Files
blender/intern/cycles/kernel/geom/triangle.h
Brecht Van Lommel 9cfc7967dd Cycles: use SPDX license headers
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
  to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.

Ref D14069, T95597
2022-02-11 17:47:34 +01:00

358 lines
13 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
/* Triangle Primitive
*
* Basic triangle with 3 vertices is used to represent mesh surfaces. For BVH
* ray intersection we use a precomputed triangle storage to accelerate
* intersection at the cost of more memory usage */
#pragma once
CCL_NAMESPACE_BEGIN
/* Normal on triangle. */
ccl_device_inline float3 triangle_normal(KernelGlobals kg, ccl_private ShaderData *sd)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
const float3 v0 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 0);
const float3 v1 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 1);
const float3 v2 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 2);
/* return normal */
if (sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
return normalize(cross(v2 - v0, v1 - v0));
}
else {
return normalize(cross(v1 - v0, v2 - v0));
}
}
/* Point and normal on triangle. */
ccl_device_inline void triangle_point_normal(KernelGlobals kg,
int object,
int prim,
float u,
float v,
ccl_private float3 *P,
ccl_private float3 *Ng,
ccl_private int *shader)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 v0 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 0);
float3 v1 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 1);
float3 v2 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 2);
/* compute point */
float t = 1.0f - u - v;
*P = (u * v0 + v * v1 + t * v2);
/* get object flags */
int object_flag = kernel_tex_fetch(__object_flag, object);
/* compute normal */
if (object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
*Ng = normalize(cross(v2 - v0, v1 - v0));
}
else {
*Ng = normalize(cross(v1 - v0, v2 - v0));
}
/* shader`*/
*shader = kernel_tex_fetch(__tri_shader, prim);
}
/* Triangle vertex locations */
ccl_device_inline void triangle_vertices(KernelGlobals kg, int prim, float3 P[3])
{
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
P[0] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 0);
P[1] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 1);
P[2] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 2);
}
/* Triangle vertex locations and vertex normals */
ccl_device_inline void triangle_vertices_and_normals(KernelGlobals kg,
int prim,
float3 P[3],
float3 N[3])
{
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
P[0] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 0);
P[1] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 1);
P[2] = kernel_tex_fetch(__tri_verts, tri_vindex.w + 2);
N[0] = kernel_tex_fetch(__tri_vnormal, tri_vindex.x);
N[1] = kernel_tex_fetch(__tri_vnormal, tri_vindex.y);
N[2] = kernel_tex_fetch(__tri_vnormal, tri_vindex.z);
}
/* Interpolate smooth vertex normal from vertices */
ccl_device_inline float3
triangle_smooth_normal(KernelGlobals kg, float3 Ng, int prim, float u, float v)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 n0 = kernel_tex_fetch(__tri_vnormal, tri_vindex.x);
float3 n1 = kernel_tex_fetch(__tri_vnormal, tri_vindex.y);
float3 n2 = kernel_tex_fetch(__tri_vnormal, tri_vindex.z);
float3 N = safe_normalize((1.0f - u - v) * n2 + u * n0 + v * n1);
return is_zero(N) ? Ng : N;
}
ccl_device_inline float3 triangle_smooth_normal_unnormalized(
KernelGlobals kg, ccl_private const ShaderData *sd, float3 Ng, int prim, float u, float v)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
float3 n0 = kernel_tex_fetch(__tri_vnormal, tri_vindex.x);
float3 n1 = kernel_tex_fetch(__tri_vnormal, tri_vindex.y);
float3 n2 = kernel_tex_fetch(__tri_vnormal, tri_vindex.z);
/* ensure that the normals are in object space */
if (sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED) {
object_inverse_normal_transform(kg, sd, &n0);
object_inverse_normal_transform(kg, sd, &n1);
object_inverse_normal_transform(kg, sd, &n2);
}
float3 N = (1.0f - u - v) * n2 + u * n0 + v * n1;
return is_zero(N) ? Ng : N;
}
/* Ray differentials on triangle */
ccl_device_inline void triangle_dPdudv(KernelGlobals kg,
int prim,
ccl_private float3 *dPdu,
ccl_private float3 *dPdv)
{
/* fetch triangle vertex coordinates */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
const float3 p0 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 0);
const float3 p1 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 1);
const float3 p2 = kernel_tex_fetch(__tri_verts, tri_vindex.w + 2);
/* compute derivatives of P w.r.t. uv */
*dPdu = (p0 - p2);
*dPdv = (p1 - p2);
}
/* Reading attributes on various triangle elements */
ccl_device float triangle_attribute_float(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float *dx,
ccl_private float *dy)
{
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION | ATTR_ELEMENT_CORNER)) {
float f0, f1, f2;
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION)) {
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
f0 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.x);
f1 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.y);
f2 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.z);
}
else {
const int tri = desc.offset + sd->prim * 3;
f0 = kernel_tex_fetch(__attributes_float, tri + 0);
f1 = kernel_tex_fetch(__attributes_float, tri + 1);
f2 = kernel_tex_fetch(__attributes_float, tri + 2);
}
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * f0 + sd->dv.dx * f1 - (sd->du.dx + sd->dv.dx) * f2;
if (dy)
*dy = sd->du.dy * f0 + sd->dv.dy * f1 - (sd->du.dy + sd->dv.dy) * f2;
#endif
return sd->u * f0 + sd->v * f1 + (1.0f - sd->u - sd->v) * f2;
}
else {
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = 0.0f;
if (dy)
*dy = 0.0f;
#endif
if (desc.element & (ATTR_ELEMENT_FACE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_FACE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float, offset);
}
else {
return 0.0f;
}
}
}
ccl_device float2 triangle_attribute_float2(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float2 *dx,
ccl_private float2 *dy)
{
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION | ATTR_ELEMENT_CORNER)) {
float2 f0, f1, f2;
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION)) {
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
f0 = kernel_tex_fetch(__attributes_float2, desc.offset + tri_vindex.x);
f1 = kernel_tex_fetch(__attributes_float2, desc.offset + tri_vindex.y);
f2 = kernel_tex_fetch(__attributes_float2, desc.offset + tri_vindex.z);
}
else {
const int tri = desc.offset + sd->prim * 3;
f0 = kernel_tex_fetch(__attributes_float2, tri + 0);
f1 = kernel_tex_fetch(__attributes_float2, tri + 1);
f2 = kernel_tex_fetch(__attributes_float2, tri + 2);
}
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * f0 + sd->dv.dx * f1 - (sd->du.dx + sd->dv.dx) * f2;
if (dy)
*dy = sd->du.dy * f0 + sd->dv.dy * f1 - (sd->du.dy + sd->dv.dy) * f2;
#endif
return sd->u * f0 + sd->v * f1 + (1.0f - sd->u - sd->v) * f2;
}
else {
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float2(0.0f, 0.0f);
if (dy)
*dy = make_float2(0.0f, 0.0f);
#endif
if (desc.element & (ATTR_ELEMENT_FACE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_FACE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float2, offset);
}
else {
return make_float2(0.0f, 0.0f);
}
}
}
ccl_device float3 triangle_attribute_float3(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float3 *dx,
ccl_private float3 *dy)
{
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION | ATTR_ELEMENT_CORNER)) {
float3 f0, f1, f2;
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION)) {
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
f0 = kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.x);
f1 = kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.y);
f2 = kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.z);
}
else {
const int tri = desc.offset + sd->prim * 3;
f0 = kernel_tex_fetch(__attributes_float3, tri + 0);
f1 = kernel_tex_fetch(__attributes_float3, tri + 1);
f2 = kernel_tex_fetch(__attributes_float3, tri + 2);
}
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * f0 + sd->dv.dx * f1 - (sd->du.dx + sd->dv.dx) * f2;
if (dy)
*dy = sd->du.dy * f0 + sd->dv.dy * f1 - (sd->du.dy + sd->dv.dy) * f2;
#endif
return sd->u * f0 + sd->v * f1 + (1.0f - sd->u - sd->v) * f2;
}
else {
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float3(0.0f, 0.0f, 0.0f);
if (dy)
*dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
if (desc.element & (ATTR_ELEMENT_FACE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_FACE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float3, offset);
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
}
}
ccl_device float4 triangle_attribute_float4(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float4 *dx,
ccl_private float4 *dy)
{
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION | ATTR_ELEMENT_CORNER |
ATTR_ELEMENT_CORNER_BYTE)) {
float4 f0, f1, f2;
if (desc.element & (ATTR_ELEMENT_VERTEX | ATTR_ELEMENT_VERTEX_MOTION)) {
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
f0 = kernel_tex_fetch(__attributes_float4, desc.offset + tri_vindex.x);
f1 = kernel_tex_fetch(__attributes_float4, desc.offset + tri_vindex.y);
f2 = kernel_tex_fetch(__attributes_float4, desc.offset + tri_vindex.z);
}
else {
const int tri = desc.offset + sd->prim * 3;
if (desc.element == ATTR_ELEMENT_CORNER) {
f0 = kernel_tex_fetch(__attributes_float4, tri + 0);
f1 = kernel_tex_fetch(__attributes_float4, tri + 1);
f2 = kernel_tex_fetch(__attributes_float4, tri + 2);
}
else {
f0 = color_srgb_to_linear_v4(
color_uchar4_to_float4(kernel_tex_fetch(__attributes_uchar4, tri + 0)));
f1 = color_srgb_to_linear_v4(
color_uchar4_to_float4(kernel_tex_fetch(__attributes_uchar4, tri + 1)));
f2 = color_srgb_to_linear_v4(
color_uchar4_to_float4(kernel_tex_fetch(__attributes_uchar4, tri + 2)));
}
}
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * f0 + sd->dv.dx * f1 - (sd->du.dx + sd->dv.dx) * f2;
if (dy)
*dy = sd->du.dy * f0 + sd->dv.dy * f1 - (sd->du.dy + sd->dv.dy) * f2;
#endif
return sd->u * f0 + sd->v * f1 + (1.0f - sd->u - sd->v) * f2;
}
else {
#ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
if (dy)
*dy = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
#endif
if (desc.element & (ATTR_ELEMENT_FACE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_FACE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float4, offset);
}
else {
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
}
CCL_NAMESPACE_END