558 lines
20 KiB
C
558 lines
20 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* This is a template BVH traversal function, where various features can be
|
|
* enabled/disabled. This way we can compile optimized versions for each case
|
|
* without new features slowing things down.
|
|
*
|
|
* BVH_INSTANCING: object instancing
|
|
* BVH_HAIR: hair curve rendering
|
|
* BVH_MOTION: motion blur rendering
|
|
*/
|
|
|
|
#if BVH_FEATURE(BVH_HAIR)
|
|
# define NODE_INTERSECT obvh_node_intersect
|
|
#else
|
|
# define NODE_INTERSECT obvh_aligned_node_intersect
|
|
#endif
|
|
|
|
ccl_device bool BVH_FUNCTION_FULL_NAME(OBVH)(KernelGlobals *kg,
|
|
const Ray *ray,
|
|
Intersection *isect,
|
|
const uint visibility)
|
|
{
|
|
/* Traversal stack in CUDA thread-local memory. */
|
|
OBVHStackItem traversal_stack[BVH_OSTACK_SIZE];
|
|
traversal_stack[0].addr = ENTRYPOINT_SENTINEL;
|
|
traversal_stack[0].dist = -FLT_MAX;
|
|
|
|
/* Traversal variables in registers. */
|
|
int stack_ptr = 0;
|
|
int node_addr = kernel_data.bvh.root;
|
|
float node_dist = -FLT_MAX;
|
|
|
|
/* Ray parameters in registers. */
|
|
float3 P = ray->P;
|
|
float3 dir = bvh_clamp_direction(ray->D);
|
|
float3 idir = bvh_inverse_direction(dir);
|
|
int object = OBJECT_NONE;
|
|
|
|
#if BVH_FEATURE(BVH_MOTION)
|
|
Transform ob_itfm;
|
|
#endif
|
|
|
|
isect->t = ray->t;
|
|
isect->u = 0.0f;
|
|
isect->v = 0.0f;
|
|
isect->prim = PRIM_NONE;
|
|
isect->object = OBJECT_NONE;
|
|
|
|
BVH_DEBUG_INIT();
|
|
avxf tnear(0.0f), tfar(ray->t);
|
|
#if BVH_FEATURE(BVH_HAIR)
|
|
avx3f dir4(avxf(dir.x), avxf(dir.y), avxf(dir.z));
|
|
#endif
|
|
avx3f idir4(avxf(idir.x), avxf(idir.y), avxf(idir.z));
|
|
|
|
#ifdef __KERNEL_AVX2__
|
|
float3 P_idir = P * idir;
|
|
avx3f P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
|
|
#endif
|
|
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
|
|
avx3f org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
|
|
#endif
|
|
|
|
/* Offsets to select the side that becomes the lower or upper bound. */
|
|
int near_x, near_y, near_z;
|
|
int far_x, far_y, far_z;
|
|
obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
|
|
/* Traversal loop. */
|
|
do {
|
|
do {
|
|
/* Traverse internal nodes. */
|
|
while (node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
|
|
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr + 0);
|
|
(void)inodes;
|
|
|
|
if (UNLIKELY(node_dist > isect->t)
|
|
#if BVH_FEATURE(BVH_MOTION)
|
|
|| UNLIKELY(ray->time < inodes.y) || UNLIKELY(ray->time > inodes.z)
|
|
#endif
|
|
#ifdef __VISIBILITY_FLAG__
|
|
|| (__float_as_uint(inodes.x) & visibility) == 0
|
|
#endif
|
|
) {
|
|
/* Pop. */
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
int child_mask;
|
|
avxf dist;
|
|
|
|
BVH_DEBUG_NEXT_NODE();
|
|
|
|
{
|
|
child_mask = NODE_INTERSECT(kg,
|
|
tnear,
|
|
tfar,
|
|
#ifdef __KERNEL_AVX2__
|
|
P_idir4,
|
|
#endif
|
|
#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
|
|
org4,
|
|
#endif
|
|
#if BVH_FEATURE(BVH_HAIR)
|
|
dir4,
|
|
#endif
|
|
idir4,
|
|
near_x,
|
|
near_y,
|
|
near_z,
|
|
far_x,
|
|
far_y,
|
|
far_z,
|
|
node_addr,
|
|
&dist);
|
|
}
|
|
|
|
if (child_mask != 0) {
|
|
avxf cnodes;
|
|
/* TODO(sergey): Investigate whether moving cnodes upwards
|
|
* gives a speedup (will be different cache pattern but will
|
|
* avoid extra check here).
|
|
*/
|
|
#if BVH_FEATURE(BVH_HAIR)
|
|
if (__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) {
|
|
cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr + 26);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
cnodes = kernel_tex_fetch_avxf(__bvh_nodes, node_addr + 14);
|
|
}
|
|
|
|
/* One child is hit, continue with that child. */
|
|
int r = __bscf(child_mask);
|
|
float d0 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
node_addr = __float_as_int(cnodes[r]);
|
|
node_dist = d0;
|
|
continue;
|
|
}
|
|
|
|
/* Two children are hit, push far child, and continue with
|
|
* closer child.
|
|
*/
|
|
int c0 = __float_as_int(cnodes[r]);
|
|
r = __bscf(child_mask);
|
|
int c1 = __float_as_int(cnodes[r]);
|
|
float d1 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
if (d1 < d0) {
|
|
node_addr = c1;
|
|
node_dist = d1;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c0;
|
|
traversal_stack[stack_ptr].dist = d0;
|
|
continue;
|
|
}
|
|
else {
|
|
node_addr = c0;
|
|
node_dist = d0;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c1;
|
|
traversal_stack[stack_ptr].dist = d1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Here starts the slow path for 3 or 4 hit children. We push
|
|
* all nodes onto the stack to sort them there.
|
|
*/
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c1;
|
|
traversal_stack[stack_ptr].dist = d1;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c0;
|
|
traversal_stack[stack_ptr].dist = d0;
|
|
|
|
/* Three children are hit, push all onto stack and sort 3
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c2 = __float_as_int(cnodes[r]);
|
|
float d2 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c2;
|
|
traversal_stack[stack_ptr].dist = d2;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
/* Four children are hit, push all onto stack and sort 4
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c3 = __float_as_int(cnodes[r]);
|
|
float d3 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c3;
|
|
traversal_stack[stack_ptr].dist = d3;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c2;
|
|
traversal_stack[stack_ptr].dist = d2;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2],
|
|
&traversal_stack[stack_ptr - 3]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c3;
|
|
traversal_stack[stack_ptr].dist = d3;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c2;
|
|
traversal_stack[stack_ptr].dist = d2;
|
|
|
|
/* Five children are hit, push all onto stack and sort 5
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c4 = __float_as_int(cnodes[r]);
|
|
float d4 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c4;
|
|
traversal_stack[stack_ptr].dist = d4;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2],
|
|
&traversal_stack[stack_ptr - 3],
|
|
&traversal_stack[stack_ptr - 4]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
/* Six children are hit, push all onto stack and sort 6
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c5 = __float_as_int(cnodes[r]);
|
|
float d5 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c5;
|
|
traversal_stack[stack_ptr].dist = d5;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c4;
|
|
traversal_stack[stack_ptr].dist = d4;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2],
|
|
&traversal_stack[stack_ptr - 3],
|
|
&traversal_stack[stack_ptr - 4],
|
|
&traversal_stack[stack_ptr - 5]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c5;
|
|
traversal_stack[stack_ptr].dist = d5;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c4;
|
|
traversal_stack[stack_ptr].dist = d4;
|
|
|
|
/* Seven children are hit, push all onto stack and sort 7
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c6 = __float_as_int(cnodes[r]);
|
|
float d6 = ((float *)&dist)[r];
|
|
if (child_mask == 0) {
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c6;
|
|
traversal_stack[stack_ptr].dist = d6;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2],
|
|
&traversal_stack[stack_ptr - 3],
|
|
&traversal_stack[stack_ptr - 4],
|
|
&traversal_stack[stack_ptr - 5],
|
|
&traversal_stack[stack_ptr - 6]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
/* Eight children are hit, push all onto stack and sort 8
|
|
* stack items, continue with closest child.
|
|
*/
|
|
r = __bscf(child_mask);
|
|
int c7 = __float_as_int(cnodes[r]);
|
|
float d7 = ((float *)&dist)[r];
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c7;
|
|
traversal_stack[stack_ptr].dist = d7;
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = c6;
|
|
traversal_stack[stack_ptr].dist = d6;
|
|
obvh_stack_sort(&traversal_stack[stack_ptr],
|
|
&traversal_stack[stack_ptr - 1],
|
|
&traversal_stack[stack_ptr - 2],
|
|
&traversal_stack[stack_ptr - 3],
|
|
&traversal_stack[stack_ptr - 4],
|
|
&traversal_stack[stack_ptr - 5],
|
|
&traversal_stack[stack_ptr - 6],
|
|
&traversal_stack[stack_ptr - 7]);
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
}
|
|
|
|
/* If node is leaf, fetch triangle list. */
|
|
if (node_addr < 0) {
|
|
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr - 1));
|
|
|
|
#ifdef __VISIBILITY_FLAG__
|
|
if (UNLIKELY((node_dist > isect->t) || ((__float_as_uint(leaf.z) & visibility) == 0)))
|
|
#else
|
|
if (UNLIKELY((node_dist > isect->t)))
|
|
#endif
|
|
{
|
|
/* Pop. */
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
continue;
|
|
}
|
|
int prim_addr = __float_as_int(leaf.x);
|
|
|
|
#if BVH_FEATURE(BVH_INSTANCING)
|
|
if (prim_addr >= 0) {
|
|
#endif
|
|
int prim_addr2 = __float_as_int(leaf.y);
|
|
const uint type = __float_as_int(leaf.w);
|
|
|
|
/* Pop. */
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
|
|
/* Primitive intersection. */
|
|
switch (type & PRIMITIVE_ALL) {
|
|
case PRIMITIVE_TRIANGLE: {
|
|
int prim_count = prim_addr2 - prim_addr;
|
|
if (prim_count < 3) {
|
|
for (; prim_addr < prim_addr2; prim_addr++) {
|
|
BVH_DEBUG_NEXT_INTERSECTION();
|
|
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
|
|
if (triangle_intersect(kg, isect, P, dir, visibility, object, prim_addr)) {
|
|
tfar = avxf(isect->t);
|
|
/* Shadow ray early termination. */
|
|
if (visibility == PATH_RAY_SHADOW_OPAQUE) {
|
|
return true;
|
|
}
|
|
}
|
|
} // for
|
|
}
|
|
else {
|
|
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
|
|
if (triangle_intersect8(kg,
|
|
&isect,
|
|
P,
|
|
dir,
|
|
visibility,
|
|
object,
|
|
prim_addr,
|
|
prim_count,
|
|
0,
|
|
0,
|
|
NULL,
|
|
0.0f)) {
|
|
tfar = avxf(isect->t);
|
|
if (visibility == PATH_RAY_SHADOW_OPAQUE) {
|
|
return true;
|
|
}
|
|
}
|
|
} // prim count
|
|
break;
|
|
}
|
|
#if BVH_FEATURE(BVH_MOTION)
|
|
case PRIMITIVE_MOTION_TRIANGLE: {
|
|
for (; prim_addr < prim_addr2; prim_addr++) {
|
|
BVH_DEBUG_NEXT_INTERSECTION();
|
|
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
|
|
if (motion_triangle_intersect(
|
|
kg, isect, P, dir, ray->time, visibility, object, prim_addr)) {
|
|
tfar = avxf(isect->t);
|
|
/* Shadow ray early termination. */
|
|
if (visibility == PATH_RAY_SHADOW_OPAQUE) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* BVH_FEATURE(BVH_MOTION) */
|
|
#if BVH_FEATURE(BVH_HAIR)
|
|
case PRIMITIVE_CURVE:
|
|
case PRIMITIVE_MOTION_CURVE: {
|
|
for (; prim_addr < prim_addr2; prim_addr++) {
|
|
BVH_DEBUG_NEXT_INTERSECTION();
|
|
const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
|
|
kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL));
|
|
bool hit;
|
|
if (kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
|
|
hit = cardinal_curve_intersect(
|
|
kg, isect, P, dir, visibility, object, prim_addr, ray->time, curve_type);
|
|
}
|
|
else {
|
|
hit = curve_intersect(
|
|
kg, isect, P, dir, visibility, object, prim_addr, ray->time, curve_type);
|
|
}
|
|
if (hit) {
|
|
tfar = avxf(isect->t);
|
|
/* Shadow ray early termination. */
|
|
if (visibility == PATH_RAY_SHADOW_OPAQUE) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
#endif /* BVH_FEATURE(BVH_HAIR) */
|
|
}
|
|
}
|
|
#if BVH_FEATURE(BVH_INSTANCING)
|
|
else {
|
|
/* Instance push. */
|
|
object = kernel_tex_fetch(__prim_object, -prim_addr - 1);
|
|
|
|
# if BVH_FEATURE(BVH_MOTION)
|
|
qbvh_instance_motion_push(
|
|
kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist, &ob_itfm);
|
|
# else
|
|
qbvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t, &node_dist);
|
|
# endif
|
|
|
|
obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
|
|
tfar = avxf(isect->t);
|
|
# if BVH_FEATURE(BVH_HAIR)
|
|
dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
|
|
# endif
|
|
idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
|
|
# ifdef __KERNEL_AVX2__
|
|
P_idir = P * idir;
|
|
P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
|
|
# endif
|
|
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
|
|
org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
|
|
# endif
|
|
|
|
++stack_ptr;
|
|
kernel_assert(stack_ptr < BVH_OSTACK_SIZE);
|
|
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
|
|
traversal_stack[stack_ptr].dist = -FLT_MAX;
|
|
|
|
node_addr = kernel_tex_fetch(__object_node, object);
|
|
|
|
BVH_DEBUG_NEXT_INSTANCE();
|
|
}
|
|
}
|
|
#endif /* FEATURE(BVH_INSTANCING) */
|
|
} while (node_addr != ENTRYPOINT_SENTINEL);
|
|
|
|
#if BVH_FEATURE(BVH_INSTANCING)
|
|
if (stack_ptr >= 0) {
|
|
kernel_assert(object != OBJECT_NONE);
|
|
|
|
/* Instance pop. */
|
|
# if BVH_FEATURE(BVH_MOTION)
|
|
isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
|
|
# else
|
|
isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
|
|
# endif
|
|
|
|
obvh_near_far_idx_calc(idir, &near_x, &near_y, &near_z, &far_x, &far_y, &far_z);
|
|
tfar = avxf(isect->t);
|
|
# if BVH_FEATURE(BVH_HAIR)
|
|
dir4 = avx3f(avxf(dir.x), avxf(dir.y), avxf(dir.z));
|
|
# endif
|
|
idir4 = avx3f(avxf(idir.x), avxf(idir.y), avxf(idir.z));
|
|
# ifdef __KERNEL_AVX2__
|
|
P_idir = P * idir;
|
|
P_idir4 = avx3f(P_idir.x, P_idir.y, P_idir.z);
|
|
# endif
|
|
# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__)
|
|
org4 = avx3f(avxf(P.x), avxf(P.y), avxf(P.z));
|
|
# endif
|
|
|
|
object = OBJECT_NONE;
|
|
node_addr = traversal_stack[stack_ptr].addr;
|
|
node_dist = traversal_stack[stack_ptr].dist;
|
|
--stack_ptr;
|
|
}
|
|
#endif /* FEATURE(BVH_INSTANCING) */
|
|
} while (node_addr != ENTRYPOINT_SENTINEL);
|
|
|
|
return (isect->prim != PRIM_NONE);
|
|
}
|
|
|
|
#undef NODE_INTERSECT
|