Files
blender/source/blender/blenkernel/intern/material.c
2019-01-03 12:25:37 +11:00

1434 lines
34 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/material.c
* \ingroup bke
*/
#include <string.h>
#include <math.h>
#include <stddef.h>
#include "MEM_guardedalloc.h"
#include "DNA_anim_types.h"
#include "DNA_collection_types.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_customdata_types.h"
#include "DNA_gpencil_types.h"
#include "DNA_ID.h"
#include "DNA_meta_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_listbase.h"
#include "BLI_utildefines.h"
#include "BLI_string.h"
#include "BLI_array_utils.h"
#include "BKE_animsys.h"
#include "BKE_brush.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_gpencil.h"
#include "BKE_icons.h"
#include "BKE_image.h"
#include "BKE_library.h"
#include "BKE_library_query.h"
#include "BKE_library_remap.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_scene.h"
#include "BKE_node.h"
#include "BKE_curve.h"
#include "BKE_editmesh.h"
#include "BKE_font.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_build.h"
#include "GPU_material.h"
/* used in UI and render */
Material defmaterial;
/* called on startup, creator.c */
void init_def_material(void)
{
BKE_material_init(&defmaterial);
}
/** Free (or release) any data used by this material (does not free the material itself). */
void BKE_material_free(Material *ma)
{
BKE_animdata_free((ID *)ma, false);
/* Free gpu material before the ntree */
GPU_material_free(&ma->gpumaterial);
/* is no lib link block, but material extension */
if (ma->nodetree) {
ntreeFreeNestedTree(ma->nodetree);
MEM_freeN(ma->nodetree);
ma->nodetree = NULL;
}
MEM_SAFE_FREE(ma->texpaintslot);
MEM_SAFE_FREE(ma->gp_style);
BKE_icon_id_delete((ID *)ma);
BKE_previewimg_free(&ma->preview);
}
void BKE_material_init_gpencil_settings(Material *ma)
{
if ((ma) && (ma->gp_style == NULL)) {
ma->gp_style = MEM_callocN(sizeof(MaterialGPencilStyle), "Grease Pencil Material Settings");
MaterialGPencilStyle *gp_style = ma->gp_style;
/* set basic settings */
gp_style->stroke_rgba[3] = 1.0f;
gp_style->pattern_gridsize = 0.1f;
gp_style->gradient_radius = 0.5f;
ARRAY_SET_ITEMS(gp_style->mix_rgba, 1.0f, 1.0f, 1.0f, 0.2f);
ARRAY_SET_ITEMS(gp_style->gradient_scale, 1.0f, 1.0f);
ARRAY_SET_ITEMS(gp_style->texture_scale, 1.0f, 1.0f);
gp_style->texture_opacity = 1.0f;
gp_style->texture_pixsize = 100.0f;
gp_style->flag |= GP_STYLE_STROKE_SHOW;
gp_style->flag |= GP_STYLE_FILL_SHOW;
}
}
void BKE_material_init(Material *ma)
{
BLI_assert(MEMCMP_STRUCT_OFS_IS_ZERO(ma, id));
ma->r = ma->g = ma->b = 0.8;
ma->specr = ma->specg = ma->specb = 1.0;
// ma->alpha = 1.0; /* DEPRECATED */
ma->spec = 0.5;
ma->roughness = 0.25f;
ma->pr_lamp = 3; /* two lamps, is bits */
ma->pr_type = MA_SPHERE;
ma->preview = NULL;
ma->alpha_threshold = 0.5f;
}
Material *BKE_material_add(Main *bmain, const char *name)
{
Material *ma;
ma = BKE_libblock_alloc(bmain, ID_MA, name, 0);
BKE_material_init(ma);
return ma;
}
Material *BKE_material_add_gpencil(Main *bmain, const char *name)
{
Material *ma;
ma = BKE_material_add(bmain, name);
/* grease pencil settings */
if (ma != NULL) {
BKE_material_init_gpencil_settings(ma);
BKE_brush_update_material(bmain, ma, NULL);
}
return ma;
}
/**
* Only copy internal data of Material ID from source to already allocated/initialized destination.
* You probably nerver want to use that directly, use id_copy or BKE_id_copy_ex for typical needs.
*
* WARNING! This function will not handle ID user count!
*
* \param flag: Copying options (see BKE_library.h's LIB_ID_COPY_... flags for more).
*/
void BKE_material_copy_data(Main *bmain, Material *ma_dst, const Material *ma_src, const int flag)
{
if (ma_src->nodetree) {
/* Note: nodetree is *not* in bmain, however this specific case is handled at lower level
* (see BKE_libblock_copy_ex()). */
BKE_id_copy_ex(bmain, (ID *)ma_src->nodetree, (ID **)&ma_dst->nodetree, flag, false);
}
if ((flag & LIB_ID_COPY_NO_PREVIEW) == 0) {
BKE_previewimg_id_copy(&ma_dst->id, &ma_src->id);
}
else {
ma_dst->preview = NULL;
}
if (ma_src->texpaintslot != NULL) {
ma_dst->texpaintslot = MEM_dupallocN(ma_src->texpaintslot);
}
if (ma_src->gp_style != NULL) {
ma_dst->gp_style = MEM_dupallocN(ma_src->gp_style);
}
BLI_listbase_clear(&ma_dst->gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
}
Material *BKE_material_copy(Main *bmain, const Material *ma)
{
Material *ma_copy;
BKE_id_copy_ex(bmain, &ma->id, (ID **)&ma_copy, 0, false);
return ma_copy;
}
/* XXX (see above) material copy without adding to main dbase */
Material *BKE_material_localize(Material *ma)
{
/* TODO(bastien): Replace with something like:
*
* Material *ma_copy;
* BKE_id_copy_ex(bmain, &ma->id, (ID **)&ma_copy,
* LIB_ID_COPY_NO_MAIN | LIB_ID_COPY_NO_PREVIEW | LIB_ID_COPY_NO_USER_REFCOUNT,
* false);
* return ma_copy;
*
* NOTE: Only possible once nested node trees are fully converted to that too. */
Material *man = BKE_libblock_copy_for_localize(&ma->id);
man->texpaintslot = NULL;
man->preview = NULL;
if (ma->nodetree != NULL) {
man->nodetree = ntreeLocalize(ma->nodetree);
}
if (ma->gp_style != NULL) {
man->gp_style = MEM_dupallocN(ma->gp_style);
}
BLI_listbase_clear(&man->gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
man->id.tag |= LIB_TAG_LOCALIZED;
return man;
}
void BKE_material_make_local(Main *bmain, Material *ma, const bool lib_local)
{
BKE_id_make_local_generic(bmain, &ma->id, true, lib_local);
}
Material ***give_matarar(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
bGPdata *gpd;
if (ob->type == OB_MESH) {
me = ob->data;
return &(me->mat);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT, OB_SURF)) {
cu = ob->data;
return &(cu->mat);
}
else if (ob->type == OB_MBALL) {
mb = ob->data;
return &(mb->mat);
}
else if (ob->type == OB_GPENCIL) {
gpd = ob->data;
return &(gpd->mat);
}
return NULL;
}
short *give_totcolp(Object *ob)
{
Mesh *me;
Curve *cu;
MetaBall *mb;
bGPdata *gpd;
if (ob->type == OB_MESH) {
me = ob->data;
return &(me->totcol);
}
else if (ELEM(ob->type, OB_CURVE, OB_FONT, OB_SURF)) {
cu = ob->data;
return &(cu->totcol);
}
else if (ob->type == OB_MBALL) {
mb = ob->data;
return &(mb->totcol);
}
else if (ob->type == OB_GPENCIL) {
gpd = ob->data;
return &(gpd->totcol);
}
return NULL;
}
/* same as above but for ID's */
Material ***give_matarar_id(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->mat);
case ID_CU:
return &(((Curve *)id)->mat);
case ID_MB:
return &(((MetaBall *)id)->mat);
case ID_GD:
return &(((bGPdata *)id)->mat);
default:
break;
}
return NULL;
}
short *give_totcolp_id(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
return &(((Mesh *)id)->totcol);
case ID_CU:
return &(((Curve *)id)->totcol);
case ID_MB:
return &(((MetaBall *)id)->totcol);
case ID_GD:
return &(((bGPdata *)id)->totcol);
default:
break;
}
return NULL;
}
static void material_data_index_remove_id(ID *id, short index)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
BKE_mesh_material_index_remove((Mesh *)id, index);
break;
case ID_CU:
BKE_curve_material_index_remove((Curve *)id, index);
break;
case ID_MB:
/* meta-elems don't have materials atm */
break;
case ID_GD:
BKE_gpencil_material_index_remove((bGPdata *)id, index);
break;
default:
break;
}
}
static void material_data_index_clear_id(ID *id)
{
/* ensure we don't try get materials from non-obdata */
BLI_assert(OB_DATA_SUPPORT_ID(GS(id->name)));
switch (GS(id->name)) {
case ID_ME:
BKE_mesh_material_index_clear((Mesh *)id);
break;
case ID_CU:
BKE_curve_material_index_clear((Curve *)id);
break;
case ID_MB:
/* meta-elems don't have materials atm */
break;
default:
break;
}
}
void BKE_material_resize_id(Main *bmain, ID *id, short totcol, bool do_id_user)
{
Material ***matar = give_matarar_id(id);
short *totcolp = give_totcolp_id(id);
if (matar == NULL) {
return;
}
if (do_id_user && totcol < (*totcolp)) {
short i;
for (i = totcol; i < (*totcolp); i++) {
id_us_min((ID *)(*matar)[i]);
}
}
if (totcol == 0) {
if (*totcolp) {
MEM_freeN(*matar);
*matar = NULL;
}
}
else {
*matar = MEM_recallocN(*matar, sizeof(void *) * totcol);
}
*totcolp = totcol;
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
void BKE_material_append_id(Main *bmain, ID *id, Material *ma)
{
Material ***matar;
if ((matar = give_matarar_id(id))) {
short *totcol = give_totcolp_id(id);
Material **mat = MEM_callocN(sizeof(void *) * ((*totcol) + 1), "newmatar");
if (*totcol) memcpy(mat, *matar, sizeof(void *) * (*totcol));
if (*matar) MEM_freeN(*matar);
*matar = mat;
(*matar)[(*totcol)++] = ma;
id_us_plus((ID *)ma);
test_all_objects_materials(bmain, id);
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
Material *BKE_material_pop_id(Main *bmain, ID *id, int index_i, bool update_data)
{
short index = (short)index_i;
Material *ret = NULL;
Material ***matar;
if ((matar = give_matarar_id(id))) {
short *totcol = give_totcolp_id(id);
if (index >= 0 && index < (*totcol)) {
ret = (*matar)[index];
id_us_min((ID *)ret);
if (*totcol <= 1) {
*totcol = 0;
MEM_freeN(*matar);
*matar = NULL;
}
else {
if (index + 1 != (*totcol))
memmove((*matar) + index, (*matar) + (index + 1), sizeof(void *) * ((*totcol) - (index + 1)));
(*totcol)--;
*matar = MEM_reallocN(*matar, sizeof(void *) * (*totcol));
test_all_objects_materials(bmain, id);
}
if (update_data) {
/* decrease mat_nr index */
material_data_index_remove_id(id, index);
}
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
return ret;
}
void BKE_material_clear_id(Main *bmain, ID *id, bool update_data)
{
Material ***matar;
if ((matar = give_matarar_id(id))) {
short *totcol = give_totcolp_id(id);
while ((*totcol)--) {
id_us_min((ID *)((*matar)[*totcol]));
}
*totcol = 0;
if (*matar) {
MEM_freeN(*matar);
*matar = NULL;
}
if (update_data) {
/* decrease mat_nr index */
material_data_index_clear_id(id);
}
DEG_id_tag_update(id, ID_RECALC_COPY_ON_WRITE);
DEG_relations_tag_update(bmain);
}
}
Material **give_current_material_p(Object *ob, short act)
{
Material ***matarar, **ma_p;
const short *totcolp;
if (ob == NULL) return NULL;
/* if object cannot have material, (totcolp == NULL) */
totcolp = give_totcolp(ob);
if (totcolp == NULL || ob->totcol == 0) return NULL;
/* return NULL for invalid 'act', can happen for mesh face indices */
if (act > ob->totcol)
return NULL;
else if (act <= 0) {
if (act < 0) {
printf("Negative material index!\n");
}
return NULL;
}
if (ob->matbits && ob->matbits[act - 1]) { /* in object */
ma_p = &ob->mat[act - 1];
}
else { /* in data */
/* check for inconsistency */
if (*totcolp < ob->totcol)
ob->totcol = *totcolp;
if (act > ob->totcol) act = ob->totcol;
matarar = give_matarar(ob);
if (matarar && *matarar) {
ma_p = &(*matarar)[act - 1];
}
else {
ma_p = NULL;
}
}
return ma_p;
}
Material *give_current_material(Object *ob, short act)
{
Material **ma_p = give_current_material_p(ob, act);
return ma_p ? *ma_p : NULL;
}
MaterialGPencilStyle *BKE_material_gpencil_settings_get(Object *ob, short act)
{
Material *ma = give_current_material(ob, act);
if (ma != NULL) {
if (ma->gp_style == NULL) {
BKE_material_init_gpencil_settings(ma);
}
return ma->gp_style;
}
else {
return NULL;
}
}
Material *give_node_material(Material *ma)
{
if (ma && ma->use_nodes && ma->nodetree) {
bNode *node = nodeGetActiveID(ma->nodetree, ID_MA);
if (node)
return (Material *)node->id;
}
return NULL;
}
void BKE_material_resize_object(Main *bmain, Object *ob, const short totcol, bool do_id_user)
{
Material **newmatar;
char *newmatbits;
if (do_id_user && totcol < ob->totcol) {
short i;
for (i = totcol; i < ob->totcol; i++) {
id_us_min((ID *)ob->mat[i]);
}
}
if (totcol == 0) {
if (ob->totcol) {
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
ob->mat = NULL;
ob->matbits = NULL;
}
}
else if (ob->totcol < totcol) {
newmatar = MEM_callocN(sizeof(void *) * totcol, "newmatar");
newmatbits = MEM_callocN(sizeof(char) * totcol, "newmatbits");
if (ob->totcol) {
memcpy(newmatar, ob->mat, sizeof(void *) * ob->totcol);
memcpy(newmatbits, ob->matbits, sizeof(char) * ob->totcol);
MEM_freeN(ob->mat);
MEM_freeN(ob->matbits);
}
ob->mat = newmatar;
ob->matbits = newmatbits;
}
/* XXX, why not realloc on shrink? - campbell */
ob->totcol = totcol;
if (ob->totcol && ob->actcol == 0) ob->actcol = 1;
if (ob->actcol > ob->totcol) ob->actcol = ob->totcol;
DEG_id_tag_update(&ob->id, ID_RECALC_COPY_ON_WRITE | ID_RECALC_GEOMETRY);
DEG_relations_tag_update(bmain);
}
void test_object_materials(Main *bmain, Object *ob, ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
const short *totcol;
if (id == NULL || (totcol = give_totcolp_id(id)) == NULL) {
return;
}
BKE_material_resize_object(bmain, ob, *totcol, false);
}
void test_all_objects_materials(Main *bmain, ID *id)
{
/* make the ob mat-array same size as 'ob->data' mat-array */
Object *ob;
const short *totcol;
if (id == NULL || (totcol = give_totcolp_id(id)) == NULL) {
return;
}
BKE_main_lock(bmain);
for (ob = bmain->object.first; ob; ob = ob->id.next) {
if (ob->data == id) {
BKE_material_resize_object(bmain, ob, *totcol, false);
}
}
BKE_main_unlock(bmain);
}
void assign_material_id(Main *bmain, ID *id, Material *ma, short act)
{
Material *mao, **matar, ***matarar;
short *totcolp;
if (act > MAXMAT) return;
if (act < 1) act = 1;
/* test arraylens */
totcolp = give_totcolp_id(id);
matarar = give_matarar_id(id);
if (totcolp == NULL || matarar == NULL) return;
if (act > *totcolp) {
matar = MEM_callocN(sizeof(void *) * act, "matarray1");
if (*totcolp) {
memcpy(matar, *matarar, sizeof(void *) * (*totcolp));
MEM_freeN(*matarar);
}
*matarar = matar;
*totcolp = act;
}
/* in data */
mao = (*matarar)[act - 1];
if (mao)
id_us_min(&mao->id);
(*matarar)[act - 1] = ma;
if (ma)
id_us_plus(&ma->id);
test_all_objects_materials(bmain, id);
}
void assign_material(Main *bmain, Object *ob, Material *ma, short act, int assign_type)
{
Material *mao, **matar, ***matarar;
short *totcolp;
char bit = 0;
if (act > MAXMAT) return;
if (act < 1) act = 1;
/* prevent crashing when using accidentally */
BLI_assert(!ID_IS_LINKED(ob));
if (ID_IS_LINKED(ob)) return;
/* test arraylens */
totcolp = give_totcolp(ob);
matarar = give_matarar(ob);
if (totcolp == NULL || matarar == NULL) return;
if (act > *totcolp) {
matar = MEM_callocN(sizeof(void *) * act, "matarray1");
if (*totcolp) {
memcpy(matar, *matarar, sizeof(void *) * (*totcolp));
MEM_freeN(*matarar);
}
*matarar = matar;
*totcolp = act;
}
if (act > ob->totcol) {
/* Need more space in the material arrays */
ob->mat = MEM_recallocN_id(ob->mat, sizeof(void *) * act, "matarray2");
ob->matbits = MEM_recallocN_id(ob->matbits, sizeof(char) * act, "matbits1");
ob->totcol = act;
}
/* Determine the object/mesh linking */
if (assign_type == BKE_MAT_ASSIGN_EXISTING) {
/* keep existing option (avoid confusion in scripts),
* intentionally ignore userpref (default to obdata). */
bit = ob->matbits[act - 1];
}
else if (assign_type == BKE_MAT_ASSIGN_USERPREF && ob->totcol && ob->actcol) {
/* copy from previous material */
bit = ob->matbits[ob->actcol - 1];
}
else {
switch (assign_type) {
case BKE_MAT_ASSIGN_OBDATA:
bit = 0;
break;
case BKE_MAT_ASSIGN_OBJECT:
bit = 1;
break;
case BKE_MAT_ASSIGN_USERPREF:
default:
bit = (U.flag & USER_MAT_ON_OB) ? 1 : 0;
break;
}
}
/* do it */
ob->matbits[act - 1] = bit;
if (bit == 1) { /* in object */
mao = ob->mat[act - 1];
if (mao)
id_us_min(&mao->id);
ob->mat[act - 1] = ma;
test_object_materials(bmain, ob, ob->data);
}
else { /* in data */
mao = (*matarar)[act - 1];
if (mao)
id_us_min(&mao->id);
(*matarar)[act - 1] = ma;
test_all_objects_materials(bmain, ob->data); /* Data may be used by several objects... */
}
if (ma)
id_us_plus(&ma->id);
}
void BKE_material_remap_object(Object *ob, const unsigned int *remap)
{
Material ***matar = give_matarar(ob);
const short *totcol_p = give_totcolp(ob);
BLI_array_permute(ob->mat, ob->totcol, remap);
if (ob->matbits) {
BLI_array_permute(ob->matbits, ob->totcol, remap);
}
if (matar) {
BLI_array_permute(*matar, *totcol_p, remap);
}
if (ob->type == OB_MESH) {
BKE_mesh_material_remap(ob->data, remap, ob->totcol);
}
else if (ELEM(ob->type, OB_CURVE, OB_SURF, OB_FONT)) {
BKE_curve_material_remap(ob->data, remap, ob->totcol);
}
else if (ob->type == OB_GPENCIL) {
BKE_gpencil_material_remap(ob->data, remap, ob->totcol);
}
else {
/* add support for this object data! */
BLI_assert(matar == NULL);
}
}
/**
* Calculate a material remapping from \a ob_src to \a ob_dst.
*
* \param remap_src_to_dst: An array the size of `ob_src->totcol`
* where index values are filled in which map to \a ob_dst materials.
*/
void BKE_material_remap_object_calc(
Object *ob_dst, Object *ob_src,
short *remap_src_to_dst)
{
if (ob_src->totcol == 0) {
return;
}
GHash *gh_mat_map = BLI_ghash_ptr_new_ex(__func__, ob_src->totcol);
for (int i = 0; i < ob_dst->totcol; i++) {
Material *ma_src = give_current_material(ob_dst, i + 1);
BLI_ghash_reinsert(gh_mat_map, ma_src, POINTER_FROM_INT(i), NULL, NULL);
}
/* setup default mapping (when materials don't match) */
{
int i = 0;
if (ob_dst->totcol >= ob_src->totcol) {
for (; i < ob_src->totcol; i++) {
remap_src_to_dst[i] = i;
}
}
else {
for (; i < ob_dst->totcol; i++) {
remap_src_to_dst[i] = i;
}
for (; i < ob_src->totcol; i++) {
remap_src_to_dst[i] = 0;
}
}
}
for (int i = 0; i < ob_src->totcol; i++) {
Material *ma_src = give_current_material(ob_src, i + 1);
if ((i < ob_dst->totcol) && (ma_src == give_current_material(ob_dst, i + 1))) {
/* when objects have exact matching materials - keep existing index */
}
else {
void **index_src_p = BLI_ghash_lookup_p(gh_mat_map, ma_src);
if (index_src_p) {
remap_src_to_dst[i] = POINTER_AS_INT(*index_src_p);
}
}
}
BLI_ghash_free(gh_mat_map, NULL, NULL);
}
/* XXX - this calls many more update calls per object then are needed, could be optimized */
void assign_matarar(Main *bmain, struct Object *ob, struct Material ***matar, short totcol)
{
int actcol_orig = ob->actcol;
short i;
while ((ob->totcol > totcol) &&
BKE_object_material_slot_remove(bmain, ob))
{
/* pass */
}
/* now we have the right number of slots */
for (i = 0; i < totcol; i++)
assign_material(bmain, ob, (*matar)[i], i + 1, BKE_MAT_ASSIGN_USERPREF);
if (actcol_orig > ob->totcol)
actcol_orig = ob->totcol;
ob->actcol = actcol_orig;
}
short BKE_object_material_slot_find_index(Object *ob, Material *ma)
{
Material ***matarar;
short a, *totcolp;
if (ma == NULL) return 0;
totcolp = give_totcolp(ob);
matarar = give_matarar(ob);
if (totcolp == NULL || matarar == NULL) return 0;
for (a = 0; a < *totcolp; a++)
if ((*matarar)[a] == ma)
break;
if (a < *totcolp)
return a + 1;
return 0;
}
bool BKE_object_material_slot_add(Main *bmain, Object *ob)
{
if (ob == NULL) return false;
if (ob->totcol >= MAXMAT) return false;
assign_material(bmain, ob, NULL, ob->totcol + 1, BKE_MAT_ASSIGN_USERPREF);
ob->actcol = ob->totcol;
return true;
}
/* ****************** */
bool BKE_object_material_slot_remove(Main *bmain, Object *ob)
{
Material *mao, ***matarar;
short *totcolp;
short a, actcol;
if (ob == NULL || ob->totcol == 0) {
return false;
}
/* this should never happen and used to crash */
if (ob->actcol <= 0) {
printf("%s: invalid material index %d, report a bug!\n", __func__, ob->actcol);
BLI_assert(0);
return false;
}
/* take a mesh/curve/mball as starting point, remove 1 index,
* AND with all objects that share the ob->data
*
* after that check indices in mesh/curve/mball!!!
*/
totcolp = give_totcolp(ob);
matarar = give_matarar(ob);
if (ELEM(NULL, matarar, *matarar)) {
return false;
}
/* can happen on face selection in editmode */
if (ob->actcol > ob->totcol) {
ob->actcol = ob->totcol;
}
/* we delete the actcol */
mao = (*matarar)[ob->actcol - 1];
if (mao)
id_us_min(&mao->id);
for (a = ob->actcol; a < ob->totcol; a++)
(*matarar)[a - 1] = (*matarar)[a];
(*totcolp)--;
if (*totcolp == 0) {
MEM_freeN(*matarar);
*matarar = NULL;
}
actcol = ob->actcol;
for (Object *obt = bmain->object.first; obt; obt = obt->id.next) {
if (obt->data == ob->data) {
/* Can happen when object material lists are used, see: T52953 */
if (actcol > obt->totcol) {
continue;
}
/* WATCH IT: do not use actcol from ob or from obt (can become zero) */
mao = obt->mat[actcol - 1];
if (mao)
id_us_min(&mao->id);
for (a = actcol; a < obt->totcol; a++) {
obt->mat[a - 1] = obt->mat[a];
obt->matbits[a - 1] = obt->matbits[a];
}
obt->totcol--;
if (obt->actcol > obt->totcol) obt->actcol = obt->totcol;
if (obt->totcol == 0) {
MEM_freeN(obt->mat);
MEM_freeN(obt->matbits);
obt->mat = NULL;
obt->matbits = NULL;
}
}
}
/* check indices from mesh */
if (ELEM(ob->type, OB_MESH, OB_CURVE, OB_SURF, OB_FONT, OB_GPENCIL)) {
material_data_index_remove_id((ID *)ob->data, actcol - 1);
if (ob->runtime.curve_cache) {
BKE_displist_free(&ob->runtime.curve_cache->disp);
}
}
return true;
}
static bNode *nodetree_uv_node_recursive(bNode *node)
{
bNode *inode;
bNodeSocket *sock;
for (sock = node->inputs.first; sock; sock = sock->next) {
if (sock->link) {
inode = sock->link->fromnode;
if (inode->typeinfo->nclass == NODE_CLASS_INPUT && inode->typeinfo->type == SH_NODE_UVMAP) {
return inode;
}
else {
return nodetree_uv_node_recursive(inode);
}
}
}
return NULL;
}
static int count_texture_nodes_recursive(bNodeTree *nodetree)
{
int tex_nodes = 0;
for (bNode *node = nodetree->nodes.first; node; node = node->next) {
if (node->typeinfo->nclass == NODE_CLASS_TEXTURE && node->typeinfo->type == SH_NODE_TEX_IMAGE && node->id) {
tex_nodes++;
}
else if (node->type == NODE_GROUP) {
/* recurse into the node group and see if it contains any textures */
tex_nodes += count_texture_nodes_recursive((bNodeTree *)node->id);
}
}
return tex_nodes;
}
static void fill_texpaint_slots_recursive(bNodeTree *nodetree, bNode *active_node, Material *ma, int *index)
{
for (bNode *node = nodetree->nodes.first; node; node = node->next) {
if (node->typeinfo->nclass == NODE_CLASS_TEXTURE && node->typeinfo->type == SH_NODE_TEX_IMAGE && node->id) {
if (active_node == node) {
ma->paint_active_slot = *index;
}
ma->texpaintslot[*index].ima = (Image *)node->id;
/* for new renderer, we need to traverse the treeback in search of a UV node */
bNode *uvnode = nodetree_uv_node_recursive(node);
if (uvnode) {
NodeShaderUVMap *storage = (NodeShaderUVMap *)uvnode->storage;
ma->texpaintslot[*index].uvname = storage->uv_map;
/* set a value to index so UI knows that we have a valid pointer for the mesh */
ma->texpaintslot[*index].valid = true;
}
else {
/* just invalidate the index here so UV map does not get displayed on the UI */
ma->texpaintslot[*index].valid = false;
}
(*index)++;
}
else if (node->type == NODE_GROUP) {
/* recurse into the node group and see if it contains any textures */
fill_texpaint_slots_recursive((bNodeTree *)node->id, active_node, ma, index);
}
}
}
void BKE_texpaint_slot_refresh_cache(Scene *scene, Material *ma)
{
int count = 0;
int index = 0;
if (!ma)
return;
if (ma->texpaintslot) {
MEM_freeN(ma->texpaintslot);
ma->tot_slots = 0;
ma->texpaintslot = NULL;
}
if (scene->toolsettings->imapaint.mode == IMAGEPAINT_MODE_IMAGE) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
if (!(ma->nodetree)) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
count = count_texture_nodes_recursive(ma->nodetree);
if (count == 0) {
ma->paint_active_slot = 0;
ma->paint_clone_slot = 0;
return;
}
ma->texpaintslot = MEM_callocN(sizeof(*ma->texpaintslot) * count, "texpaint_slots");
bNode *active_node = nodeGetActiveTexture(ma->nodetree);
fill_texpaint_slots_recursive(ma->nodetree, active_node, ma, &index);
ma->tot_slots = count;
if (ma->paint_active_slot >= count) {
ma->paint_active_slot = count - 1;
}
if (ma->paint_clone_slot >= count) {
ma->paint_clone_slot = count - 1;
}
return;
}
void BKE_texpaint_slots_refresh_object(Scene *scene, struct Object *ob)
{
int i;
for (i = 1; i < ob->totcol + 1; i++) {
Material *ma = give_current_material(ob, i);
BKE_texpaint_slot_refresh_cache(scene, ma);
}
}
/* r_col = current value, col = new value, (fac == 0) is no change */
void ramp_blend(int type, float r_col[3], const float fac, const float col[3])
{
float tmp, facm = 1.0f - fac;
switch (type) {
case MA_RAMP_BLEND:
r_col[0] = facm * (r_col[0]) + fac * col[0];
r_col[1] = facm * (r_col[1]) + fac * col[1];
r_col[2] = facm * (r_col[2]) + fac * col[2];
break;
case MA_RAMP_ADD:
r_col[0] += fac * col[0];
r_col[1] += fac * col[1];
r_col[2] += fac * col[2];
break;
case MA_RAMP_MULT:
r_col[0] *= (facm + fac * col[0]);
r_col[1] *= (facm + fac * col[1]);
r_col[2] *= (facm + fac * col[2]);
break;
case MA_RAMP_SCREEN:
r_col[0] = 1.0f - (facm + fac * (1.0f - col[0])) * (1.0f - r_col[0]);
r_col[1] = 1.0f - (facm + fac * (1.0f - col[1])) * (1.0f - r_col[1]);
r_col[2] = 1.0f - (facm + fac * (1.0f - col[2])) * (1.0f - r_col[2]);
break;
case MA_RAMP_OVERLAY:
if (r_col[0] < 0.5f)
r_col[0] *= (facm + 2.0f * fac * col[0]);
else
r_col[0] = 1.0f - (facm + 2.0f * fac * (1.0f - col[0])) * (1.0f - r_col[0]);
if (r_col[1] < 0.5f)
r_col[1] *= (facm + 2.0f * fac * col[1]);
else
r_col[1] = 1.0f - (facm + 2.0f * fac * (1.0f - col[1])) * (1.0f - r_col[1]);
if (r_col[2] < 0.5f)
r_col[2] *= (facm + 2.0f * fac * col[2]);
else
r_col[2] = 1.0f - (facm + 2.0f * fac * (1.0f - col[2])) * (1.0f - r_col[2]);
break;
case MA_RAMP_SUB:
r_col[0] -= fac * col[0];
r_col[1] -= fac * col[1];
r_col[2] -= fac * col[2];
break;
case MA_RAMP_DIV:
if (col[0] != 0.0f)
r_col[0] = facm * (r_col[0]) + fac * (r_col[0]) / col[0];
if (col[1] != 0.0f)
r_col[1] = facm * (r_col[1]) + fac * (r_col[1]) / col[1];
if (col[2] != 0.0f)
r_col[2] = facm * (r_col[2]) + fac * (r_col[2]) / col[2];
break;
case MA_RAMP_DIFF:
r_col[0] = facm * (r_col[0]) + fac * fabsf(r_col[0] - col[0]);
r_col[1] = facm * (r_col[1]) + fac * fabsf(r_col[1] - col[1]);
r_col[2] = facm * (r_col[2]) + fac * fabsf(r_col[2] - col[2]);
break;
case MA_RAMP_DARK:
r_col[0] = min_ff(r_col[0], col[0]) * fac + r_col[0] * facm;
r_col[1] = min_ff(r_col[1], col[1]) * fac + r_col[1] * facm;
r_col[2] = min_ff(r_col[2], col[2]) * fac + r_col[2] * facm;
break;
case MA_RAMP_LIGHT:
tmp = fac * col[0];
if (tmp > r_col[0]) r_col[0] = tmp;
tmp = fac * col[1];
if (tmp > r_col[1]) r_col[1] = tmp;
tmp = fac * col[2];
if (tmp > r_col[2]) r_col[2] = tmp;
break;
case MA_RAMP_DODGE:
if (r_col[0] != 0.0f) {
tmp = 1.0f - fac * col[0];
if (tmp <= 0.0f)
r_col[0] = 1.0f;
else if ((tmp = (r_col[0]) / tmp) > 1.0f)
r_col[0] = 1.0f;
else
r_col[0] = tmp;
}
if (r_col[1] != 0.0f) {
tmp = 1.0f - fac * col[1];
if (tmp <= 0.0f)
r_col[1] = 1.0f;
else if ((tmp = (r_col[1]) / tmp) > 1.0f)
r_col[1] = 1.0f;
else
r_col[1] = tmp;
}
if (r_col[2] != 0.0f) {
tmp = 1.0f - fac * col[2];
if (tmp <= 0.0f)
r_col[2] = 1.0f;
else if ((tmp = (r_col[2]) / tmp) > 1.0f)
r_col[2] = 1.0f;
else
r_col[2] = tmp;
}
break;
case MA_RAMP_BURN:
tmp = facm + fac * col[0];
if (tmp <= 0.0f)
r_col[0] = 0.0f;
else if ((tmp = (1.0f - (1.0f - (r_col[0])) / tmp)) < 0.0f)
r_col[0] = 0.0f;
else if (tmp > 1.0f)
r_col[0] = 1.0f;
else
r_col[0] = tmp;
tmp = facm + fac * col[1];
if (tmp <= 0.0f)
r_col[1] = 0.0f;
else if ((tmp = (1.0f - (1.0f - (r_col[1])) / tmp)) < 0.0f)
r_col[1] = 0.0f;
else if (tmp > 1.0f)
r_col[1] = 1.0f;
else
r_col[1] = tmp;
tmp = facm + fac * col[2];
if (tmp <= 0.0f)
r_col[2] = 0.0f;
else if ((tmp = (1.0f - (1.0f - (r_col[2])) / tmp)) < 0.0f)
r_col[2] = 0.0f;
else if (tmp > 1.0f)
r_col[2] = 1.0f;
else
r_col[2] = tmp;
break;
case MA_RAMP_HUE:
{
float rH, rS, rV;
float colH, colS, colV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
if (colS != 0) {
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
hsv_to_rgb(colH, rS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm * (r_col[0]) + fac * tmpr;
r_col[1] = facm * (r_col[1]) + fac * tmpg;
r_col[2] = facm * (r_col[2]) + fac * tmpb;
}
break;
}
case MA_RAMP_SAT:
{
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
if (rS != 0) {
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
hsv_to_rgb(rH, (facm * rS + fac * colS), rV, r_col + 0, r_col + 1, r_col + 2);
}
break;
}
case MA_RAMP_VAL:
{
float rH, rS, rV;
float colH, colS, colV;
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
hsv_to_rgb(rH, rS, (facm * rV + fac * colV), r_col + 0, r_col + 1, r_col + 2);
break;
}
case MA_RAMP_COLOR:
{
float rH, rS, rV;
float colH, colS, colV;
float tmpr, tmpg, tmpb;
rgb_to_hsv(col[0], col[1], col[2], &colH, &colS, &colV);
if (colS != 0) {
rgb_to_hsv(r_col[0], r_col[1], r_col[2], &rH, &rS, &rV);
hsv_to_rgb(colH, colS, rV, &tmpr, &tmpg, &tmpb);
r_col[0] = facm * (r_col[0]) + fac * tmpr;
r_col[1] = facm * (r_col[1]) + fac * tmpg;
r_col[2] = facm * (r_col[2]) + fac * tmpb;
}
break;
}
case MA_RAMP_SOFT:
{
float scr, scg, scb;
/* first calculate non-fac based Screen mix */
scr = 1.0f - (1.0f - col[0]) * (1.0f - r_col[0]);
scg = 1.0f - (1.0f - col[1]) * (1.0f - r_col[1]);
scb = 1.0f - (1.0f - col[2]) * (1.0f - r_col[2]);
r_col[0] = facm * (r_col[0]) + fac * (((1.0f - r_col[0]) * col[0] * (r_col[0])) + (r_col[0] * scr));
r_col[1] = facm * (r_col[1]) + fac * (((1.0f - r_col[1]) * col[1] * (r_col[1])) + (r_col[1] * scg));
r_col[2] = facm * (r_col[2]) + fac * (((1.0f - r_col[2]) * col[2] * (r_col[2])) + (r_col[2] * scb));
break;
}
case MA_RAMP_LINEAR:
if (col[0] > 0.5f)
r_col[0] = r_col[0] + fac * (2.0f * (col[0] - 0.5f));
else
r_col[0] = r_col[0] + fac * (2.0f * (col[0]) - 1.0f);
if (col[1] > 0.5f)
r_col[1] = r_col[1] + fac * (2.0f * (col[1] - 0.5f));
else
r_col[1] = r_col[1] + fac * (2.0f * (col[1]) - 1.0f);
if (col[2] > 0.5f)
r_col[2] = r_col[2] + fac * (2.0f * (col[2] - 0.5f));
else
r_col[2] = r_col[2] + fac * (2.0f * (col[2]) - 1.0f);
break;
}
}
/**
* \brief copy/paste buffer, if we had a proper py api that would be better
* \note matcopybuf.nodetree does _NOT_ use ID's
* \todo matcopybuf.nodetree's node->id's are NOT validated, this will crash!
*/
static Material matcopybuf;
static short matcopied = 0;
void clear_matcopybuf(void)
{
memset(&matcopybuf, 0, sizeof(Material));
matcopied = 0;
}
void free_matcopybuf(void)
{
if (matcopybuf.nodetree) {
ntreeFreeLocalTree(matcopybuf.nodetree);
MEM_freeN(matcopybuf.nodetree);
matcopybuf.nodetree = NULL;
}
matcopied = 0;
}
void copy_matcopybuf(Main *bmain, Material *ma)
{
if (matcopied)
free_matcopybuf();
memcpy(&matcopybuf, ma, sizeof(Material));
matcopybuf.nodetree = ntreeCopyTree_ex(ma->nodetree, bmain, false);
matcopybuf.preview = NULL;
BLI_listbase_clear(&matcopybuf.gpumaterial);
/* TODO Duplicate Engine Settings and set runtime to NULL */
matcopied = 1;
}
void paste_matcopybuf(Main *bmain, Material *ma)
{
ID id;
if (matcopied == 0)
return;
/* Free gpu material before the ntree */
GPU_material_free(&ma->gpumaterial);
if (ma->nodetree) {
ntreeFreeNestedTree(ma->nodetree);
MEM_freeN(ma->nodetree);
}
id = (ma->id);
memcpy(ma, &matcopybuf, sizeof(Material));
(ma->id) = id;
ma->nodetree = ntreeCopyTree_ex(matcopybuf.nodetree, bmain, false);
}
void BKE_material_eval(struct Depsgraph *depsgraph, Material *material)
{
DEG_debug_print_eval(depsgraph, __func__, material->id.name, material);
GPU_material_free(&material->gpumaterial);
}