
This includes much improved GPU rendering performance, viewport interactivity, new shadow catcher, revamped sampling settings, subsurface scattering anisotropy, new GPU volume sampling, improved PMJ sampling pattern, and more. Some features have also been removed or changed, breaking backwards compatibility. Including the removal of the OpenCL backend, for which alternatives are under development. Release notes and code docs: https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles https://wiki.blender.org/wiki/Source/Render/Cycles Credits: * Sergey Sharybin * Brecht Van Lommel * Patrick Mours (OptiX backend) * Christophe Hery (subsurface scattering anisotropy) * William Leeson (PMJ sampling pattern) * Alaska (various fixes and tweaks) * Thomas Dinges (various fixes) For the full commit history, see the cycles-x branch. This squashes together all the changes since intermediate changes would often fail building or tests. Ref T87839, T87837, T87836 Fixes T90734, T89353, T80267, T80267, T77185, T69800
520 lines
17 KiB
C
520 lines
17 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "kernel_differential.h"
|
|
#include "kernel_lookup_table.h"
|
|
#include "kernel_montecarlo.h"
|
|
#include "kernel_projection.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Perspective Camera */
|
|
|
|
ccl_device float2 camera_sample_aperture(ccl_constant KernelCamera *cam, float u, float v)
|
|
{
|
|
float blades = cam->blades;
|
|
float2 bokeh;
|
|
|
|
if (blades == 0.0f) {
|
|
/* sample disk */
|
|
bokeh = concentric_sample_disk(u, v);
|
|
}
|
|
else {
|
|
/* sample polygon */
|
|
float rotation = cam->bladesrotation;
|
|
bokeh = regular_polygon_sample(blades, rotation, u, v);
|
|
}
|
|
|
|
/* anamorphic lens bokeh */
|
|
bokeh.x *= cam->inv_aperture_ratio;
|
|
|
|
return bokeh;
|
|
}
|
|
|
|
ccl_device void camera_sample_perspective(const KernelGlobals *ccl_restrict kg,
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_addr_space Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 raster = make_float3(raster_x, raster_y, 0.0f);
|
|
float3 Pcamera = transform_perspective(&rastertocamera, raster);
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.have_perspective_motion) {
|
|
/* TODO(sergey): Currently we interpolate projected coordinate which
|
|
* gives nice looking result and which is simple, but is in fact a bit
|
|
* different comparing to constructing projective matrix from an
|
|
* interpolated field of view.
|
|
*/
|
|
if (ray->time < 0.5f) {
|
|
ProjectionTransform rastertocamera_pre = kernel_data.cam.perspective_pre;
|
|
float3 Pcamera_pre = transform_perspective(&rastertocamera_pre, raster);
|
|
Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
|
|
}
|
|
else {
|
|
ProjectionTransform rastertocamera_post = kernel_data.cam.perspective_post;
|
|
float3 Pcamera_post = transform_perspective(&rastertocamera_post, raster);
|
|
Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
float3 P = zero_float3();
|
|
float3 D = Pcamera;
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float ft = kernel_data.cam.focaldistance / D.z;
|
|
float3 Pfocus = D * ft;
|
|
|
|
/* update ray for effect of lens */
|
|
P = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
D = normalize(Pfocus - P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.num_motion_steps) {
|
|
transform_motion_array_interpolate(&cameratoworld,
|
|
kernel_tex_array(__camera_motion),
|
|
kernel_data.cam.num_motion_steps,
|
|
ray->time);
|
|
}
|
|
#endif
|
|
|
|
P = transform_point(&cameratoworld, P);
|
|
D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
bool use_stereo = kernel_data.cam.interocular_offset != 0.0f;
|
|
if (!use_stereo) {
|
|
/* No stereo */
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
float3 Dcenter = transform_direction(&cameratoworld, Pcamera);
|
|
float3 Dcenter_normalized = normalize(Dcenter);
|
|
|
|
/* TODO: can this be optimized to give compact differentials directly? */
|
|
ray->dP = differential_zero_compact();
|
|
differential3 dD;
|
|
dD.dx = normalize(Dcenter + float4_to_float3(kernel_data.cam.dx)) - Dcenter_normalized;
|
|
dD.dy = normalize(Dcenter + float4_to_float3(kernel_data.cam.dy)) - Dcenter_normalized;
|
|
ray->dD = differential_make_compact(dD);
|
|
#endif
|
|
}
|
|
else {
|
|
/* Spherical stereo */
|
|
spherical_stereo_transform(&kernel_data.cam, &P, &D);
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* Ray differentials, computed from scratch using the raster coordinates
|
|
* because we don't want to be affected by depth of field. We compute
|
|
* ray origin and direction for the center and two neighboring pixels
|
|
* and simply take their differences. */
|
|
float3 Pnostereo = transform_point(&cameratoworld, zero_float3());
|
|
|
|
float3 Pcenter = Pnostereo;
|
|
float3 Dcenter = Pcamera;
|
|
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
|
|
spherical_stereo_transform(&kernel_data.cam, &Pcenter, &Dcenter);
|
|
|
|
float3 Px = Pnostereo;
|
|
float3 Dx = transform_perspective(&rastertocamera,
|
|
make_float3(raster_x + 1.0f, raster_y, 0.0f));
|
|
Dx = normalize(transform_direction(&cameratoworld, Dx));
|
|
spherical_stereo_transform(&kernel_data.cam, &Px, &Dx);
|
|
|
|
differential3 dP, dD;
|
|
|
|
dP.dx = Px - Pcenter;
|
|
dD.dx = Dx - Dcenter;
|
|
|
|
float3 Py = Pnostereo;
|
|
float3 Dy = transform_perspective(&rastertocamera,
|
|
make_float3(raster_x, raster_y + 1.0f, 0.0f));
|
|
Dy = normalize(transform_direction(&cameratoworld, Dy));
|
|
spherical_stereo_transform(&kernel_data.cam, &Py, &Dy);
|
|
|
|
dP.dy = Py - Pcenter;
|
|
dD.dy = Dy - Dcenter;
|
|
ray->dD = differential_make_compact(dD);
|
|
ray->dP = differential_make_compact(dP);
|
|
#endif
|
|
}
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
float z_inv = 1.0f / normalize(Pcamera).z;
|
|
float nearclip = kernel_data.cam.nearclip * z_inv;
|
|
ray->P += nearclip * ray->D;
|
|
ray->dP += nearclip * ray->dD;
|
|
ray->t = kernel_data.cam.cliplength * z_inv;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Orthographic Camera */
|
|
ccl_device void camera_sample_orthographic(const KernelGlobals *ccl_restrict kg,
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_addr_space Ray *ray)
|
|
{
|
|
/* create ray form raster position */
|
|
ProjectionTransform rastertocamera = kernel_data.cam.rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
float3 P;
|
|
float3 D = make_float3(0.0f, 0.0f, 1.0f);
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = kernel_data.cam.aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(&kernel_data.cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 Pfocus = D * kernel_data.cam.focaldistance;
|
|
|
|
/* update ray for effect of lens */
|
|
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
|
|
P = Pcamera + lensuvw;
|
|
D = normalize(Pfocus - lensuvw);
|
|
}
|
|
else {
|
|
P = Pcamera;
|
|
}
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (kernel_data.cam.num_motion_steps) {
|
|
transform_motion_array_interpolate(&cameratoworld,
|
|
kernel_tex_array(__camera_motion),
|
|
kernel_data.cam.num_motion_steps,
|
|
ray->time);
|
|
}
|
|
#endif
|
|
|
|
ray->P = transform_point(&cameratoworld, P);
|
|
ray->D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* ray differential */
|
|
differential3 dP;
|
|
dP.dx = float4_to_float3(kernel_data.cam.dx);
|
|
dP.dy = float4_to_float3(kernel_data.cam.dx);
|
|
|
|
ray->dP = differential_make_compact(dP);
|
|
ray->dD = differential_zero_compact();
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
ray->t = kernel_data.cam.cliplength;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Panorama Camera */
|
|
|
|
ccl_device_inline void camera_sample_panorama(ccl_constant KernelCamera *cam,
|
|
#ifdef __CAMERA_MOTION__
|
|
const ccl_global DecomposedTransform *cam_motion,
|
|
#endif
|
|
float raster_x,
|
|
float raster_y,
|
|
float lens_u,
|
|
float lens_v,
|
|
ccl_addr_space Ray *ray)
|
|
{
|
|
ProjectionTransform rastertocamera = cam->rastertocamera;
|
|
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
|
|
|
|
/* create ray form raster position */
|
|
float3 P = zero_float3();
|
|
float3 D = panorama_to_direction(cam, Pcamera.x, Pcamera.y);
|
|
|
|
/* indicates ray should not receive any light, outside of the lens */
|
|
if (is_zero(D)) {
|
|
ray->t = 0.0f;
|
|
return;
|
|
}
|
|
|
|
/* modify ray for depth of field */
|
|
float aperturesize = cam->aperturesize;
|
|
|
|
if (aperturesize > 0.0f) {
|
|
/* sample point on aperture */
|
|
float2 lensuv = camera_sample_aperture(cam, lens_u, lens_v) * aperturesize;
|
|
|
|
/* compute point on plane of focus */
|
|
float3 Dfocus = normalize(D);
|
|
float3 Pfocus = Dfocus * cam->focaldistance;
|
|
|
|
/* calculate orthonormal coordinates perpendicular to Dfocus */
|
|
float3 U, V;
|
|
U = normalize(make_float3(1.0f, 0.0f, 0.0f) - Dfocus.x * Dfocus);
|
|
V = normalize(cross(Dfocus, U));
|
|
|
|
/* update ray for effect of lens */
|
|
P = U * lensuv.x + V * lensuv.y;
|
|
D = normalize(Pfocus - P);
|
|
}
|
|
|
|
/* transform ray from camera to world */
|
|
Transform cameratoworld = cam->cameratoworld;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if (cam->num_motion_steps) {
|
|
transform_motion_array_interpolate(
|
|
&cameratoworld, cam_motion, cam->num_motion_steps, ray->time);
|
|
}
|
|
#endif
|
|
|
|
P = transform_point(&cameratoworld, P);
|
|
D = normalize(transform_direction(&cameratoworld, D));
|
|
|
|
/* Stereo transform */
|
|
bool use_stereo = cam->interocular_offset != 0.0f;
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &P, &D);
|
|
}
|
|
|
|
ray->P = P;
|
|
ray->D = D;
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* Ray differentials, computed from scratch using the raster coordinates
|
|
* because we don't want to be affected by depth of field. We compute
|
|
* ray origin and direction for the center and two neighboring pixels
|
|
* and simply take their differences. */
|
|
float3 Pcenter = Pcamera;
|
|
float3 Dcenter = panorama_to_direction(cam, Pcenter.x, Pcenter.y);
|
|
Pcenter = transform_point(&cameratoworld, Pcenter);
|
|
Dcenter = normalize(transform_direction(&cameratoworld, Dcenter));
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Pcenter, &Dcenter);
|
|
}
|
|
|
|
float3 Px = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
|
|
float3 Dx = panorama_to_direction(cam, Px.x, Px.y);
|
|
Px = transform_point(&cameratoworld, Px);
|
|
Dx = normalize(transform_direction(&cameratoworld, Dx));
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Px, &Dx);
|
|
}
|
|
|
|
differential3 dP, dD;
|
|
dP.dx = Px - Pcenter;
|
|
dD.dx = Dx - Dcenter;
|
|
|
|
float3 Py = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
|
|
float3 Dy = panorama_to_direction(cam, Py.x, Py.y);
|
|
Py = transform_point(&cameratoworld, Py);
|
|
Dy = normalize(transform_direction(&cameratoworld, Dy));
|
|
if (use_stereo) {
|
|
spherical_stereo_transform(cam, &Py, &Dy);
|
|
}
|
|
|
|
dP.dy = Py - Pcenter;
|
|
dD.dy = Dy - Dcenter;
|
|
ray->dD = differential_make_compact(dD);
|
|
ray->dP = differential_make_compact(dP);
|
|
#endif
|
|
|
|
#ifdef __CAMERA_CLIPPING__
|
|
/* clipping */
|
|
float nearclip = cam->nearclip;
|
|
ray->P += nearclip * ray->D;
|
|
ray->dP += nearclip * ray->dD;
|
|
ray->t = cam->cliplength;
|
|
#else
|
|
ray->t = FLT_MAX;
|
|
#endif
|
|
}
|
|
|
|
/* Common */
|
|
|
|
ccl_device_inline void camera_sample(const KernelGlobals *ccl_restrict kg,
|
|
int x,
|
|
int y,
|
|
float filter_u,
|
|
float filter_v,
|
|
float lens_u,
|
|
float lens_v,
|
|
float time,
|
|
ccl_addr_space Ray *ray)
|
|
{
|
|
/* pixel filter */
|
|
int filter_table_offset = kernel_data.film.filter_table_offset;
|
|
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
|
|
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
/* motion blur */
|
|
if (kernel_data.cam.shuttertime == -1.0f) {
|
|
ray->time = 0.5f;
|
|
}
|
|
else {
|
|
/* TODO(sergey): Such lookup is unneeded when there's rolling shutter
|
|
* effect in use but rolling shutter duration is set to 0.0.
|
|
*/
|
|
const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
|
|
ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
|
|
/* TODO(sergey): Currently single rolling shutter effect type only
|
|
* where scan-lines are acquired from top to bottom and whole scan-line
|
|
* is acquired at once (no delay in acquisition happens between pixels
|
|
* of single scan-line).
|
|
*
|
|
* Might want to support more models in the future.
|
|
*/
|
|
if (kernel_data.cam.rolling_shutter_type) {
|
|
/* Time corresponding to a fully rolling shutter only effect:
|
|
* top of the frame is time 0.0, bottom of the frame is time 1.0.
|
|
*/
|
|
const float time = 1.0f - (float)y / kernel_data.cam.height;
|
|
const float duration = kernel_data.cam.rolling_shutter_duration;
|
|
if (duration != 0.0f) {
|
|
/* This isn't fully physical correct, but lets us to have simple
|
|
* controls in the interface. The idea here is basically sort of
|
|
* linear interpolation between how much rolling shutter effect
|
|
* exist on the frame and how much of it is a motion blur effect.
|
|
*/
|
|
ray->time = (ray->time - 0.5f) * duration;
|
|
ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
|
|
}
|
|
else {
|
|
ray->time = time;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* sample */
|
|
if (kernel_data.cam.type == CAMERA_PERSPECTIVE) {
|
|
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
}
|
|
else if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
|
|
}
|
|
else {
|
|
#ifdef __CAMERA_MOTION__
|
|
const ccl_global DecomposedTransform *cam_motion = kernel_tex_array(__camera_motion);
|
|
camera_sample_panorama(&kernel_data.cam, cam_motion, raster_x, raster_y, lens_u, lens_v, ray);
|
|
#else
|
|
camera_sample_panorama(&kernel_data.cam, raster_x, raster_y, lens_u, lens_v, ray);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Utilities */
|
|
|
|
ccl_device_inline float3 camera_position(const KernelGlobals *kg)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
}
|
|
|
|
ccl_device_inline float camera_distance(const KernelGlobals *kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
|
|
if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return fabsf(dot((P - camP), camD));
|
|
}
|
|
else {
|
|
return len(P - camP);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float camera_z_depth(const KernelGlobals *kg, float3 P)
|
|
{
|
|
if (kernel_data.cam.type != CAMERA_PANORAMA) {
|
|
Transform worldtocamera = kernel_data.cam.worldtocamera;
|
|
return transform_point(&worldtocamera, P).z;
|
|
}
|
|
else {
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
return len(P - camP);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float3 camera_direction_from_point(const KernelGlobals *kg, float3 P)
|
|
{
|
|
Transform cameratoworld = kernel_data.cam.cameratoworld;
|
|
|
|
if (kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
|
|
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
|
|
return -camD;
|
|
}
|
|
else {
|
|
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
|
|
return normalize(camP - P);
|
|
}
|
|
}
|
|
|
|
ccl_device_inline float3 camera_world_to_ndc(const KernelGlobals *kg, ShaderData *sd, float3 P)
|
|
{
|
|
if (kernel_data.cam.type != CAMERA_PANORAMA) {
|
|
/* perspective / ortho */
|
|
if (sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
|
|
P += camera_position(kg);
|
|
|
|
ProjectionTransform tfm = kernel_data.cam.worldtondc;
|
|
return transform_perspective(&tfm, P);
|
|
}
|
|
else {
|
|
/* panorama */
|
|
Transform tfm = kernel_data.cam.worldtocamera;
|
|
|
|
if (sd->object != OBJECT_NONE)
|
|
P = normalize(transform_point(&tfm, P));
|
|
else
|
|
P = normalize(transform_direction(&tfm, P));
|
|
|
|
float2 uv = direction_to_panorama(&kernel_data.cam, P);
|
|
|
|
return make_float3(uv.x, uv.y, 0.0f);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|