3]/d);
/* float errors grrr.. */
size[(axis+1)%3] = MIN2(size[(axis+1)%3],res);
size[(axis+2)%3] = MIN2(size[(axis+2)%3],res);
size[0] = MAX2(size[0], 1);
size[1] = MAX2(size[1], 1);
size[2] = MAX2(size[2], 1);
/* no full offset for flat/thin objects */
min[0]+= d < delta[0] ? d/2.f : delta[0]/2.f;
min[1]+= d < delta[1] ? d/2.f : delta[1]/2.f;
min[2]+= d < delta[2] ? d/2.f : delta[2]/2.f;
for (i=0,p=0,pa=psys->particles; i<res; i++) {
for (j=0; j<res; j++) {
for (k=0; k<res; k++,p++,pa++) {
pa->fuv[0] = min[0] + (float)i*d;
pa->fuv[1] = min[1] + (float)j*d;
pa->fuv[2] = min[2] + (float)k*d;
pa->flag |= PARS_UNEXIST;
pa->hair_index = 0; /* abused in volume calculation */
}
}
}
/* enable particles near verts/edges/faces/inside surface */
if (from==PART_FROM_VERT) {
float vec[3];
pa=psys->particles;
min[0] -= d/2.0f;
min[1] -= d/2.0f;
min[2] -= d/2.0f;
for (i=0,mv=mvert; i<totvert; i++,mv++) {
sub_v3_v3v3(vec,mv->co,min);
vec[0]/=delta[0];
vec[1]/=delta[1];
vec[2]/=delta[2];
pa[((int)(vec[0] * (size[0] - 1)) * res +
(int)(vec[1] * (size[1] - 1))) * res +
(int)(vec[2] * (size[2] - 1))].flag &= ~PARS_UNEXIST;
}
}
else if (ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
float co1[3], co2[3];
MFace *mface= NULL, *mface_array;
float v1[3], v2[3], v3[3], v4[4], lambda;
int a, a1, a2, a0mul, a1mul, a2mul, totface;
int amax= from==PART_FROM_FACE ? 3 : 1;
totface=dm->getNumTessFaces(dm);
mface=mface_array=dm->getTessFaceDataArray(dm,CD_MFACE);
for (a=0; a<amax; a++) {
if (a==0) { a0mul=res*res; a1mul=res; a2mul=1; }
else if (a==1) { a0mul=res; a1mul=1; a2mul=res*res; }
else { a0mul=1; a1mul=res*res; a2mul=res; }
for (a1=0; a1<size[(a+1)%3]; a1++) {
for (a2=0; a2<size[(a+2)%3]; a2++) {
mface= mface_array;
pa = psys->particles + a1*a1mul + a2*a2mul;
copy_v3_v3(co1, pa->fuv);
co1[a] -= d < delta[a] ? d/2.f : delta[a]/2.f;
copy_v3_v3(co2, co1);
co2[a] += delta[a] + 0.001f*d;
co1[a] -= 0.001f*d;
/* lets intersect the faces */
for (i=0; i<totface; i++,mface++) {
copy_v3_v3(v1, mvert[mface->v1].co);
copy_v3_v3(v2, mvert[mface->v2].co);
copy_v3_v3(v3, mvert[mface->v3].co);
bool intersects_tri = isect_axial_line_segment_tri_v3(a, co1, co2, v2, v3, v1, &lambda);
if (intersects_tri) {
if (from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else /* store number of intersections */
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
if (mface->v4 && (!intersects_tri || from==PART_FROM_VOLUME)) {
copy_v3_v3(v4, mvert[mface->v4].co);
if (isect_axial_line_segment_tri_v3(a, co1, co2, v4, v1, v3, &lambda)) {
if (from==PART_FROM_FACE)
(pa+(int)(lambda*size[a])*a0mul)->flag &= ~PARS_UNEXIST;
else
(pa+(int)(lambda*size[a])*a0mul)->hair_index++;
}
}
}
if (from==PART_FROM_VOLUME) {
int in=pa->hair_index%2;
if (in) pa->hair_index++;
for (i=0; i<size[0]; i++) {
if (in || (pa+i*a0mul)->hair_index%2)
(pa+i*a0mul)->flag &= ~PARS_UNEXIST;
/* odd intersections == in->out / out->in */
/* even intersections -> in stays same */
in=(in + (pa+i*a0mul)->hair_index) % 2;
}
}
}
}
}
}
if (psys->part->flag & PART_GRID_HEXAGONAL) {
for (i=0,p=0,pa=psys->particles; i<res; i++) {
for (j=0; j<res; j++) {
for (k=0; k<res; k++,p++,pa++) {
if (j%2)
pa->fuv[0] += d/2.f;
if (k%2) {
pa->fuv[0] += d/2.f;
pa->fuv[1] += d/2.f;
}
}
}
}
}
if (psys->part->flag & PART_GRID_INVERT) {
for (i=0; i<size[0]; i++) {
for (j=0; j<size[1]; j++) {
pa=psys->particles + res*(i*res + j);
for (k=0; k<size[2]; k++, pa++) {
pa->flag ^= PARS_UNEXIST;
}
}
}
}
if (psys->part->grid_rand > 0.f) {
float rfac = d * psys->part->grid_rand;
for (p=0,pa=psys->particles; p<psys->totpart; p++,pa++) {
if (pa->flag & PARS_UNEXIST)
continue;
pa->fuv[0] += rfac * (psys_frand(psys, p + 31) - 0.5f);
pa->fuv[1] += rfac * (psys_frand(psys, p + 32) - 0.5f);
pa->fuv[2] += rfac * (psys_frand(psys, p + 33) - 0.5f);
}
}
}
/* modified copy from rayshade.c */
static void hammersley_create(float *out, int n, int seed, float amount)
{
RNG *rng;
double p, t, offs[2];
int k, kk;
rng = BLI_rng_new(31415926 + n + seed);
offs[0] = BLI_rng_get_double(rng) + (double)amount;
offs[1] = BLI_rng_get_double(rng) + (double)amount;
BLI_rng_free(rng);
for (k = 0; k < n; k++) {
t = 0;
for (p = 0.5, kk = k; kk; p *= 0.5, kk >>= 1)
if (kk & 1) /* kk mod 2 = 1 */
t += p;
out[2*k + 0] = fmod((double)k/(double)n + offs[0], 1.0);
out[2*k + 1] = fmod(t + offs[1], 1.0);
}
}
/* almost exact copy of BLI_jitter_init */
static void init_mv_jit(float *jit, int num, int seed2, float amount)
{
RNG *rng;
float *jit2, x, rad1, rad2, rad3;
int i, num2;
if (num==0) return;
rad1= (float)(1.0f/sqrtf((float)num));
rad2= (float)(1.0f/((float)num));
rad3= (float)sqrtf((float)num)/((float)num);
rng = BLI_rng_new(31415926 + num + seed2);
x= 0;
num2 = 2 * num;
for (i=0; i<num2; i+=2) {
jit[i] = x + amount*rad1*(0.5f - BLI_rng_get_float(rng));
jit[i+1] = i/(2.0f*num) + amount*rad1*(0.5f - BLI_rng_get_float(rng));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
BLI_jitterate1((float (*)[2])jit, (float (*)[2])jit2, num, rad1);
BLI_jitterate2((float (*)[2])jit, (float (*)[2])jit2, num, rad2);
}
MEM_freeN(jit2);
BLI_rng_free(rng);
}
static void psys_uv_to_w(float u, float v, int quad, float *w)
{
float vert[4][3], co[3];
if (!quad) {
if (u+v > 1.0f)
v= 1.0f-v;
else
u= 1.0f-u;
}
vert[0][0] = 0.0f; vert[0][1] = 0.0f; vert[0][2] = 0.0f;
vert[1][0] = 1.0f; vert[1][1] = 0.0f; vert[1][2] = 0.0f;
vert[2][0] = 1.0f; vert[2][1] = 1.0f; vert[2][2] = 0.0f;
co[0] = u;
co[1] = v;
co[2] = 0.0f;
if (quad) {
vert[3][0] = 0.0f; vert[3][1] = 1.0f; vert[3][2] = 0.0f;
interp_weights_poly_v3( w,vert, 4, co);
}
else {
interp_weights_poly_v3( w,vert, 3, co);
w[3] = 0.0f;
}
}
/* Find the index in "sum" array before "value" is crossed. */
static int distribute_binary_search(float *sum, int n, float value)
{
int mid, low = 0, high = n - 1;
if (sum[low] >= value)
return low;
if (sum[high] < value)
return high;
while (low < high) {
mid = (low + high) / 2;
if ((sum[mid] < value) && (sum[mid + 1] >= value))
return mid;
if (sum[mid] >= value) {
high = mid - 1;
}
else if (sum[mid] < value) {
low = mid + 1;
}
}
return low;
}
/* the max number if calls to rng_* funcs within psys_thread_distribute_particle
* be sure to keep up to date if this changes */
#define PSYS_RND_DIST_SKIP 2
/* note: this function must be thread safe, for from == PART_FROM_CHILD */
#define ONLY_WORKING_WITH_PA_VERTS 0
static void distribute_from_verts_exec(ParticleTask *thread, ParticleData *pa, int p)
{
ParticleThreadContext *ctx= thread->ctx;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
/* TODO_PARTICLE - use original index */
pa->num= ctx->index[p];
pa->fuv[0] = 1.0f;
pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
#if ONLY_WORKING_WITH_PA_VERTS
if (ctx->tree) {
KDTreeNearest ptn[3];
int w, maxw;
psys_particle_on_dm(ctx->dm,from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co1,0,0,0,orco1,0);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
for (w=0; w<maxw; w++) {
pa->verts[w]=ptn->num;
}
}
#endif
if (rng_skip_tot > 0) /* should never be below zero */
BLI_rng_skip(thread->rng, rng_skip_tot);
}
static void distribute_from_faces_exec(ParticleTask *thread, ParticleData *pa, int p) {
ParticleThreadContext *ctx= thread->ctx;
DerivedMesh *dm= ctx->dm;
float randu, randv;
int distr= ctx->distr;
int i;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
MFace *mface;
pa->num = i = ctx->index[p];
mface = dm->getTessFaceData(dm,i,CD_MFACE);
switch (distr) {
case PART_DISTR_JIT:
if (ctx->jitlevel == 1) {
if (mface->v4)
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
else
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
}
else {
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
if (!isnan(offset)) {
psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
}
}
break;
case PART_DISTR_RAND:
randu= BLI_rng_get_float(thread->rng);
randv= BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
if (rng_skip_tot > 0) /* should never be below zero */
BLI_rng_skip(thread->rng, rng_skip_tot);
}
static void distribute_from_volume_exec(ParticleTask *thread, ParticleData *pa, int p) {
ParticleThreadContext *ctx= thread->ctx;
DerivedMesh *dm= ctx->dm;
float *v1, *v2, *v3, *v4, nor[3], co[3];
float cur_d, min_d, randu, randv;
int distr= ctx->distr;
int i, intersect, tot;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
MFace *mface;
MVert *mvert=dm->getVertDataArray(dm,CD_MVERT);
pa->num = i = ctx->index[p];
mface = dm->getTessFaceData(dm,i,CD_MFACE);
switch (distr) {
case PART_DISTR_JIT:
if (ctx->jitlevel == 1) {
if (mface->v4)
psys_uv_to_w(0.5f, 0.5f, mface->v4, pa->fuv);
else
psys_uv_to_w(1.0f / 3.0f, 1.0f / 3.0f, mface->v4, pa->fuv);
}
else {
float offset = fmod(ctx->jitoff[i] + (float)p, (float)ctx->jitlevel);
if (!isnan(offset)) {
psys_uv_to_w(ctx->jit[2*(int)offset], ctx->jit[2*(int)offset+1], mface->v4, pa->fuv);
}
}
break;
case PART_DISTR_RAND:
randu= BLI_rng_get_float(thread->rng);
randv= BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mface->v4, pa->fuv);
break;
}
pa->foffset= 0.0f;
/* experimental */
tot=dm->getNumTessFaces(dm);
psys_interpolate_face(mvert,mface,0,0,pa->fuv,co,nor,0,0,0,0);
normalize_v3(nor);
negate_v3(nor);
min_d=FLT_MAX;
intersect=0;
for (i=0,mface=dm->getTessFaceDataArray(dm,CD_MFACE); i<tot; i++,mface++) {
if (i==pa->num) continue;
v1=mvert[mface->v1].co;
v2=mvert[mface->v2].co;
v3=mvert[mface->v3].co;
if (isect_ray_tri_v3(co, nor, v2, v3, v1, &cur_d, NULL)) {
if (cur_d<min_d) {
min_d=cur_d;
pa->foffset=cur_d*0.5f; /* to the middle of volume */
intersect=1;
}
}
if (mface->v4) {
v4=mvert[mface->v4].co;
if (isect_ray_tri_v3(co, nor, v4, v1, v3, &cur_d, NULL)) {
if (cur_d<min_d) {
min_d=cur_d;
pa->foffset=cur_d*0.5f; /* to the middle of volume */
intersect=1;
}
}
}
}
if (intersect==0)
pa->foffset=0.0;
else {
switch (distr) {
case PART_DISTR_JIT:
pa->foffset *= ctx->jit[p % (2 * ctx->jitlevel)];
break;
case PART_DISTR_RAND:
pa->foffset *= BLI_frand();
break;
}
}
if (rng_skip_tot > 0) /* should never be below zero */
BLI_rng_skip(thread->rng, rng_skip_tot);
}
static void distribute_children_exec(ParticleTask *thread, ChildParticle *cpa, int p) {
ParticleThreadContext *ctx= thread->ctx;
Object *ob= ctx->sim.ob;
DerivedMesh *dm= ctx->dm;
float orco1[3], co1[3], nor1[3];
float randu, randv;
int cfrom= ctx->cfrom;
int i;
int rng_skip_tot= PSYS_RND_DIST_SKIP; /* count how many rng_* calls wont need skipping */
MFace *mf;
if (ctx->index[p] < 0) {
cpa->num=0;
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3]=0.0f;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
return;
}
mf= dm->getTessFaceData(dm, ctx->index[p], CD_MFACE);
randu= BLI_rng_get_float(thread->rng);
randv= BLI_rng_get_float(thread->rng);
rng_skip_tot -= 2;
psys_uv_to_w(randu, randv, mf->v4, cpa->fuv);
cpa->num = ctx->index[p];
if (ctx->tree) {
KDTreeNearest ptn[10];
int w,maxw;//, do_seams;
float maxd /*, mind,dd */, totw= 0.0f;
int parent[10];
float pweight[10];
psys_particle_on_dm(dm,cfrom,cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co1,nor1,NULL,NULL,orco1,NULL);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco1, 1, 1);
maxw = BLI_kdtree_find_nearest_n(ctx->tree,orco1,ptn,3);
maxd=ptn[maxw-1].dist;
/* mind=ptn[0].dist; */ /* UNUSED */
/* the weights here could be done better */
for (w=0; w<maxw; w++) {
parent[w]=ptn[w].index;
pweight[w]=(float)pow(2.0,(double)(-6.0f*ptn[w].dist/maxd));
}
for (;w<10; w++) {
parent[w]=-1;
pweight[w]=0.0f;
}
for (w=0,i=0; w<maxw && i<4; w++) {
if (parent[w]>=0) {
cpa->pa[i]=parent[w];
cpa->w[i]=pweight[w];
totw+=pweight[w];
i++;
}
}
for (;i<4; i++) {
cpa->pa[i]=-1;
cpa->w[i]=0.0f;
}
if (totw > 0.0f) {
for (w = 0; w < 4; w++) {
cpa->w[w] /= totw;
}
}
cpa->parent=cpa->pa[0];
}
if (rng_skip_tot > 0) /* should never be below zero */
BLI_rng_skip(thread->rng, rng_skip_tot);
}
static void exec_distribute_parent(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
ParticleTask *task = taskdata;
ParticleSystem *psys= task->ctx->sim.psys;
ParticleData *pa;
int p;
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->begin);
pa= psys->particles + task->begin;
switch (psys->part->from) {
case PART_FROM_FACE:
for (p = task->begin; p < task->end; ++p, ++pa)
distribute_from_faces_exec(task, pa, p);
break;
case PART_FROM_VOLUME:
for (p = task->begin; p < task->end; ++p, ++pa)
distribute_from_volume_exec(task, pa, p);
break;
case PART_FROM_VERT:
for (p = task->begin; p < task->end; ++p, ++pa)
distribute_from_verts_exec(task, pa, p);
break;
}
}
static void exec_distribute_child(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
ParticleTask *task = taskdata;
ParticleSystem *psys = task->ctx->sim.psys;
ChildParticle *cpa;
int p;
/* RNG skipping at the beginning */
cpa = psys->child;
for (p = 0; p < task->begin; ++p, ++cpa) {
if (task->ctx->skip) /* simplification skip */
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP);
}
for (; p < task->end; ++p, ++cpa) {
if (task->ctx->skip) /* simplification skip */
BLI_rng_skip(task->rng, PSYS_RND_DIST_SKIP * task->ctx->skip[p]);
distribute_children_exec(task, cpa, p);
}
}
static int distribute_compare_orig_index(const void *p1, const void *p2, void *user_data)
{
int *orig_index = (int *) user_data;
int index1 = orig_index[*(const int *)p1];
int index2 = orig_index[*(const int *)p2];
if (index1 < index2)
return -1;
else if (index1 == index2) {
/* this pointer comparison appears to make qsort stable for glibc,
* and apparently on solaris too, makes the renders reproducible */
if (p1 < p2)
return -1;
else if (p1 == p2)
return 0;
else
return 1;
}
else
return 1;
}
static void distribute_invalid(Scene *scene, ParticleSystem *psys, int from)
{
if (from == PART_FROM_CHILD) {
ChildParticle *cpa;
int p, totchild = psys_get_tot_child(scene, psys);
if (psys->child && totchild) {
for (p=0,cpa=psys->child; p<totchild; p++,cpa++) {
cpa->fuv[0]=cpa->fuv[1]=cpa->fuv[2]=cpa->fuv[3] = 0.0;
cpa->foffset= 0.0f;
cpa->parent=0;
cpa->pa[0]=cpa->pa[1]=cpa->pa[2]=cpa->pa[3]=0;
cpa->num= -1;
}
}
}
else {
PARTICLE_P;
LOOP_PARTICLES {
pa->fuv[0] = pa->fuv[1] = pa->fuv[2] = pa->fuv[3] = 0.0;
pa->foffset= 0.0f;
pa->num= -1;
}
}
}
/* Creates a distribution of coordinates on a DerivedMesh */
/* This is to denote functionality that does not yet work with mesh - only derived mesh */
static int psys_thread_context_init_distribute(ParticleThreadContext *ctx, ParticleSimulationData *sim, int from)
{
Scene *scene = sim->scene;
DerivedMesh *finaldm = sim->psmd->dm_final;
Object *ob = sim->ob;
ParticleSystem *psys= sim->psys;
ParticleData *pa=0, *tpars= 0;
ParticleSettings *part;
ParticleSeam *seams= 0;
KDTree *tree=0;
DerivedMesh *dm= NULL;
float *jit= NULL;
int i, p=0;
int cfrom=0;
int totelem=0, totpart, *particle_element=0, children=0, totseam=0;
int jitlevel= 1, distr;
float *element_weight=NULL,*jitter_offset=NULL, *vweight=NULL;
float cur, maxweight=0.0, tweight, totweight, inv_totweight, co[3], nor[3], orco[3];
if (ELEM(NULL, ob, psys, psys->part))
return 0;
part=psys->part;
totpart=psys->totpart;
if (totpart==0)
return 0;
if (!finaldm->deformedOnly && !finaldm->getTessFaceDataArray(finaldm, CD_ORIGINDEX)) {
printf("Can't create particles with the current modifier stack, disable destructive modifiers\n");
// XXX error("Can't paint with the current modifier stack, disable destructive modifiers");
return 0;
}
/* XXX This distribution code is totally broken in case from == PART_FROM_CHILD, it's always using finaldm
* even if use_modifier_stack is unset... But making things consistent here break all existing edited
* hair systems, so better wait for complete rewrite.
*/
psys_thread_context_init(ctx, sim);
/* First handle special cases */
if (from == PART_FROM_CHILD) {
/* Simple children */
if (part->childtype != PART_CHILD_FACES) {
BLI_srandom(31415926 + psys->seed + psys->child_seed);
distribute_simple_children(scene, ob, finaldm, sim->psmd->dm_deformed, psys);
return 0;
}
}
else {
/* Grid distribution */
if (part->distr==PART_DISTR_GRID && from != PART_FROM_VERT) {
BLI_srandom(31415926 + psys->seed);
if (psys->part->use_modifier_stack) {
dm = finaldm;
}
else {
dm = CDDM_from_mesh((Mesh*)ob->data);
}
DM_ensure_tessface(dm);
distribute_grid(dm,psys);
if (dm != finaldm) {
dm->release(dm);
}
return 0;
}
}
/* Create trees and original coordinates if needed */
if (from == PART_FROM_CHILD) {
distr=PART_DISTR_RAND;
BLI_srandom(31415926 + psys->seed + psys->child_seed);
dm= finaldm;
/* BMESH ONLY */
DM_ensure_tessface(dm);
children=1;
tree=BLI_kdtree_new(totpart);
for (p=0,pa=psys->particles; p<totpart; p++,pa++) {
psys_particle_on_dm(dm,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,NULL);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &orco, 1, 1);
BLI_kdtree_insert(tree, p, orco);
}
BLI_kdtree_balance(tree);
totpart = psys_get_tot_child(scene, psys);
cfrom = from = PART_FROM_FACE;
}
else {
distr = part->distr;
BLI_srandom(31415926 + psys->seed);
if (psys->part->use_modifier_stack)
dm = finaldm;
else
dm= CDDM_from_mesh((Mesh*)ob->data);
/* BMESH ONLY, for verts we don't care about tessfaces */
if (from != PART_FROM_VERT) {
DM_ensure_tessface(dm);
}
/* we need orco for consistent distributions */
if (!CustomData_has_layer(&dm->vertData, CD_ORCO))
DM_add_vert_layer(dm, CD_ORCO, CD_ASSIGN, BKE_mesh_orco_verts_get(ob));
if (from == PART_FROM_VERT) {
MVert *mv= dm->getVertDataArray(dm, CD_MVERT);
float (*orcodata)[3] = dm->getVertDataArray(dm, CD_ORCO);
int totvert = dm->getNumVerts(dm);
tree=BLI_kdtree_new(totvert);
for (p=0; p<totvert; p++) {
if (orcodata) {
copy_v3_v3(co,orcodata[p]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co, 1, 1);
}
else
copy_v3_v3(co,mv[p].co);
BLI_kdtree_insert(tree, p, co);
}
BLI_kdtree_balance(tree);
}
}
/* Get total number of emission elements and allocate needed arrays */
totelem = (from == PART_FROM_VERT) ? dm->getNumVerts(dm) : dm->getNumTessFaces(dm);
if (totelem == 0) {
distribute_invalid(scene, psys, children ? PART_FROM_CHILD : 0);
if (G.debug & G_DEBUG)
fprintf(stderr,"Particle distribution error: Nothing to emit from!\n");
if (dm != finaldm) dm->release(dm);
BLI_kdtree_free(tree);
return 0;
}
element_weight = MEM_callocN(sizeof(float)*totelem, "particle_distribution_weights");
particle_element= MEM_callocN(sizeof(int)*totpart, "particle_distribution_indexes");
jitter_offset = MEM_callocN(sizeof(float)*totelem, "particle_distribution_jitoff");
/* Calculate weights from face areas */
if ((part->flag&PART_EDISTR || children) && from != PART_FROM_VERT) {
MVert *v1, *v2, *v3, *v4;
float totarea=0.f, co1[3], co2[3], co3[3], co4[3];
float (*orcodata)[3];
orcodata= dm->getVertDataArray(dm, CD_ORCO);
for (i=0; i<totelem; i++) {
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
if (orcodata) {
copy_v3_v3(co1, orcodata[mf->v1]);
copy_v3_v3(co2, orcodata[mf->v2]);
copy_v3_v3(co3, orcodata[mf->v3]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co1, 1, 1);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co2, 1, 1);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co3, 1, 1);
if (mf->v4) {
copy_v3_v3(co4, orcodata[mf->v4]);
BKE_mesh_orco_verts_transform((Mesh*)ob->data, &co4, 1, 1);
}
}
else {
v1= (MVert*)dm->getVertData(dm,mf->v1,CD_MVERT);
v2= (MVert*)dm->getVertData(dm,mf->v2,CD_MVERT);
v3= (MVert*)dm->getVertData(dm,mf->v3,CD_MVERT);
copy_v3_v3(co1, v1->co);
copy_v3_v3(co2, v2->co);
copy_v3_v3(co3, v3->co);
if (mf->v4) {
v4= (MVert*)dm->getVertData(dm,mf->v4,CD_MVERT);
copy_v3_v3(co4, v4->co);
}
}
cur = mf->v4 ? area_quad_v3(co1, co2, co3, co4) : area_tri_v3(co1, co2, co3);
if (cur > maxweight)
maxweight = cur;
element_weight[i] = cur;
totarea += cur;
}
for (i=0; i<totelem; i++)
element_weight[i] /= totarea;
maxweight /= totarea;
}
else {
float min=1.0f/(float)(MIN2(totelem,totpart));
for (i=0; i<totelem; i++)
element_weight[i]=min;
maxweight=min;
}
/* Calculate weights from vgroup */
vweight = psys_cache_vgroup(dm,psys,PSYS_VG_DENSITY);
if (vweight) {
if (from==PART_FROM_VERT) {
for (i=0;i<totelem; i++)
element_weight[i]*=vweight[i];
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
for (i=0;i<totelem; i++) {
MFace *mf=dm->getTessFaceData(dm,i,CD_MFACE);
tweight = vweight[mf->v1] + vweight[mf->v2] + vweight[mf->v3];
if (mf->v4) {
tweight += vweight[mf->v4];
tweight /= 4.0f;
}
else {
tweight /= 3.0f;
}
element_weight[i]*=tweight;
}
}
MEM_freeN(vweight);
}
/* Calculate total weight of all elements */
int totmapped = 0;
totweight = 0.0f;
for (i = 0; i < totelem; i++) {
if (element_weight[i] != 0.0f) {
totmapped++;
}
totweight += element_weight[i];
}
if (totweight == 0.0f) {
/* We are not allowed to distribute particles anywhere... */
return 0;
}
inv_totweight = (totweight > 0.f ? 1.f/totweight : 0.f);
/* Calculate cumulative weights.
* We remove all null-weighted elements from element_sum, and create a new mapping
* 'activ'_elem_index -> orig_elem_index.
* This simplifies greatly the filtering of zero-weighted items - and can be much mor efficient
* especially in random case (reducing a lot the size of binary-searched array)...
*/
float *element_sum = MEM_mallocN(sizeof(*element_sum) * totmapped, __func__);
int *element_map = MEM_mallocN(sizeof(*element_map) * totmapped, __func__);
int i_mapped = 0;
for (i = 0; i < totelem && element_weight[i] == 0.0f; i++);
element_sum[i_mapped] = element_weight[i] * inv_totweight;
element_map[i_mapped] = i;
i_mapped++;
for (i++; i < totelem; i++) {
if (element_weight[i] != 0.0f) {
element_sum[i_mapped] = element_sum[i_mapped - 1] + element_weight[i] * inv_totweight;
element_map[i_mapped] = i;
i_mapped++;
}
}
BLI_assert(i_mapped == totmapped);
/* Finally assign elements to particles */
if ((part->flag & PART_TRAND) || (part->simplify_flag & PART_SIMPLIFY_ENABLE)) {
float pos;
for (p = 0; p < totpart; p++) {
/* In theory element_sum[totelem - 1] should be 1.0,
* but due to float errors this is not necessarily always true, so scale pos accordingly. */
pos = BLI_frand() * element_sum[totmapped - 1];
particle_element[p] = element_map[distribute_binary_search(element_sum, totmapped, pos)];
jitter_offset[particle_element[p]] = pos;
}
}
else {
double step, pos;
step = (totpart < 2) ? 0.5 : 1.0 / (double)totpart;
/* This is to address tricky issues with vertex-emitting when user tries (and expects) exact 1-1 vert/part
* distribution (see T47983 and its two example files). It allows us to consider pos as
* 'midpoint between v and v+1' (or 'p and p+1', depending whether we have more vertices than particles or not),
* and avoid stumbling over float imprecisions in element_sum. */
if (from == PART_FROM_VERT) {
pos = (totpart < totmapped) ? 0.5 / (double)totmapped : step * 0.5; /* We choose the smaller step. */
}
else {
pos = 0.0;
}
for (i = 0, p = 0; p < totpart; p++, pos += step) {
for ( ; (i < totmapped - 1) && (pos > (double)element_sum[i]); i++);
particle_element[p] = element_map[i];
jitter_offset[particle_element[p]] = pos;
}
}
MEM_freeN(element_sum);
MEM_freeN(element_map);
/* For hair, sort by origindex (allows optimization's in rendering), */
/* however with virtual parents the children need to be in random order. */
if (part->type == PART_HAIR && !(part->childtype==PART_CHILD_FACES && part->parents!=0.0f)) {
int *orig_index = NULL;
if (from == PART_FROM_VERT) {
if (dm->numVertData)
orig_index = dm->getVertDataArray(dm, CD_ORIGINDEX);
}
else {
if (dm->numTessFaceData)
orig_index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
}
if (orig_index) {
BLI_qsort_r(particle_element, totpart, sizeof(int), distribute_compare_orig_index, orig_index);
}
}
/* Create jittering if needed */
if (distr==PART_DISTR_JIT && ELEM(from,PART_FROM_FACE,PART_FROM_VOLUME)) {
jitlevel= part->userjit;
if (jitlevel == 0) {
jitlevel= totpart/totelem;
if (part->flag & PART_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
if (jitlevel<3) jitlevel= 3;
}
jit= MEM_callocN((2+ jitlevel*2)*sizeof(float), "jit");
/* for small amounts of particles we use regular jitter since it looks
* a bit better, for larger amounts we switch to hammersley sequence
* because it is much faster */
if (jitlevel < 25)
init_mv_jit(jit, jitlevel, psys->seed, part->jitfac);
else
hammersley_create(jit, jitlevel+1, psys->seed, part->jitfac);
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, psys->seed); /* for custom jit or even distribution */
}
/* Setup things for threaded distribution */
ctx->tree= tree;
ctx->seams= seams;
ctx->totseam= totseam;
ctx->sim.psys= psys;
ctx->index= particle_element;
ctx->jit= jit;
ctx->jitlevel= jitlevel;
ctx->jitoff= jitter_offset;
ctx->weight= element_weight;
ctx->maxweight= maxweight;
ctx->cfrom= cfrom;
ctx->distr= distr;
ctx->dm= dm;
ctx->tpars= tpars;
if (children) {
totpart= psys_render_simplify_distribution(ctx, totpart);
alloc_child_particles(psys, totpart);
}
return 1;
}
static void psys_task_init_distribute(ParticleTask *task, ParticleSimulationData *sim)
{
/* init random number generator */
int seed = 31415926 + sim->psys->seed;
task->rng = BLI_rng_new(seed);
}
static void distribute_particles_on_dm(ParticleSimulationData *sim, int from)
{
TaskScheduler *task_scheduler;
TaskPool *task_pool;
ParticleThreadContext ctx;
ParticleTask *tasks;
DerivedMesh *finaldm = sim->psmd->dm_final;
int i, totpart, numtasks;
/* create a task pool for distribution tasks */
if (!psys_thread_context_init_distribute(&ctx, sim, from))
return;
task_scheduler = BLI_task_scheduler_get();
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
totpart = (from == PART_FROM_CHILD ? sim->psys->totchild : sim->psys->totpart);
psys_tasks_create(&ctx, 0, totpart, &tasks, &numtasks);
for (i = 0; i < numtasks; ++i) {
ParticleTask *task = &tasks[i];
psys_task_init_distribute(task, sim);
if (from == PART_FROM_CHILD)
BLI_task_pool_push(task_pool, exec_distribute_child, task, false, TASK_PRIORITY_LOW);
else
BLI_task_pool_push(task_pool, exec_distribute_parent, task, false, TASK_PRIORITY_LOW);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
psys_calc_dmcache(sim->ob, finaldm, sim->psmd->dm_deformed, sim->psys);
if (ctx.dm != finaldm)
ctx.dm->release(ctx.dm);
psys_tasks_free(tasks, numtasks);
psys_thread_context_free(&ctx);
}
/* ready for future use, to emit particles without geometry */
static void distribute_particles_on_shape(ParticleSimulationData *sim, int UNUSED(from))
{
distribute_invalid(sim->scene, sim->psys, 0);
fprintf(stderr,"Shape emission not yet possible!\n");
}
void distribute_particles(ParticleSimulationData *sim, int from)
{
PARTICLE_PSMD;
int distr_error=0;
if (psmd) {
if (psmd->dm_final)
distribute_particles_on_dm(sim, from);
else
distr_error=1;
}
else
distribute_particles_on_shape(sim, from);
if (distr_error) {
distribute_invalid(sim->scene, sim->psys, from);
fprintf(stderr,"Particle distribution error!\n");
}
}
/* ======== Simplify ======== */
static float psys_render_viewport_falloff(double rate, float dist, float width)
{
return pow(rate, dist / width);
}
static float psys_render_projected_area(ParticleSystem *psys, const float center[3], float area, double vprate, float *viewport)
{
ParticleRenderData *data = psys->renderdata;
float co[4], view[3], ortho1[3], ortho2[3], w, dx, dy, radius;
/* transform to view space */
copy_v3_v3(co, center);
co[3] = 1.0f;
mul_m4_v4(data->viewmat, co);
/* compute two vectors orthogonal to view vector */
normalize_v3_v3(view, co);
ortho_basis_v3v3_v3(ortho1, ortho2, view);
/* compute on screen minification */
w = co[2] * data->winmat[2][3] + data->winmat[3][3];
dx = data->winx * ortho2[0] * data->winmat[0][0];
dy = data->winy * ortho2[1] * data->winmat[1][1];
w = sqrtf(dx * dx + dy * dy) / w;
/* w squared because we are working with area */
area = area * w * w;
/* viewport of the screen test */
/* project point on screen */
mul_m4_v4(data->winmat, co);
if (co[3] != 0.0f) {
co[0] = 0.5f * data->winx * (1.0f + co[0] / co[3]);
co[1] = 0.5f * data->winy * (1.0f + co[1] / co[3]);
}
/* screen space radius */
radius = sqrtf(area / (float)M_PI);
/* make smaller using fallof once over screen edge */
*viewport = 1.0f;
if (co[0] + radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[0] + radius), data->winx);
else if (co[0] - radius > data->winx)
*viewport *= psys_render_viewport_falloff(vprate, (co[0] - radius) - data->winx, data->winx);
if (co[1] + radius < 0.0f)
*viewport *= psys_render_viewport_falloff(vprate, -(co[1] + radius), data->winy);
else if (co[1] - radius > data->winy)
*viewport *= psys_render_viewport_falloff(vprate, (co[1] - radius) - data->winy, data->winy);
return area;
}
/* BMESH_TODO, for orig face data, we need to use MPoly */
static int psys_render_simplify_distribution(ParticleThreadContext *ctx, int tot)
{
DerivedMesh *dm = ctx->dm;
Mesh *me = (Mesh *)(ctx->sim.ob->data);
MFace *mf, *mface;
MVert *mvert;
ParticleRenderData *data;
ParticleRenderElem *elems, *elem;
ParticleSettings *part = ctx->sim.psys->part;
float *facearea, (*facecenter)[3], size[3], fac, powrate, scaleclamp;
float co1[3], co2[3], co3[3], co4[3], lambda, arearatio, t, area, viewport;
double vprate;
int *facetotvert;
int a, b, totorigface, totface, newtot, skipped;
/* double lookup */
const int *index_mf_to_mpoly;
const int *index_mp_to_orig;
if (part->ren_as != PART_DRAW_PATH || !(part->draw & PART_DRAW_REN_STRAND))
return tot;
if (!ctx->sim.psys->renderdata)
return tot;
data = ctx->sim.psys->renderdata;
if (data->timeoffset)
return 0;
if (!(part->simplify_flag & PART_SIMPLIFY_ENABLE))
return tot;
mvert = dm->getVertArray(dm);
mface = dm->getTessFaceArray(dm);
totface = dm->getNumTessFaces(dm);
totorigface = me->totpoly;
if (totface == 0 || totorigface == 0)
return tot;
index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
facearea = MEM_callocN(sizeof(float) * totorigface, "SimplifyFaceArea");
facecenter = MEM_callocN(sizeof(float[3]) * totorigface, "SimplifyFaceCenter");
facetotvert = MEM_callocN(sizeof(int) * totorigface, "SimplifyFaceArea");
elems = MEM_callocN(sizeof(ParticleRenderElem) * totorigface, "SimplifyFaceElem");
if (data->elems)
MEM_freeN(data->elems);
data->do_simplify = true;
data->elems = elems;
data->index_mf_to_mpoly = index_mf_to_mpoly;
data->index_mp_to_orig = index_mp_to_orig;
/* compute number of children per original face */
for (a = 0; a < tot; a++) {
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
if (b != ORIGINDEX_NONE) {
elems[b].totchild++;
}
}
/* compute areas and centers of original faces */
for (mf = mface, a = 0; a < totface; a++, mf++) {
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
if (b != ORIGINDEX_NONE) {
copy_v3_v3(co1, mvert[mf->v1].co);
copy_v3_v3(co2, mvert[mf->v2].co);
copy_v3_v3(co3, mvert[mf->v3].co);
add_v3_v3(facecenter[b], co1);
add_v3_v3(facecenter[b], co2);
add_v3_v3(facecenter[b], co3);
if (mf->v4) {
copy_v3_v3(co4, mvert[mf->v4].co);
add_v3_v3(facecenter[b], co4);
facearea[b] += area_quad_v3(co1, co2, co3, co4);
facetotvert[b] += 4;
}
else {
facearea[b] += area_tri_v3(co1, co2, co3);
facetotvert[b] += 3;
}
}
}
for (a = 0; a < totorigface; a++)
if (facetotvert[a] > 0)
mul_v3_fl(facecenter[a], 1.0f / facetotvert[a]);
/* for conversion from BU area / pixel area to reference screen size */
BKE_mesh_texspace_get(me, 0, 0, size);
fac = ((size[0] + size[1] + size[2]) / 3.0f) / part->simplify_refsize;
fac = fac * fac;
powrate = log(0.5f) / log(part->simplify_rate * 0.5f);
if (part->simplify_flag & PART_SIMPLIFY_VIEWPORT)
vprate = pow(1.0f - part->simplify_viewport, 5.0);
else
vprate = 1.0;
/* set simplification parameters per original face */
for (a = 0, elem = elems; a < totorigface; a++, elem++) {
area = psys_render_projected_area(ctx->sim.psys, facecenter[a], facearea[a], vprate, &viewport);
arearatio = fac * area / facearea[a];
if ((arearatio < 1.0f || viewport < 1.0f) && elem->totchild) {
/* lambda is percentage of elements to keep */
lambda = (arearatio < 1.0f) ? powf(arearatio, powrate) : 1.0f;
lambda *= viewport;
lambda = MAX2(lambda, 1.0f / elem->totchild);
/* compute transition region */
t = part->simplify_transition;
elem->t = (lambda - t < 0.0f) ? lambda : (lambda + t > 1.0f) ? 1.0f - lambda : t;
elem->reduce = 1;
/* scale at end and beginning of the transition region */
elem->scalemax = (lambda + t < 1.0f) ? 1.0f / lambda : 1.0f / (1.0f - elem->t * elem->t / t);
elem->scalemin = (lambda + t < 1.0f) ? 0.0f : elem->scalemax * (1.0f - elem->t / t);
elem->scalemin = sqrtf(elem->scalemin);
elem->scalemax = sqrtf(elem->scalemax);
/* clamp scaling */
scaleclamp = (float)min_ii(elem->totchild, 10);
elem->scalemin = MIN2(scaleclamp, elem->scalemin);
elem->scalemax = MIN2(scaleclamp, elem->scalemax);
/* extend lambda to include transition */
lambda = lambda + elem->t;
if (lambda > 1.0f)
lambda = 1.0f;
}
else {
lambda = arearatio;
elem->scalemax = 1.0f; //sqrt(lambda);
elem->scalemin = 1.0f; //sqrt(lambda);
elem->reduce = 0;
}
elem->lambda = lambda;
elem->scalemin = sqrtf(elem->scalemin);
elem->scalemax = sqrtf(elem->scalemax);
elem->curchild = 0;
}
MEM_freeN(facearea);
MEM_freeN(facecenter);
MEM_freeN(facetotvert);
/* move indices and set random number skipping */
ctx->skip = MEM_callocN(sizeof(int) * tot, "SimplificationSkip");
skipped = 0;
for (a = 0, newtot = 0; a < tot; a++) {
b = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, ctx->index[a]) : ctx->index[a];
if (b != ORIGINDEX_NONE) {
if (elems[b].curchild++ < ceil(elems[b].lambda * elems[b].totchild)) {
ctx->index[newtot] = ctx->index[a];
ctx->skip[newtot] = skipped;
skipped = 0;
newtot++;
}
else skipped++;
}
else skipped++;
}
for (a = 0, elem = elems; a < totorigface; a++, elem++)
elem->curchild = 0;
return newtot;
}