Files
blender/source/blender/gpu/shaders/gpu_shader_material.glsl
2018-07-13 12:22:21 +02:00

2629 lines
63 KiB
GLSL

uniform mat4 ModelMatrix;
uniform mat4 ModelViewMatrix;
uniform mat4 ModelViewMatrixInverse;
uniform mat3 NormalMatrix;
#ifndef ATTRIB
uniform mat4 ModelMatrixInverse;
#endif
/* Converters */
float convert_rgba_to_float(vec4 color)
{
return dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
}
float exp_blender(float f)
{
return pow(2.71828182846, f);
}
float compatible_pow(float x, float y)
{
if (y == 0.0) /* x^0 -> 1, including 0^0 */
return 1.0;
/* glsl pow doesn't accept negative x */
if (x < 0.0) {
if (mod(-y, 2.0) == 0.0)
return pow(-x, y);
else
return -pow(-x, y);
}
else if (x == 0.0)
return 0.0;
return pow(x, y);
}
void rgb_to_hsv(vec4 rgb, out vec4 outcol)
{
float cmax, cmin, h, s, v, cdelta;
vec3 c;
cmax = max(rgb[0], max(rgb[1], rgb[2]));
cmin = min(rgb[0], min(rgb[1], rgb[2]));
cdelta = cmax - cmin;
v = cmax;
if (cmax != 0.0)
s = cdelta / cmax;
else {
s = 0.0;
h = 0.0;
}
if (s == 0.0) {
h = 0.0;
}
else {
c = (vec3(cmax) - rgb.xyz) / cdelta;
if (rgb.x == cmax) h = c[2] - c[1];
else if (rgb.y == cmax) h = 2.0 + c[0] - c[2];
else h = 4.0 + c[1] - c[0];
h /= 6.0;
if (h < 0.0)
h += 1.0;
}
outcol = vec4(h, s, v, rgb.w);
}
void hsv_to_rgb(vec4 hsv, out vec4 outcol)
{
float i, f, p, q, t, h, s, v;
vec3 rgb;
h = hsv[0];
s = hsv[1];
v = hsv[2];
if (s == 0.0) {
rgb = vec3(v, v, v);
}
else {
if (h == 1.0)
h = 0.0;
h *= 6.0;
i = floor(h);
f = h - i;
rgb = vec3(f, f, f);
p = v * (1.0 - s);
q = v * (1.0 - (s * f));
t = v * (1.0 - (s * (1.0 - f)));
if (i == 0.0) rgb = vec3(v, t, p);
else if (i == 1.0) rgb = vec3(q, v, p);
else if (i == 2.0) rgb = vec3(p, v, t);
else if (i == 3.0) rgb = vec3(p, q, v);
else if (i == 4.0) rgb = vec3(t, p, v);
else rgb = vec3(v, p, q);
}
outcol = vec4(rgb, hsv.w);
}
float srgb_to_linearrgb(float c)
{
if (c < 0.04045)
return (c < 0.0) ? 0.0 : c * (1.0 / 12.92);
else
return pow((c + 0.055) * (1.0 / 1.055), 2.4);
}
float linearrgb_to_srgb(float c)
{
if (c < 0.0031308)
return (c < 0.0) ? 0.0 : c * 12.92;
else
return 1.055 * pow(c, 1.0 / 2.4) - 0.055;
}
void srgb_to_linearrgb(vec4 col_from, out vec4 col_to)
{
col_to.r = srgb_to_linearrgb(col_from.r);
col_to.g = srgb_to_linearrgb(col_from.g);
col_to.b = srgb_to_linearrgb(col_from.b);
col_to.a = col_from.a;
}
void linearrgb_to_srgb(vec4 col_from, out vec4 col_to)
{
col_to.r = linearrgb_to_srgb(col_from.r);
col_to.g = linearrgb_to_srgb(col_from.g);
col_to.b = linearrgb_to_srgb(col_from.b);
col_to.a = col_from.a;
}
void color_to_normal(vec3 color, out vec3 normal)
{
normal.x = 2.0 * ((color.r) - 0.5);
normal.y = -2.0 * ((color.g) - 0.5);
normal.z = 2.0 * ((color.b) - 0.5);
}
void color_to_normal_new_shading(vec3 color, out vec3 normal)
{
normal.x = 2.0 * ((color.r) - 0.5);
normal.y = 2.0 * ((color.g) - 0.5);
normal.z = 2.0 * ((color.b) - 0.5);
}
void color_to_blender_normal_new_shading(vec3 color, out vec3 normal)
{
normal.x = 2.0 * ((color.r) - 0.5);
normal.y = -2.0 * ((color.g) - 0.5);
normal.z = -2.0 * ((color.b) - 0.5);
}
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_1_PI
#define M_1_PI 0.318309886183790671538
#endif
/*********** SHADER NODES ***************/
void particle_info(
vec4 sprops, vec4 loc, vec3 vel, vec3 avel,
out float index, out float random, out float age,
out float life_time, out vec3 location,
out float size, out vec3 velocity, out vec3 angular_velocity)
{
index = sprops.x;
random = loc.w;
age = sprops.y;
life_time = sprops.z;
size = sprops.w;
location = loc.xyz;
velocity = vel;
angular_velocity = avel;
}
void vect_normalize(vec3 vin, out vec3 vout)
{
vout = normalize(vin);
}
void direction_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
{
vout = (mat * vec4(vin, 0.0)).xyz;
}
void point_transform_m4v3(vec3 vin, mat4 mat, out vec3 vout)
{
vout = (mat * vec4(vin, 1.0)).xyz;
}
void point_texco_remap_square(vec3 vin, out vec3 vout)
{
vout = vec3(vin - vec3(0.5, 0.5, 0.5)) * 2.0;
}
void point_map_to_sphere(vec3 vin, out vec3 vout)
{
float len = length(vin);
float v, u;
if (len > 0.0) {
if (vin.x == 0.0 && vin.y == 0.0)
u = 0.0;
else
u = (1.0 - atan(vin.x, vin.y) / M_PI) / 2.0;
v = 1.0 - acos(vin.z / len) / M_PI;
}
else
v = u = 0.0;
vout = vec3(u, v, 0.0);
}
void point_map_to_tube(vec3 vin, out vec3 vout)
{
float u, v;
v = (vin.z + 1.0) * 0.5;
float len = sqrt(vin.x * vin.x + vin.y * vin[1]);
if (len > 0.0)
u = (1.0 - (atan(vin.x / len, vin.y / len) / M_PI)) * 0.5;
else
v = u = 0.0;
vout = vec3(u, v, 0.0);
}
void mapping(vec3 vec, mat4 mat, vec3 minvec, vec3 maxvec, float domin, float domax, out vec3 outvec)
{
outvec = (mat * vec4(vec, 1.0)).xyz;
if (domin == 1.0)
outvec = max(outvec, minvec);
if (domax == 1.0)
outvec = min(outvec, maxvec);
}
void camera(vec3 co, out vec3 outview, out float outdepth, out float outdist)
{
outdepth = abs(co.z);
outdist = length(co);
outview = normalize(co);
}
void math_add(float val1, float val2, out float outval)
{
outval = val1 + val2;
}
void math_subtract(float val1, float val2, out float outval)
{
outval = val1 - val2;
}
void math_multiply(float val1, float val2, out float outval)
{
outval = val1 * val2;
}
void math_divide(float val1, float val2, out float outval)
{
if (val2 == 0.0)
outval = 0.0;
else
outval = val1 / val2;
}
void math_sine(float val, out float outval)
{
outval = sin(val);
}
void math_cosine(float val, out float outval)
{
outval = cos(val);
}
void math_tangent(float val, out float outval)
{
outval = tan(val);
}
void math_asin(float val, out float outval)
{
if (val <= 1.0 && val >= -1.0)
outval = asin(val);
else
outval = 0.0;
}
void math_acos(float val, out float outval)
{
if (val <= 1.0 && val >= -1.0)
outval = acos(val);
else
outval = 0.0;
}
void math_atan(float val, out float outval)
{
outval = atan(val);
}
void math_pow(float val1, float val2, out float outval)
{
if (val1 >= 0.0) {
outval = compatible_pow(val1, val2);
}
else {
float val2_mod_1 = mod(abs(val2), 1.0);
if (val2_mod_1 > 0.999 || val2_mod_1 < 0.001)
outval = compatible_pow(val1, floor(val2 + 0.5));
else
outval = 0.0;
}
}
void math_log(float val1, float val2, out float outval)
{
if (val1 > 0.0 && val2 > 0.0)
outval = log2(val1) / log2(val2);
else
outval = 0.0;
}
void math_max(float val1, float val2, out float outval)
{
outval = max(val1, val2);
}
void math_min(float val1, float val2, out float outval)
{
outval = min(val1, val2);
}
void math_round(float val, out float outval)
{
outval = floor(val + 0.5);
}
void math_less_than(float val1, float val2, out float outval)
{
if (val1 < val2)
outval = 1.0;
else
outval = 0.0;
}
void math_greater_than(float val1, float val2, out float outval)
{
if (val1 > val2)
outval = 1.0;
else
outval = 0.0;
}
void math_modulo(float val1, float val2, out float outval)
{
if (val2 == 0.0)
outval = 0.0;
else
outval = mod(val1, val2);
/* change sign to match C convention, mod in GLSL will take absolute for negative numbers,
* see https://www.opengl.org/sdk/docs/man/html/mod.xhtml */
outval = (val1 > 0.0) ? outval : outval - val2;
}
void math_abs(float val1, out float outval)
{
outval = abs(val1);
}
void math_atan2(float val1, float val2, out float outval)
{
outval = atan(val1, val2);
}
void math_floor(float val, out float outval)
{
outval = floor(val);
}
void math_ceil(float val, out float outval)
{
outval = ceil(val);
}
void math_fract(float val, out float outval)
{
outval = val - floor(val);
}
void math_sqrt(float val, out float outval)
{
if (val > 0.0)
outval = sqrt(val);
else
outval = 0.0;
}
void squeeze(float val, float width, float center, out float outval)
{
outval = 1.0 / (1.0 + pow(2.71828183, -((val - center) * width)));
}
void vec_math_add(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
outvec = v1 + v2;
outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
}
void vec_math_sub(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
outvec = v1 - v2;
outval = (abs(outvec[0]) + abs(outvec[1]) + abs(outvec[2])) * 0.333333;
}
void vec_math_average(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
outvec = v1 + v2;
outval = length(outvec);
outvec = normalize(outvec);
}
void vec_math_mix(float strength, vec3 v1, vec3 v2, out vec3 outvec)
{
outvec = strength * v1 + (1 - strength) * v2;
}
void vec_math_dot(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
outvec = vec3(0);
outval = dot(v1, v2);
}
void vec_math_cross(vec3 v1, vec3 v2, out vec3 outvec, out float outval)
{
outvec = cross(v1, v2);
outval = length(outvec);
outvec /= outval;
}
void vec_math_normalize(vec3 v, out vec3 outvec, out float outval)
{
outval = length(v);
outvec = normalize(v);
}
void vec_math_negate(vec3 v, out vec3 outv)
{
outv = -v;
}
void invert_z(vec3 v, out vec3 outv)
{
v.z = -v.z;
outv = v;
}
void normal(vec3 dir, vec3 nor, out vec3 outnor, out float outdot)
{
outnor = nor;
outdot = -dot(dir, nor);
}
void normal_new_shading(vec3 dir, vec3 nor, out vec3 outnor, out float outdot)
{
outnor = normalize(nor);
outdot = dot(normalize(dir), nor);
}
void curves_vec(float fac, vec3 vec, sampler2D curvemap, out vec3 outvec)
{
outvec.x = texture(curvemap, vec2((vec.x + 1.0) * 0.5, 0.0)).x;
outvec.y = texture(curvemap, vec2((vec.y + 1.0) * 0.5, 0.0)).y;
outvec.z = texture(curvemap, vec2((vec.z + 1.0) * 0.5, 0.0)).z;
if (fac != 1.0)
outvec = (outvec * fac) + (vec * (1.0 - fac));
}
void curves_rgb(float fac, vec4 col, sampler2D curvemap, out vec4 outcol)
{
outcol.r = texture(curvemap, vec2(texture(curvemap, vec2(col.r, 0.0)).a, 0.0)).r;
outcol.g = texture(curvemap, vec2(texture(curvemap, vec2(col.g, 0.0)).a, 0.0)).g;
outcol.b = texture(curvemap, vec2(texture(curvemap, vec2(col.b, 0.0)).a, 0.0)).b;
if (fac != 1.0)
outcol = (outcol * fac) + (col * (1.0 - fac));
outcol.a = col.a;
}
void set_value(float val, out float outval)
{
outval = val;
}
void set_rgb(vec3 col, out vec3 outcol)
{
outcol = col;
}
void set_rgba(vec4 col, out vec4 outcol)
{
outcol = col;
}
void set_value_zero(out float outval)
{
outval = 0.0;
}
void set_value_one(out float outval)
{
outval = 1.0;
}
void set_rgb_zero(out vec3 outval)
{
outval = vec3(0.0);
}
void set_rgb_one(out vec3 outval)
{
outval = vec3(1.0);
}
void set_rgba_zero(out vec4 outval)
{
outval = vec4(0.0);
}
void set_rgba_one(out vec4 outval)
{
outval = vec4(1.0);
}
void brightness_contrast(vec4 col, float brightness, float contrast, out vec4 outcol)
{
float a = 1.0 + contrast;
float b = brightness - contrast * 0.5;
outcol.r = max(a * col.r + b, 0.0);
outcol.g = max(a * col.g + b, 0.0);
outcol.b = max(a * col.b + b, 0.0);
outcol.a = col.a;
}
void mix_blend(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = mix(col1, col2, fac);
outcol.a = col1.a;
}
void mix_add(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = mix(col1, col1 + col2, fac);
outcol.a = col1.a;
}
void mix_mult(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = mix(col1, col1 * col2, fac);
outcol.a = col1.a;
}
void mix_screen(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = vec4(1.0) - (vec4(facm) + fac * (vec4(1.0) - col2)) * (vec4(1.0) - col1);
outcol.a = col1.a;
}
void mix_overlay(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = col1;
if (outcol.r < 0.5)
outcol.r *= facm + 2.0 * fac * col2.r;
else
outcol.r = 1.0 - (facm + 2.0 * fac * (1.0 - col2.r)) * (1.0 - outcol.r);
if (outcol.g < 0.5)
outcol.g *= facm + 2.0 * fac * col2.g;
else
outcol.g = 1.0 - (facm + 2.0 * fac * (1.0 - col2.g)) * (1.0 - outcol.g);
if (outcol.b < 0.5)
outcol.b *= facm + 2.0 * fac * col2.b;
else
outcol.b = 1.0 - (facm + 2.0 * fac * (1.0 - col2.b)) * (1.0 - outcol.b);
}
void mix_sub(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = mix(col1, col1 - col2, fac);
outcol.a = col1.a;
}
void mix_div(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = col1;
if (col2.r != 0.0) outcol.r = facm * outcol.r + fac * outcol.r / col2.r;
if (col2.g != 0.0) outcol.g = facm * outcol.g + fac * outcol.g / col2.g;
if (col2.b != 0.0) outcol.b = facm * outcol.b + fac * outcol.b / col2.b;
}
void mix_diff(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = mix(col1, abs(col1 - col2), fac);
outcol.a = col1.a;
}
void mix_dark(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol.rgb = min(col1.rgb, col2.rgb * fac);
outcol.a = col1.a;
}
void mix_light(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol.rgb = max(col1.rgb, col2.rgb * fac);
outcol.a = col1.a;
}
void mix_dodge(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = col1;
if (outcol.r != 0.0) {
float tmp = 1.0 - fac * col2.r;
if (tmp <= 0.0)
outcol.r = 1.0;
else if ((tmp = outcol.r / tmp) > 1.0)
outcol.r = 1.0;
else
outcol.r = tmp;
}
if (outcol.g != 0.0) {
float tmp = 1.0 - fac * col2.g;
if (tmp <= 0.0)
outcol.g = 1.0;
else if ((tmp = outcol.g / tmp) > 1.0)
outcol.g = 1.0;
else
outcol.g = tmp;
}
if (outcol.b != 0.0) {
float tmp = 1.0 - fac * col2.b;
if (tmp <= 0.0)
outcol.b = 1.0;
else if ((tmp = outcol.b / tmp) > 1.0)
outcol.b = 1.0;
else
outcol.b = tmp;
}
}
void mix_burn(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float tmp, facm = 1.0 - fac;
outcol = col1;
tmp = facm + fac * col2.r;
if (tmp <= 0.0)
outcol.r = 0.0;
else if ((tmp = (1.0 - (1.0 - outcol.r) / tmp)) < 0.0)
outcol.r = 0.0;
else if (tmp > 1.0)
outcol.r = 1.0;
else
outcol.r = tmp;
tmp = facm + fac * col2.g;
if (tmp <= 0.0)
outcol.g = 0.0;
else if ((tmp = (1.0 - (1.0 - outcol.g) / tmp)) < 0.0)
outcol.g = 0.0;
else if (tmp > 1.0)
outcol.g = 1.0;
else
outcol.g = tmp;
tmp = facm + fac * col2.b;
if (tmp <= 0.0)
outcol.b = 0.0;
else if ((tmp = (1.0 - (1.0 - outcol.b) / tmp)) < 0.0)
outcol.b = 0.0;
else if (tmp > 1.0)
outcol.b = 1.0;
else
outcol.b = tmp;
}
void mix_hue(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = col1;
vec4 hsv, hsv2, tmp;
rgb_to_hsv(col2, hsv2);
if (hsv2.y != 0.0) {
rgb_to_hsv(outcol, hsv);
hsv.x = hsv2.x;
hsv_to_rgb(hsv, tmp);
outcol = mix(outcol, tmp, fac);
outcol.a = col1.a;
}
}
void mix_sat(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = col1;
vec4 hsv, hsv2;
rgb_to_hsv(outcol, hsv);
if (hsv.y != 0.0) {
rgb_to_hsv(col2, hsv2);
hsv.y = facm * hsv.y + fac * hsv2.y;
hsv_to_rgb(hsv, outcol);
}
}
void mix_val(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
vec4 hsv, hsv2;
rgb_to_hsv(col1, hsv);
rgb_to_hsv(col2, hsv2);
hsv.z = facm * hsv.z + fac * hsv2.z;
hsv_to_rgb(hsv, outcol);
}
void mix_color(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
outcol = col1;
vec4 hsv, hsv2, tmp;
rgb_to_hsv(col2, hsv2);
if (hsv2.y != 0.0) {
rgb_to_hsv(outcol, hsv);
hsv.x = hsv2.x;
hsv.y = hsv2.y;
hsv_to_rgb(hsv, tmp);
outcol = mix(outcol, tmp, fac);
outcol.a = col1.a;
}
}
void mix_soft(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
float facm = 1.0 - fac;
vec4 one = vec4(1.0);
vec4 scr = one - (one - col2) * (one - col1);
outcol = facm * col1 + fac * ((one - col1) * col2 * col1 + col1 * scr);
}
void mix_linear(float fac, vec4 col1, vec4 col2, out vec4 outcol)
{
fac = clamp(fac, 0.0, 1.0);
outcol = col1 + fac * (2.0 * (col2 - vec4(0.5)));
}
void valtorgb(float fac, sampler2D colormap, out vec4 outcol, out float outalpha)
{
outcol = texture(colormap, vec2(fac, 0.0));
outalpha = outcol.a;
}
void rgbtobw(vec4 color, out float outval)
{
vec3 factors = vec3(0.2126, 0.7152, 0.0722);
outval = dot(color.rgb, factors);
}
void invert(float fac, vec4 col, out vec4 outcol)
{
outcol.xyz = mix(col.xyz, vec3(1.0) - col.xyz, fac);
outcol.w = col.w;
}
void clamp_vec3(vec3 vec, vec3 min, vec3 max, out vec3 out_vec)
{
out_vec = clamp(vec, min, max);
}
void clamp_val(float value, float min, float max, out float out_value)
{
out_value = clamp(value, min, max);
}
void hue_sat(float hue, float sat, float value, float fac, vec4 col, out vec4 outcol)
{
vec4 hsv;
rgb_to_hsv(col, hsv);
hsv[0] += (hue - 0.5);
if (hsv[0] > 1.0) hsv[0] -= 1.0; else if (hsv[0] < 0.0) hsv[0] += 1.0;
hsv[1] *= sat;
if (hsv[1] > 1.0) hsv[1] = 1.0; else if (hsv[1] < 0.0) hsv[1] = 0.0;
hsv[2] *= value;
if (hsv[2] > 1.0) hsv[2] = 1.0; else if (hsv[2] < 0.0) hsv[2] = 0.0;
hsv_to_rgb(hsv, outcol);
outcol = mix(col, outcol, fac);
}
void separate_rgb(vec4 col, out float r, out float g, out float b)
{
r = col.r;
g = col.g;
b = col.b;
}
void combine_rgb(float r, float g, float b, out vec4 col)
{
col = vec4(r, g, b, 1.0);
}
void separate_xyz(vec3 vec, out float x, out float y, out float z)
{
x = vec.r;
y = vec.g;
z = vec.b;
}
void combine_xyz(float x, float y, float z, out vec3 vec)
{
vec = vec3(x, y, z);
}
void separate_hsv(vec4 col, out float h, out float s, out float v)
{
vec4 hsv;
rgb_to_hsv(col, hsv);
h = hsv[0];
s = hsv[1];
v = hsv[2];
}
void combine_hsv(float h, float s, float v, out vec4 col)
{
hsv_to_rgb(vec4(h, s, v, 1.0), col);
}
void output_node(vec4 rgb, float alpha, out vec4 outrgb)
{
outrgb = vec4(rgb.rgb, alpha);
}
/*********** TEXTURES ***************/
void texco_norm(vec3 normal, out vec3 outnormal)
{
/* corresponds to shi->orn, which is negated so cancels
out blender normal negation */
outnormal = normalize(normal);
}
vec3 mtex_2d_mapping(vec3 vec)
{
return vec3(vec.xy * 0.5 + vec2(0.5), vec.z);
}
/** helper method to extract the upper left 3x3 matrix from a 4x4 matrix */
mat3 to_mat3(mat4 m4)
{
mat3 m3;
m3[0] = m4[0].xyz;
m3[1] = m4[1].xyz;
m3[2] = m4[2].xyz;
return m3;
}
/*********** NEW SHADER UTILITIES **************/
float fresnel_dielectric_0(float eta)
{
/* compute fresnel reflactance at normal incidence => cosi = 1.0 */
float A = (eta - 1.0) / (eta + 1.0);
return A * A;
}
float fresnel_dielectric_cos(float cosi, float eta)
{
/* compute fresnel reflectance without explicitly computing
* the refracted direction */
float c = abs(cosi);
float g = eta * eta - 1.0 + c * c;
float result;
if (g > 0.0) {
g = sqrt(g);
float A = (g - c) / (g + c);
float B = (c * (g + c) - 1.0) / (c * (g - c) + 1.0);
result = 0.5 * A * A * (1.0 + B * B);
}
else {
result = 1.0; /* TIR (no refracted component) */
}
return result;
}
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
{
/* compute fresnel reflectance without explicitly computing
* the refracted direction */
return fresnel_dielectric_cos(dot(Incoming, Normal), eta);
}
float hypot(float x, float y)
{
return sqrt(x * x + y * y);
}
void generated_from_orco(vec3 orco, out vec3 generated)
{
#ifdef VOLUMETRICS
#ifdef MESH_SHADER
generated = volumeObjectLocalCoord;
#else
generated = worldPosition;
#endif
#else
generated = orco;
#endif
}
int floor_to_int(float x)
{
return int(floor(x));
}
int quick_floor(float x)
{
return int(x) - ((x < 0) ? 1 : 0);
}
float integer_noise(int n)
{
int nn;
n = (n + 1013) & 0x7fffffff;
n = (n >> 13) ^ n;
nn = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 0.5 * (float(nn) / 1073741824.0);
}
uint hash(uint kx, uint ky, uint kz)
{
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k))))
#define final(a, b, c) \
{ \
c ^= b; c -= rot(b, 14); \
a ^= c; a -= rot(c, 11); \
b ^= a; b -= rot(a, 25); \
c ^= b; c -= rot(b, 16); \
a ^= c; a -= rot(c, 4); \
b ^= a; b -= rot(a, 14); \
c ^= b; c -= rot(b, 24); \
}
// now hash the data!
uint a, b, c, len = 3u;
a = b = c = 0xdeadbeefu + (len << 2u) + 13u;
c += kz;
b += ky;
a += kx;
final (a, b, c);
return c;
#undef rot
#undef final
}
uint hash(int kx, int ky, int kz)
{
return hash(uint(kx), uint(ky), uint(kz));
}
float bits_to_01(uint bits)
{
return (float(bits) / 4294967295.0);
}
float cellnoise(vec3 p)
{
int ix = quick_floor(p.x);
int iy = quick_floor(p.y);
int iz = quick_floor(p.z);
return bits_to_01(hash(uint(ix), uint(iy), uint(iz)));
}
vec3 cellnoise_color(vec3 p)
{
float r = cellnoise(p);
float g = cellnoise(vec3(p.y, p.x, p.z));
float b = cellnoise(vec3(p.y, p.z, p.x));
return vec3(r, g, b);
}
float floorfrac(float x, out int i)
{
i = floor_to_int(x);
return x - i;
}
/* bsdfs */
void convert_metallic_to_specular_tinted(
vec3 basecol, float metallic, float specular_fac, float specular_tint,
out vec3 diffuse, out vec3 f0)
{
vec3 dielectric = vec3(0.034) * specular_fac * 2.0;
float lum = dot(basecol, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
vec3 tint = lum > 0 ? basecol / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
f0 = mix(dielectric * mix(vec3(1.0), tint, specular_tint), basecol, metallic);
diffuse = mix(basecol, vec3(0.0), metallic);
}
#ifndef VOLUMETRICS
void node_bsdf_diffuse(vec4 color, float roughness, vec3 N, out Closure result)
{
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.ssr_normal = normal_encode(vN, viewCameraVec);
eevee_closure_diffuse(N, color.rgb, 1.0, result.radiance);
result.radiance *= color.rgb;
}
void node_bsdf_glossy(vec4 color, float roughness, vec3 N, float ssr_id, out Closure result)
{
vec3 out_spec, ssr_spec;
eevee_closure_glossy(N, vec3(1.0), int(ssr_id), roughness, 1.0, out_spec, ssr_spec);
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.radiance = out_spec * color.rgb;
result.ssr_data = vec4(ssr_spec * color.rgb, roughness);
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.ssr_id = int(ssr_id);
}
void node_bsdf_anisotropic(
vec4 color, float roughness, float anisotropy, float rotation, vec3 N, vec3 T,
out Closure result)
{
node_bsdf_diffuse(color, 0.0, N, result);
}
void node_bsdf_glass(vec4 color, float roughness, float ior, vec3 N, float ssr_id, out Closure result)
{
vec3 out_spec, out_refr, ssr_spec;
vec3 refr_color = (refractionDepth > 0.0) ? color.rgb * color.rgb : color.rgb; /* Simulate 2 transmission event */
eevee_closure_glass(N, vec3(1.0), int(ssr_id), roughness, 1.0, ior, out_spec, out_refr, ssr_spec);
out_refr *= refr_color;
out_spec *= color.rgb;
float fresnel = F_eta(ior, dot(N, cameraVec));
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.radiance = mix(out_refr, out_spec, fresnel);
result.ssr_data = vec4(ssr_spec * color.rgb * fresnel, roughness);
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.ssr_id = int(ssr_id);
}
void node_bsdf_toon(vec4 color, float size, float tsmooth, vec3 N, out Closure result)
{
node_bsdf_diffuse(color, 0.0, N, result);
}
void node_bsdf_principled_clearcoat(vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float metallic, float specular,
float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat,
float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec3 N, vec3 CN, vec3 T, vec3 I, float ssr_id,
float sss_id, vec3 sss_scale, out Closure result)
{
metallic = saturate(metallic);
transmission = saturate(transmission);
vec3 diffuse, f0, out_diff, out_spec, out_trans, out_refr, ssr_spec;
convert_metallic_to_specular_tinted(base_color.rgb, metallic, specular, specular_tint, diffuse, f0);
transmission *= 1.0 - metallic;
subsurface *= 1.0 - metallic;
clearcoat *= 0.25;
clearcoat *= 1.0 - transmission;
#ifdef USE_SSS
diffuse = mix(diffuse, vec3(0.0), subsurface);
#else
diffuse = mix(diffuse, subsurface_color.rgb, subsurface);
#endif
f0 = mix(f0, vec3(1.0), transmission);
float sss_scalef = dot(sss_scale, vec3(1.0 / 3.0));
eevee_closure_principled(N, diffuse, f0, int(ssr_id), roughness,
CN, clearcoat, clearcoat_roughness, 1.0, sss_scalef, ior,
out_diff, out_trans, out_spec, out_refr, ssr_spec);
vec3 refr_color = base_color.rgb;
refr_color *= (refractionDepth > 0.0) ? refr_color : vec3(1.0); /* Simulate 2 transmission event */
float fresnel = F_eta(ior, dot(N, cameraVec));
vec3 refr_spec_color = base_color.rgb * fresnel;
/* This bit maybe innacurate. */
out_refr = out_refr * refr_color * (1.0 - fresnel) + out_spec * refr_spec_color;
ssr_spec = mix(ssr_spec, refr_spec_color, transmission);
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.radiance = out_spec + out_diff * diffuse;
result.radiance = mix(result.radiance, out_refr, transmission);
result.ssr_data = vec4(ssr_spec, roughness);
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.ssr_id = int(ssr_id);
#ifdef USE_SSS
result.sss_data.a = sss_scalef;
result.sss_data.rgb = out_diff + out_trans;
#ifdef USE_SSS_ALBEDO
result.sss_albedo.rgb = mix(vec3(0.0), subsurface_color.rgb, subsurface);
#else
result.sss_data.rgb *= mix(vec3(0.0), subsurface_color.rgb, subsurface);
#endif
result.sss_data.rgb *= (1.0 - transmission);
#endif
}
void node_bsdf_translucent(vec4 color, vec3 N, out Closure result)
{
node_bsdf_diffuse(color, 0.0, -N, result);
}
void node_bsdf_transparent(vec4 color, out Closure result)
{
/* this isn't right */
result = CLOSURE_DEFAULT;
result.radiance = vec3(0.0);
result.opacity = 0.0;
result.ssr_id = TRANSPARENT_CLOSURE_FLAG;
}
void node_bsdf_velvet(vec4 color, float sigma, vec3 N, out Closure result)
{
node_bsdf_diffuse(color, 0.0, N, result);
}
void node_subsurface_scattering(
vec4 color, float scale, vec3 radius, float sharpen, float texture_blur, vec3 N, float sss_id,
out Closure result)
{
#if defined(USE_SSS)
vec3 out_diff, out_trans;
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.ssr_data = vec4(0.0);
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.ssr_id = -1;
result.sss_data.a = scale;
eevee_closure_subsurface(N, color.rgb, 1.0, scale, out_diff, out_trans);
result.sss_data.rgb = out_diff + out_trans;
#ifdef USE_SSS_ALBEDO
/* Not perfect for texture_blur not exaclty equal to 0.0 or 1.0. */
result.sss_albedo.rgb = mix(color.rgb, vec3(1.0), texture_blur);
result.sss_data.rgb *= mix(vec3(1.0), color.rgb, texture_blur);
#else
result.sss_data.rgb *= color.rgb;
#endif
#else
node_bsdf_diffuse(color, 0.0, N, result);
#endif
}
void node_bsdf_refraction(vec4 color, float roughness, float ior, vec3 N, out Closure result)
{
vec3 out_refr;
color.rgb *= (refractionDepth > 0.0) ? color.rgb : vec3(1.0); /* Simulate 2 absorption event. */
eevee_closure_refraction(N, roughness, ior, out_refr);
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = CLOSURE_DEFAULT;
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.radiance = out_refr * color.rgb;
result.ssr_id = REFRACT_CLOSURE_FLAG;
}
void node_ambient_occlusion(vec4 color, float distance, vec3 normal, out vec4 result_color, out float result_ao)
{
vec3 bent_normal;
vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
result_ao = occlusion_compute(normalize(normal), viewPosition, 1.0, rand, bent_normal);
result_color = result_ao * color;
}
#endif /* VOLUMETRICS */
/* emission */
void node_emission(vec4 color, float strength, vec3 vN, out Closure result)
{
#ifndef VOLUMETRICS
color *= strength;
result = CLOSURE_DEFAULT;
result.radiance = color.rgb;
result.opacity = color.a;
result.ssr_normal = normal_encode(vN, viewCameraVec);
#else
result = Closure(vec3(0.0), vec3(0.0), color.rgb * strength, 0.0);
#endif
}
/* background */
void background_transform_to_world(vec3 viewvec, out vec3 worldvec)
{
vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(viewvec, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
vec4 co_homogenous = (ProjectionMatrixInverse * v);
vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
worldvec = (ViewMatrixInverse * co).xyz;
#else
worldvec = (ModelViewMatrixInverse * co).xyz;
#endif
}
void node_background(vec4 color, float strength, out Closure result)
{
#ifndef VOLUMETRICS
color *= strength;
result = CLOSURE_DEFAULT;
result.radiance = color.rgb;
result.opacity = color.a;
#else
result = CLOSURE_DEFAULT;
#endif
}
/* volumes */
void node_volume_scatter(vec4 color, float density, float anisotropy, out Closure result)
{
#ifdef VOLUMETRICS
result = Closure(vec3(0.0), color.rgb * density, vec3(0.0), anisotropy);
#else
result = CLOSURE_DEFAULT;
#endif
}
void node_volume_absorption(vec4 color, float density, out Closure result)
{
#ifdef VOLUMETRICS
result = Closure((1.0 - color.rgb) * density, vec3(0.0), vec3(0.0), 0.0);
#else
result = CLOSURE_DEFAULT;
#endif
}
void node_blackbody(float temperature, sampler2D spectrummap, out vec4 color)
{
if(temperature >= 12000.0) {
color = vec4(0.826270103, 0.994478524, 1.56626022, 1.0);
}
else if(temperature < 965.0) {
color = vec4(4.70366907, 0.0, 0.0, 1.0);
}
else {
float t = (temperature - 965.0) / (12000.0 - 965.0);
color = vec4(texture(spectrummap, vec2(t, 0.0)).rgb, 1.0);
}
}
void node_volume_principled(
vec4 color,
float density,
float anisotropy,
vec4 absorption_color,
float emission_strength,
vec4 emission_color,
float blackbody_intensity,
vec4 blackbody_tint,
float temperature,
float density_attribute,
vec4 color_attribute,
float temperature_attribute,
sampler2D spectrummap,
out Closure result)
{
#ifdef VOLUMETRICS
vec3 absorption_coeff = vec3(0.0);
vec3 scatter_coeff = vec3(0.0);
vec3 emission_coeff = vec3(0.0);
/* Compute density. */
density = max(density, 0.0);
if(density > 1e-5) {
density = max(density * density_attribute, 0.0);
}
if(density > 1e-5) {
/* Compute scattering and absorption coefficients. */
vec3 scatter_color = color.rgb * color_attribute.rgb;
scatter_coeff = scatter_color * density;
absorption_color.rgb = sqrt(max(absorption_color.rgb, 0.0));
absorption_coeff = max(1.0 - scatter_color, 0.0) * max(1.0 - absorption_color.rgb, 0.0) * density;
}
/* Compute emission. */
emission_strength = max(emission_strength, 0.0);
if(emission_strength > 1e-5) {
emission_coeff += emission_strength * emission_color.rgb;
}
if(blackbody_intensity > 1e-3) {
/* Add temperature from attribute. */
float T = max(temperature * max(temperature_attribute, 0.0), 0.0);
/* Stefan-Boltzman law. */
float T4 = (T * T) * (T * T);
float sigma = 5.670373e-8 * 1e-6 / M_PI;
float intensity = sigma * mix(1.0, T4, blackbody_intensity);
if(intensity > 1e-5) {
vec4 bb;
node_blackbody(T, spectrummap, bb);
emission_coeff += bb.rgb * blackbody_tint.rgb * intensity;
}
}
result = Closure(absorption_coeff, scatter_coeff, emission_coeff, anisotropy);
#else
result = CLOSURE_DEFAULT;
#endif
}
/* closures */
void node_mix_shader(float fac, Closure shader1, Closure shader2, out Closure shader)
{
shader = closure_mix(shader1, shader2, fac);
}
void node_add_shader(Closure shader1, Closure shader2, out Closure shader)
{
shader = closure_add(shader1, shader2);
}
/* fresnel */
void node_fresnel(float ior, vec3 N, vec3 I, out float result)
{
/* handle perspective/orthographic */
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
float eta = max(ior, 0.00001);
result = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? eta : 1.0 / eta);
}
/* layer_weight */
void node_layer_weight(float blend, vec3 N, vec3 I, out float fresnel, out float facing)
{
/* fresnel */
float eta = max(1.0 - blend, 0.00001);
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
fresnel = fresnel_dielectric(I_view, N, (gl_FrontFacing) ? 1.0 / eta : eta);
/* facing */
facing = abs(dot(I_view, N));
if (blend != 0.5) {
blend = clamp(blend, 0.0, 0.99999);
blend = (blend < 0.5) ? 2.0 * blend : 0.5 / (1.0 - blend);
facing = pow(facing, blend);
}
facing = 1.0 - facing;
}
/* gamma */
void node_gamma(vec4 col, float gamma, out vec4 outcol)
{
outcol = col;
if (col.r > 0.0)
outcol.r = compatible_pow(col.r, gamma);
if (col.g > 0.0)
outcol.g = compatible_pow(col.g, gamma);
if (col.b > 0.0)
outcol.b = compatible_pow(col.b, gamma);
}
/* geometry */
void node_attribute_volume_density(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
vec3 cos = volumeObjectLocalCoord;
#else
vec3 cos = vec3(0.0);
#endif
outvec = texture(tex, cos).aaa;
outcol = vec4(outvec, 1.0);
outf = dot(vec3(1.0 / 3.0), outvec);
}
void node_attribute_volume_color(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
vec3 cos = volumeObjectLocalCoord;
#else
vec3 cos = vec3(0.0);
#endif
vec4 value = texture(tex, cos).rgba;
/* Density is premultiplied for interpolation, divide it out here. */
if (value.a > 1e-8)
value.rgb /= value.a;
outvec = value.rgb;
outcol = vec4(outvec, 1.0);
outf = dot(vec3(1.0 / 3.0), outvec);
}
void node_attribute_volume_flame(sampler3D tex, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
vec3 cos = volumeObjectLocalCoord;
#else
vec3 cos = vec3(0.0);
#endif
outf = texture(tex, cos).r;
outvec = vec3(outf, outf, outf);
outcol = vec4(outf, outf, outf, 1.0);
}
void node_attribute_volume_temperature(sampler3D tex, vec2 temperature, out vec4 outcol, out vec3 outvec, out float outf)
{
#if defined(MESH_SHADER) && defined(VOLUMETRICS)
vec3 cos = volumeObjectLocalCoord;
#else
vec3 cos = vec3(0.0);
#endif
float flame = texture(tex, cos).r;
outf = (flame > 0.01) ? temperature.x + flame * (temperature.y - temperature.x): 0.0;
outvec = vec3(outf, outf, outf);
outcol = vec4(outf, outf, outf, 1.0);
}
void node_attribute(vec3 attr, out vec4 outcol, out vec3 outvec, out float outf)
{
outcol = vec4(attr, 1.0);
outvec = attr;
outf = dot(vec3(1.0 / 3.0), attr);
}
void node_uvmap(vec3 attr_uv, out vec3 outvec)
{
outvec = attr_uv;
}
void tangent_orco_x(vec3 orco_in, out vec3 orco_out)
{
orco_out = vec3(0.0, (orco_in.z - 0.5) * -0.5, (orco_in.y - 0.5) * 0.5);
}
void tangent_orco_y(vec3 orco_in, out vec3 orco_out)
{
orco_out = vec3((orco_in.z - 0.5) * -0.5, 0.0, (orco_in.x - 0.5) * 0.5);
}
void tangent_orco_z(vec3 orco_in, out vec3 orco_out)
{
orco_out = vec3((orco_in.y - 0.5) * -0.5, (orco_in.x - 0.5) * 0.5, 0.0);
}
void node_tangentmap(vec4 attr_tangent, mat4 toworld, out vec3 tangent)
{
tangent = (toworld * vec4(attr_tangent.xyz, 0.0)).xyz;
}
void node_tangent(vec3 N, vec3 orco, mat4 objmat, mat4 toworld, out vec3 T)
{
N = (toworld * vec4(N, 0.0)).xyz;
T = (objmat * vec4(orco, 0.0)).xyz;
T = cross(N, normalize(cross(T, N)));
}
void node_geometry(
vec3 I, vec3 N, vec3 orco, mat4 objmat, mat4 toworld,
out vec3 position, out vec3 normal, out vec3 tangent,
out vec3 true_normal, out vec3 incoming, out vec3 parametric,
out float backfacing, out float pointiness)
{
position = worldPosition;
normal = (toworld * vec4(N, 0.0)).xyz;
tangent_orco_z(orco, orco);
node_tangent(N, orco, objmat, toworld, tangent);
true_normal = normal;
/* handle perspective/orthographic */
vec3 I_view = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
incoming = -(toworld * vec4(I_view, 0.0)).xyz;
parametric = vec3(0.0);
backfacing = (gl_FrontFacing) ? 0.0 : 1.0;
pointiness = 0.5;
}
void node_tex_coord(
vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
vec3 attr_orco, vec3 attr_uv,
out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
out vec3 camera, out vec3 window, out vec3 reflection)
{
generated = attr_orco;
normal = normalize((obinvmat * (viewinvmat * vec4(N, 0.0))).xyz);
uv = attr_uv;
object = (obinvmat * (viewinvmat * vec4(I, 1.0))).xyz;
camera = vec3(I.xy, -I.z);
vec4 projvec = ProjectionMatrix * vec4(I, 1.0);
window = vec3(mtex_2d_mapping(projvec.xyz / projvec.w).xy * camerafac.xy + camerafac.zw, 0.0);
vec3 shade_I = (ProjectionMatrix[3][3] == 0.0) ? normalize(I) : vec3(0.0, 0.0, -1.0);
vec3 view_reflection = reflect(shade_I, normalize(N));
reflection = (viewinvmat * vec4(view_reflection, 0.0)).xyz;
}
void node_tex_coord_background(
vec3 I, vec3 N, mat4 viewinvmat, mat4 obinvmat, vec4 camerafac,
vec3 attr_orco, vec3 attr_uv,
out vec3 generated, out vec3 normal, out vec3 uv, out vec3 object,
out vec3 camera, out vec3 window, out vec3 reflection)
{
vec4 v = (ProjectionMatrix[3][3] == 0.0) ? vec4(I, 1.0) : vec4(0.0, 0.0, 1.0, 1.0);
vec4 co_homogenous = (ProjectionMatrixInverse * v);
vec4 co = vec4(co_homogenous.xyz / co_homogenous.w, 0.0);
co = normalize(co);
#if defined(WORLD_BACKGROUND) || defined(PROBE_CAPTURE)
vec3 coords = (ViewMatrixInverse * co).xyz;
#else
vec3 coords = (ModelViewMatrixInverse * co).xyz;
#endif
generated = coords;
normal = -coords;
uv = vec3(attr_uv.xy, 0.0);
object = coords;
camera = vec3(co.xy, -co.z);
window = (ProjectionMatrix[3][3] == 0.0) ?
vec3(mtex_2d_mapping(I).xy * camerafac.xy + camerafac.zw, 0.0) :
vec3(vec2(0.5) * camerafac.xy + camerafac.zw, 0.0);
reflection = -coords;
}
#if defined(WORLD_BACKGROUND) || (defined(PROBE_CAPTURE) && !defined(MESH_SHADER))
#define node_tex_coord node_tex_coord_background
#endif
/* textures */
float calc_gradient(vec3 p, int gradient_type)
{
float x, y, z;
x = p.x;
y = p.y;
z = p.z;
if (gradient_type == 0) { /* linear */
return x;
}
else if (gradient_type == 1) { /* quadratic */
float r = max(x, 0.0);
return r * r;
}
else if (gradient_type == 2) { /* easing */
float r = min(max(x, 0.0), 1.0);
float t = r * r;
return (3.0 * t - 2.0 * t * r);
}
else if (gradient_type == 3) { /* diagonal */
return (x + y) * 0.5;
}
else if (gradient_type == 4) { /* radial */
return atan(y, x) / (M_PI * 2) + 0.5;
}
else {
/* Bias a little bit for the case where p is a unit length vector,
* to get exactly zero instead of a small random value depending
* on float precision. */
float r = max(0.999999 - sqrt(x * x + y * y + z * z), 0.0);
if (gradient_type == 5) { /* quadratic sphere */
return r * r;
}
else if (gradient_type == 6) { /* sphere */
return r;
}
}
return 0.0;
}
void node_tex_gradient(vec3 co, float gradient_type, out vec4 color, out float fac)
{
float f = calc_gradient(co, int(gradient_type));
f = clamp(f, 0.0, 1.0);
color = vec4(f, f, f, 1.0);
fac = f;
}
void node_tex_checker(vec3 co, vec4 color1, vec4 color2, float scale, out vec4 color, out float fac)
{
vec3 p = co * scale;
/* Prevent precision issues on unit coordinates. */
p.x = (p.x + 0.000001) * 0.999999;
p.y = (p.y + 0.000001) * 0.999999;
p.z = (p.z + 0.000001) * 0.999999;
int xi = int(abs(floor(p.x)));
int yi = int(abs(floor(p.y)));
int zi = int(abs(floor(p.z)));
bool check = ((mod(xi, 2) == mod(yi, 2)) == bool(mod(zi, 2)));
color = check ? color1 : color2;
fac = check ? 1.0 : 0.0;
}
vec2 calc_brick_texture(vec3 p, float mortar_size, float mortar_smooth, float bias,
float brick_width, float row_height,
float offset_amount, int offset_frequency,
float squash_amount, int squash_frequency)
{
int bricknum, rownum;
float offset = 0.0;
float x, y;
rownum = floor_to_int(p.y / row_height);
if (offset_frequency != 0 && squash_frequency != 0) {
brick_width *= (rownum % squash_frequency != 0) ? 1.0 : squash_amount; /* squash */
offset = (rownum % offset_frequency != 0) ? 0.0 : (brick_width * offset_amount); /* offset */
}
bricknum = floor_to_int((p.x + offset) / brick_width);
x = (p.x + offset) - brick_width * bricknum;
y = p.y - row_height * rownum;
float tint = clamp((integer_noise((rownum << 16) + (bricknum & 0xFFFF)) + bias), 0.0, 1.0);
float min_dist = min(min(x, y), min(brick_width - x, row_height - y));
if (min_dist >= mortar_size) {
return vec2(tint, 0.0);
}
else if (mortar_smooth == 0.0) {
return vec2(tint, 1.0);
}
else {
min_dist = 1.0 - min_dist/mortar_size;
return vec2(tint, smoothstep(0.0, mortar_smooth, min_dist));
}
}
void node_tex_brick(vec3 co,
vec4 color1, vec4 color2,
vec4 mortar, float scale,
float mortar_size, float mortar_smooth, float bias,
float brick_width, float row_height,
float offset_amount, float offset_frequency,
float squash_amount, float squash_frequency,
out vec4 color, out float fac)
{
vec2 f2 = calc_brick_texture(co * scale,
mortar_size, mortar_smooth, bias,
brick_width, row_height,
offset_amount, int(offset_frequency),
squash_amount, int(squash_frequency));
float tint = f2.x;
float f = f2.y;
if (f != 1.0) {
float facm = 1.0 - tint;
color1 = facm * color1 + tint * color2;
}
color = mix(color1, mortar, f);
fac = f;
}
void node_tex_clouds(vec3 co, float size, out vec4 color, out float fac)
{
color = vec4(1.0);
fac = 1.0;
}
void node_tex_environment_equirectangular(vec3 co, sampler2D ima, out vec4 color)
{
vec3 nco = normalize(co);
float u = -atan(nco.y, nco.x) / (2.0 * M_PI) + 0.5;
float v = atan(nco.z, hypot(nco.x, nco.y)) / M_PI + 0.5;
/* Fix pole bleeding */
float half_width = 0.5 / float(textureSize(ima, 0).x);
v = clamp(v, half_width, 1.0 - half_width);
/* Fix u = 0 seam */
/* This is caused by texture filtering, since uv don't have smooth derivatives
* at u = 0 or 2PI, hardware filtering is using the smallest mipmap for certain
* texels. So we force the highest mipmap and don't do anisotropic filtering. */
color = textureLod(ima, vec2(u, v), 0.0);
}
void node_tex_environment_mirror_ball(vec3 co, sampler2D ima, out vec4 color)
{
vec3 nco = normalize(co);
nco.y -= 1.0;
float div = 2.0 * sqrt(max(-0.5 * nco.y, 0.0));
if (div > 0.0)
nco /= div;
float u = 0.5 * (nco.x + 1.0);
float v = 0.5 * (nco.z + 1.0);
color = texture(ima, vec2(u, v));
}
void node_tex_environment_empty(vec3 co, out vec4 color)
{
color = vec4(1.0, 0.0, 1.0, 1.0);
}
void node_tex_image(vec3 co, sampler2D ima, out vec4 color, out float alpha)
{
color = texture(ima, co.xy);
alpha = color.a;
}
void node_tex_image_box(vec3 texco,
vec3 N,
sampler2D ima,
float blend,
out vec4 color,
out float alpha)
{
vec3 signed_N = N;
/* project from direction vector to barycentric coordinates in triangles */
N = vec3(abs(N.x), abs(N.y), abs(N.z));
N /= (N.x + N.y + N.z);
/* basic idea is to think of this as a triangle, each corner representing
* one of the 3 faces of the cube. in the corners we have single textures,
* in between we blend between two textures, and in the middle we a blend
* between three textures.
*
* the Nxyz values are the barycentric coordinates in an equilateral
* triangle, which in case of blending, in the middle has a smaller
* equilateral triangle where 3 textures blend. this divides things into
* 7 zones, with an if () test for each zone */
vec3 weight = vec3(0.0, 0.0, 0.0);
float limit = 0.5 * (1.0 + blend);
/* first test for corners with single texture */
if (N.x > limit * (N.x + N.y) && N.x > limit * (N.x + N.z)) {
weight.x = 1.0;
}
else if (N.y > limit * (N.x + N.y) && N.y > limit * (N.y + N.z)) {
weight.y = 1.0;
}
else if (N.z > limit * (N.x + N.z) && N.z > limit * (N.y + N.z)) {
weight.z = 1.0;
}
else if (blend > 0.0) {
/* in case of blending, test for mixes between two textures */
if (N.z < (1.0 - limit) * (N.y + N.x)) {
weight.x = N.x / (N.x + N.y);
weight.x = clamp((weight.x - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0);
weight.y = 1.0 - weight.x;
}
else if (N.x < (1.0 - limit) * (N.y + N.z)) {
weight.y = N.y / (N.y + N.z);
weight.y = clamp((weight.y - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0);
weight.z = 1.0 - weight.y;
}
else if (N.y < (1.0 - limit) * (N.x + N.z)) {
weight.x = N.x / (N.x + N.z);
weight.x = clamp((weight.x - 0.5 * (1.0 - blend)) / blend, 0.0, 1.0);
weight.z = 1.0 - weight.x;
}
else {
/* last case, we have a mix between three */
weight.x = ((2.0 - limit) * N.x + (limit - 1.0)) / (2.0 * limit - 1.0);
weight.y = ((2.0 - limit) * N.y + (limit - 1.0)) / (2.0 * limit - 1.0);
weight.z = ((2.0 - limit) * N.z + (limit - 1.0)) / (2.0 * limit - 1.0);
}
}
else {
/* Desperate mode, no valid choice anyway, fallback to one side.*/
weight.x = 1.0;
}
color = vec4(0);
if (weight.x > 0.0) {
vec2 uv = texco.yz;
if(signed_N.x < 0.0) {
uv.x = 1.0 - uv.x;
}
color += weight.x * texture(ima, uv);
}
if (weight.y > 0.0) {
vec2 uv = texco.xz;
if(signed_N.y > 0.0) {
uv.x = 1.0 - uv.x;
}
color += weight.y * texture(ima, uv);
}
if (weight.z > 0.0) {
vec2 uv = texco.yx;
if(signed_N.z > 0.0) {
uv.x = 1.0 - uv.x;
}
color += weight.z * texture(ima, uv);
}
alpha = color.a;
}
void node_tex_image_empty(vec3 co, out vec4 color, out float alpha)
{
color = vec4(0.0);
alpha = 0.0;
}
void node_tex_magic(vec3 co, float scale, float distortion, float depth, out vec4 color, out float fac)
{
vec3 p = co * scale;
float x = sin((p.x + p.y + p.z) * 5.0);
float y = cos((-p.x + p.y - p.z) * 5.0);
float z = -cos((-p.x - p.y + p.z) * 5.0);
if (depth > 0) {
x *= distortion;
y *= distortion;
z *= distortion;
y = -cos(x - y + z);
y *= distortion;
if (depth > 1) {
x = cos(x - y - z);
x *= distortion;
if (depth > 2) {
z = sin(-x - y - z);
z *= distortion;
if (depth > 3) {
x = -cos(-x + y - z);
x *= distortion;
if (depth > 4) {
y = -sin(-x + y + z);
y *= distortion;
if (depth > 5) {
y = -cos(-x + y + z);
y *= distortion;
if (depth > 6) {
x = cos(x + y + z);
x *= distortion;
if (depth > 7) {
z = sin(x + y - z);
z *= distortion;
if (depth > 8) {
x = -cos(-x - y + z);
x *= distortion;
if (depth > 9) {
y = -sin(x - y + z);
y *= distortion;
}
}
}
}
}
}
}
}
}
}
if (distortion != 0.0) {
distortion *= 2.0;
x /= distortion;
y /= distortion;
z /= distortion;
}
color = vec4(0.5 - x, 0.5 - y, 0.5 - z, 1.0);
fac = (color.x + color.y + color.z) / 3.0;
}
float noise_fade(float t)
{
return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
}
float noise_scale3(float result)
{
return 0.9820 * result;
}
float noise_nerp(float t, float a, float b)
{
return (1.0 - t) * a + t * b;
}
float noise_grad(uint hash, float x, float y, float z)
{
uint h = hash & 15u;
float u = h < 8u ? x : y;
float vt = ((h == 12u) || (h == 14u)) ? x : z;
float v = h < 4u ? y : vt;
return (((h & 1u) != 0u) ? -u : u) + (((h & 2u) != 0u) ? -v : v);
}
float noise_perlin(float x, float y, float z)
{
int X; float fx = floorfrac(x, X);
int Y; float fy = floorfrac(y, Y);
int Z; float fz = floorfrac(z, Z);
float u = noise_fade(fx);
float v = noise_fade(fy);
float w = noise_fade(fz);
float noise_u[2], noise_v[2];
noise_u[0] = noise_nerp(u,
noise_grad(hash(X, Y, Z), fx, fy, fz),
noise_grad(hash(X + 1, Y, Z), fx - 1.0, fy, fz));
noise_u[1] = noise_nerp(u,
noise_grad(hash(X, Y + 1, Z), fx, fy - 1.0, fz),
noise_grad(hash(X + 1, Y + 1, Z), fx - 1.0, fy - 1.0, fz));
noise_v[0] = noise_nerp(v, noise_u[0], noise_u[1]);
noise_u[0] = noise_nerp(u,
noise_grad(hash(X, Y, Z + 1), fx, fy, fz - 1.0),
noise_grad(hash(X + 1, Y, Z + 1), fx - 1.0, fy, fz - 1.0));
noise_u[1] = noise_nerp(u,
noise_grad(hash(X, Y + 1, Z + 1), fx, fy - 1.0, fz - 1.0),
noise_grad(hash(X + 1, Y + 1, Z + 1), fx - 1.0, fy - 1.0, fz - 1.0));
noise_v[1] = noise_nerp(v, noise_u[0], noise_u[1]);
return noise_scale3(noise_nerp(w, noise_v[0], noise_v[1]));
}
float noise(vec3 p)
{
return 0.5 * noise_perlin(p.x, p.y, p.z) + 0.5;
}
float snoise(vec3 p)
{
return noise_perlin(p.x, p.y, p.z);
}
float noise_turbulence(vec3 p, float octaves, int hard)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
octaves = clamp(octaves, 0.0, 16.0);
int n = int(octaves);
for (int i = 0; i <= n; i++) {
float t = noise(fscale * p);
if (hard != 0) {
t = abs(2.0 * t - 1.0);
}
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = noise(fscale * p);
if (hard != 0) {
t = abs(2.0 * t - 1.0);
}
float sum2 = sum + t * amp;
sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
sum2 *= (float(1 << (n + 1)) / float((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= (float(1 << n) / float((1 << (n + 1)) - 1));
return sum;
}
}
void node_tex_noise(vec3 co, float scale, float detail, float distortion, out vec4 color, out float fac)
{
vec3 p = co * scale;
int hard = 0;
if (distortion != 0.0) {
vec3 r, offset = vec3(13.5, 13.5, 13.5);
r.x = noise(p + offset) * distortion;
r.y = noise(p) * distortion;
r.z = noise(p - offset) * distortion;
p += r;
}
fac = noise_turbulence(p, detail, hard);
color = vec4(fac,
noise_turbulence(vec3(p.y, p.x, p.z), detail, hard),
noise_turbulence(vec3(p.y, p.z, p.x), detail, hard),
1);
}
/* Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
float noise_musgrave_fBm(vec3 p, float H, float lacunarity, float octaves)
{
float rmd;
float value = 0.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < int(octaves); i++) {
value += snoise(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floor(octaves);
if (rmd != 0.0)
value += rmd * snoise(p) * pwr;
return value;
}
/* Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
float noise_musgrave_multi_fractal(vec3 p, float H, float lacunarity, float octaves)
{
float rmd;
float value = 1.0;
float pwr = 1.0;
float pwHL = pow(lacunarity, -H);
for (int i = 0; i < int(octaves); i++) {
value *= (pwr * snoise(p) + 1.0);
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floor(octaves);
if (rmd != 0.0)
value *= (rmd * pwr * snoise(p) + 1.0); /* correct? */
return value;
}
/* Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hetero_terrain(vec3 p, float H, float lacunarity, float octaves, float offset)
{
float value, increment, rmd;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
value = offset + snoise(p);
p *= lacunarity;
for (int i = 1; i < int(octaves); i++) {
increment = (snoise(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
rmd = octaves - floor(octaves);
if (rmd != 0.0) {
increment = (snoise(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_hybrid_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
{
float result, signal, weight, rmd;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
result = snoise(p) + offset;
weight = gain * result;
p *= lacunarity;
for (int i = 1; (weight > 0.001f) && (i < int(octaves)); i++) {
if (weight > 1.0)
weight = 1.0;
signal = (snoise(p) + offset) * pwr;
pwr *= pwHL;
result += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
rmd = octaves - floor(octaves);
if (rmd != 0.0)
result += rmd * ((snoise(p) + offset) * pwr);
return result;
}
/* Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
float noise_musgrave_ridged_multi_fractal(vec3 p, float H, float lacunarity, float octaves, float offset, float gain)
{
float result, signal, weight;
float pwHL = pow(lacunarity, -H);
float pwr = pwHL;
signal = offset - abs(snoise(p));
signal *= signal;
result = signal;
weight = 1.0;
for (int i = 1; i < int(octaves); i++) {
p *= lacunarity;
weight = clamp(signal * gain, 0.0, 1.0);
signal = offset - abs(snoise(p));
signal *= signal;
signal *= weight;
result += signal * pwr;
pwr *= pwHL;
}
return result;
}
float svm_musgrave(int type,
float dimension,
float lacunarity,
float octaves,
float offset,
float intensity,
float gain,
vec3 p)
{
if (type == 0 /* NODE_MUSGRAVE_MULTIFRACTAL */)
return intensity * noise_musgrave_multi_fractal(p, dimension, lacunarity, octaves);
else if (type == 1 /* NODE_MUSGRAVE_FBM */)
return intensity * noise_musgrave_fBm(p, dimension, lacunarity, octaves);
else if (type == 2 /* NODE_MUSGRAVE_HYBRID_MULTIFRACTAL */)
return intensity * noise_musgrave_hybrid_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
else if (type == 3 /* NODE_MUSGRAVE_RIDGED_MULTIFRACTAL */)
return intensity * noise_musgrave_ridged_multi_fractal(p, dimension, lacunarity, octaves, offset, gain);
else if (type == 4 /* NODE_MUSGRAVE_HETERO_TERRAIN */)
return intensity * noise_musgrave_hetero_terrain(p, dimension, lacunarity, octaves, offset);
return 0.0;
}
void node_tex_musgrave(vec3 co,
float scale,
float detail,
float dimension,
float lacunarity,
float offset,
float gain,
float type,
out vec4 color,
out float fac)
{
fac = svm_musgrave(int(type),
dimension,
lacunarity,
detail,
offset,
1.0,
gain,
co * scale);
color = vec4(fac, fac, fac, 1.0);
}
void node_tex_sky(vec3 co, out vec4 color)
{
color = vec4(1.0);
}
void node_tex_voronoi(vec3 co, float scale, float coloring, out vec4 color, out float fac)
{
vec3 p = co * scale;
int xx, yy, zz, xi, yi, zi;
float da[4];
vec3 pa[4];
xi = floor_to_int(p[0]);
yi = floor_to_int(p[1]);
zi = floor_to_int(p[2]);
da[0] = 1e+10;
da[1] = 1e+10;
da[2] = 1e+10;
da[3] = 1e+10;
for (xx = xi - 1; xx <= xi + 1; xx++) {
for (yy = yi - 1; yy <= yi + 1; yy++) {
for (zz = zi - 1; zz <= zi + 1; zz++) {
vec3 ip = vec3(xx, yy, zz);
vec3 vp = cellnoise_color(ip);
vec3 pd = p - (vp + ip);
float d = dot(pd, pd);
vp += vec3(xx, yy, zz);
if (d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if (d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if (d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if (d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
if (coloring == 0.0) {
fac = abs(da[0]);
color = vec4(fac, fac, fac, 1);
}
else {
color = vec4(cellnoise_color(pa[0]), 1);
fac = (color.x + color.y + color.z) * (1.0 / 3.0);
}
}
float calc_wave(vec3 p, float distortion, float detail, float detail_scale, int wave_type, int wave_profile)
{
float n;
if (wave_type == 0) /* type bands */
n = (p.x + p.y + p.z) * 10.0;
else /* type rings */
n = length(p) * 20.0;
if (distortion != 0.0)
n += distortion * noise_turbulence(p * detail_scale, detail, 0);
if (wave_profile == 0) { /* profile sin */
return 0.5 + 0.5 * sin(n);
}
else { /* profile saw */
n /= 2.0 * M_PI;
n -= int(n);
return (n < 0.0) ? n + 1.0 : n;
}
}
void node_tex_wave(
vec3 co, float scale, float distortion, float detail, float detail_scale, float wave_type, float wave_profile,
out vec4 color, out float fac)
{
float f;
f = calc_wave(co * scale, distortion, detail, detail_scale, int(wave_type), int(wave_profile));
color = vec4(f, f, f, 1.0);
fac = f;
}
/* light path */
void node_light_path(
out float is_camera_ray,
out float is_shadow_ray,
out float is_diffuse_ray,
out float is_glossy_ray,
out float is_singular_ray,
out float is_reflection_ray,
out float is_transmission_ray,
out float ray_length,
out float ray_depth,
out float diffuse_depth,
out float glossy_depth,
out float transparent_depth,
out float transmission_depth)
{
#ifndef PROBE_CAPTURE
is_camera_ray = 1.0;
is_glossy_ray = 0.0;
is_diffuse_ray = 0.0;
is_reflection_ray = 0.0;
is_transmission_ray = 0.0;
#else
is_camera_ray = 0.0;
is_glossy_ray = 1.0;
is_diffuse_ray = 1.0;
is_reflection_ray = 1.0;
is_transmission_ray = 1.0;
#endif
is_shadow_ray = 0.0;
is_singular_ray = 0.0;
ray_length = 1.0;
ray_depth = 1.0;
diffuse_depth = 1.0;
glossy_depth = 1.0;
transparent_depth = 1.0;
transmission_depth = 1.0;
}
void node_light_falloff(float strength, float tsmooth, out float quadratic, out float linear, out float constant)
{
quadratic = strength;
linear = strength;
constant = strength;
}
void node_object_info(mat4 obmat, vec3 info, out vec3 location, out float object_index, out float material_index, out float random)
{
location = obmat[3].xyz;
object_index = info.x;
material_index = info.y;
random = info.z;
}
void node_normal_map(vec4 tangent, vec3 normal, vec3 texnormal, out vec3 outnormal)
{
vec3 B = tangent.w * cross(normal, tangent.xyz);
outnormal = texnormal.x * tangent.xyz + texnormal.y * B + texnormal.z * normal;
outnormal = normalize(outnormal);
}
void node_bump(float strength, float dist, float height, vec3 N, vec3 surf_pos, float invert, out vec3 result)
{
if (invert != 0.0) {
dist *= -1.0;
}
vec3 dPdx = dFdx(surf_pos);
vec3 dPdy = dFdy(surf_pos);
/* Get surface tangents from normal. */
vec3 Rx = cross(dPdy, N);
vec3 Ry = cross(N, dPdx);
/* Compute surface gradient and determinant. */
float det = dot(dPdx, Rx);
float absdet = abs(det);
float dHdx = dFdx(height);
float dHdy = dFdy(height);
vec3 surfgrad = dHdx * Rx + dHdy * Ry;
strength = max(strength, 0.0);
result = normalize(absdet * N - dist * sign(det) * surfgrad);
result = normalize(strength * result + (1.0 - strength) * N);
}
void node_bevel(float radius, vec3 N, out vec3 result)
{
result = N;
}
void node_hair_info(out float is_strand, out float intercept, out float thickness, out vec3 tangent, out float random)
{
#ifdef HAIR_SHADER
is_strand = 1.0;
intercept = hairTime;
thickness = hairThickness;
tangent = normalize(hairTangent);
random = wang_hash_noise(uint(hairStrandID)); /* TODO: could be precomputed per strand instead. */
#else
is_strand = 0.0;
intercept = 0.0;
thickness = 0.0;
tangent = vec3(1.0);
random = 0.0;
#endif
}
void node_displacement_object(float height, float midlevel, float scale, vec3 N, mat4 obmat, out vec3 result)
{
N = (vec4(N, 0.0) * obmat).xyz;
result = (height - midlevel) * scale * normalize(N);
result = (obmat * vec4(result, 0.0)).xyz;
}
void node_displacement_world(float height, float midlevel, float scale, vec3 N, out vec3 result)
{
result = (height - midlevel) * scale * normalize(N);
}
void node_vector_displacement_tangent(vec4 vector, float midlevel, float scale, vec4 tangent, vec3 normal, mat4 obmat, mat4 viewmat, out vec3 result)
{
vec3 N_object = normalize(((vec4(normal, 0.0) * viewmat) * obmat).xyz);
vec3 T_object = normalize(((vec4(tangent.xyz, 0.0) * viewmat) * obmat).xyz);
vec3 B_object = tangent.w * normalize(cross(N_object, T_object));
vec3 offset = (vector.xyz - vec3(midlevel)) * scale;
result = offset.x * T_object + offset.y * N_object + offset.z * B_object;
result = (obmat * vec4(result, 0.0)).xyz;
}
void node_vector_displacement_object(vec4 vector, float midlevel, float scale, mat4 obmat, out vec3 result)
{
result = (vector.xyz - vec3(midlevel)) * scale;
result = (obmat * vec4(result, 0.0)).xyz;
}
void node_vector_displacement_world(vec4 vector, float midlevel, float scale, out vec3 result)
{
result = (vector.xyz - vec3(midlevel)) * scale;
}
/* output */
void node_output_material(Closure surface, Closure volume, vec3 displacement, out Closure result)
{
#ifdef VOLUMETRICS
result = volume;
#else
result = surface;
#endif
}
uniform float backgroundAlpha;
void node_output_world(Closure surface, Closure volume, out Closure result)
{
#ifndef VOLUMETRICS
result.radiance = surface.radiance;
result.opacity = backgroundAlpha;
#else
result = volume;
#endif /* VOLUMETRICS */
}
#ifndef VOLUMETRICS
/* TODO : clean this ifdef mess */
/* EEVEE output */
void world_normals_get(out vec3 N)
{
#ifdef HAIR_SHADER
vec3 B = normalize(cross(worldNormal, hairTangent));
float cos_theta;
if (hairThicknessRes == 1) {
vec4 rand = texelFetch(utilTex, ivec3(ivec2(gl_FragCoord.xy) % LUT_SIZE, 2.0), 0);
/* Random cosine normal distribution on the hair surface. */
cos_theta = rand.x * 2.0 - 1.0;
}
else {
/* Shade as a cylinder. */
cos_theta = hairThickTime / hairThickness;
}
float sin_theta = sqrt(max(0.0, 1.0f - cos_theta*cos_theta));;
N = normalize(worldNormal * sin_theta + B * cos_theta);
#else
N = gl_FrontFacing ? worldNormal : -worldNormal;
#endif
}
void node_eevee_specular(
vec4 diffuse, vec4 specular, float roughness, vec4 emissive, float transp, vec3 normal,
float clearcoat, float clearcoat_roughness, vec3 clearcoat_normal,
float occlusion, float ssr_id, out Closure result)
{
vec3 out_diff, out_spec, ssr_spec;
eevee_closure_default(normal, diffuse.rgb, specular.rgb, int(ssr_id), roughness, occlusion,
out_diff, out_spec, ssr_spec);
vec3 vN = normalize(mat3(ViewMatrix) * normal);
result = CLOSURE_DEFAULT;
result.radiance = out_diff * diffuse.rgb + out_spec + emissive.rgb;
result.opacity = 1.0 - transp;
result.ssr_data = vec4(ssr_spec, roughness);
result.ssr_normal = normal_encode(vN, viewCameraVec);
result.ssr_id = int(ssr_id);
}
void node_shader_to_rgba(Closure cl, out vec4 outcol, out float outalpha)
{
vec4 spec_accum = vec4(0.0);
if (ssrToggle && cl.ssr_id == outputSsrId) {
vec3 V = cameraVec;
vec3 vN = normal_decode(cl.ssr_normal, viewCameraVec);
vec3 N = transform_direction(ViewMatrixInverse, vN);
float roughness = cl.ssr_data.a;
float roughnessSquared = max(1e-3, roughness * roughness);
fallback_cubemap(N, V, worldPosition, viewPosition, roughness, roughnessSquared, spec_accum);
}
outalpha = cl.opacity;
outcol = vec4((spec_accum.rgb * cl.ssr_data.rgb) + cl.radiance, 1.0);
# ifdef USE_SSS
# ifdef USE_SSS_ALBEDO
outcol.rgb += cl.sss_data.rgb * cl.sss_albedo;
# else
outcol.rgb += cl.sss_data.rgb;
# endif
# endif
}
#endif /* VOLUMETRICS */