Files
blender/intern/cycles/kernel/kernel_shader.h
2021-10-06 14:54:05 +11:00

864 lines
25 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Functions to evaluate shaders and use the resulting shader closures. */
#pragma once
// clang-format off
#include "kernel/closure/alloc.h"
#include "kernel/closure/bsdf_util.h"
#include "kernel/closure/bsdf.h"
#include "kernel/closure/emissive.h"
// clang-format on
#include "kernel/kernel_accumulate.h"
#include "kernel/svm/svm.h"
#ifdef __OSL__
# include "kernel/osl/osl_shader.h"
#endif
CCL_NAMESPACE_BEGIN
/* Merging */
#if defined(__VOLUME__)
ccl_device_inline void shader_merge_volume_closures(ShaderData *sd)
{
/* Merge identical closures to save closure space with stacked volumes. */
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sci = &sd->closure[i];
if (sci->type != CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
continue;
}
for (int j = i + 1; j < sd->num_closure; j++) {
ShaderClosure *scj = &sd->closure[j];
if (sci->type != scj->type) {
continue;
}
const HenyeyGreensteinVolume *hgi = (const HenyeyGreensteinVolume *)sci;
const HenyeyGreensteinVolume *hgj = (const HenyeyGreensteinVolume *)scj;
if (!(hgi->g == hgj->g)) {
continue;
}
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
int size = sd->num_closure - (j + 1);
if (size > 0) {
for (int k = 0; k < size; k++) {
scj[k] = scj[k + 1];
}
}
sd->num_closure--;
kernel_assert(sd->num_closure >= 0);
j--;
}
}
}
ccl_device_inline void shader_copy_volume_phases(ShaderVolumePhases *ccl_restrict phases,
const ShaderData *ccl_restrict sd)
{
phases->num_closure = 0;
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *from_sc = &sd->closure[i];
const HenyeyGreensteinVolume *from_hg = (const HenyeyGreensteinVolume *)from_sc;
if (from_sc->type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID) {
ShaderVolumeClosure *to_sc = &phases->closure[phases->num_closure];
to_sc->weight = from_sc->weight;
to_sc->sample_weight = from_sc->sample_weight;
to_sc->g = from_hg->g;
phases->num_closure++;
if (phases->num_closure >= MAX_VOLUME_CLOSURE) {
break;
}
}
}
}
#endif /* __VOLUME__ */
ccl_device_inline void shader_prepare_surface_closures(INTEGRATOR_STATE_CONST_ARGS, ShaderData *sd)
{
/* Defensive sampling.
*
* We can likely also do defensive sampling at deeper bounces, particularly
* for cases like a perfect mirror but possibly also others. This will need
* a good heuristic. */
if (INTEGRATOR_STATE(path, bounce) + INTEGRATOR_STATE(path, transparent_bounce) == 0 &&
sd->num_closure > 1) {
float sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sum += sc->sample_weight;
}
}
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
}
}
}
/* Filter glossy.
*
* Blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if (kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy * INTEGRATOR_STATE(path, min_ray_pdf);
if (blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf) * 0.5f;
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF(sc->type)) {
bsdf_blur(kg, sc, blur_roughness);
}
}
}
}
}
/* BSDF */
ccl_device_inline bool shader_bsdf_is_transmission(const ShaderData *sd, const float3 omega_in)
{
return dot(sd->N, omega_in) < 0.0f;
}
ccl_device_forceinline bool _shader_bsdf_exclude(ClosureType type, uint light_shader_flags)
{
if (!(light_shader_flags & SHADER_EXCLUDE_ANY)) {
return false;
}
if (light_shader_flags & SHADER_EXCLUDE_DIFFUSE) {
if (CLOSURE_IS_BSDF_DIFFUSE(type) || CLOSURE_IS_BSDF_BSSRDF(type)) {
return true;
}
}
if (light_shader_flags & SHADER_EXCLUDE_GLOSSY) {
if (CLOSURE_IS_BSDF_GLOSSY(type)) {
return true;
}
}
if (light_shader_flags & SHADER_EXCLUDE_TRANSMIT) {
if (CLOSURE_IS_BSDF_TRANSMISSION(type)) {
return true;
}
}
return false;
}
ccl_device_inline float _shader_bsdf_multi_eval(const KernelGlobals *kg,
ShaderData *sd,
const float3 omega_in,
const bool is_transmission,
const ShaderClosure *skip_sc,
BsdfEval *result_eval,
float sum_pdf,
float sum_sample_weight,
const uint light_shader_flags)
{
/* This is the veach one-sample model with balance heuristic,
* some PDF factors drop out when using balance heuristic weighting. */
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (sc == skip_sc) {
continue;
}
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
if (CLOSURE_IS_BSDF(sc->type) && !_shader_bsdf_exclude(sc->type, light_shader_flags)) {
float bsdf_pdf = 0.0f;
float3 eval = bsdf_eval(kg, sd, sc, omega_in, is_transmission, &bsdf_pdf);
if (bsdf_pdf != 0.0f) {
const bool is_diffuse = (CLOSURE_IS_BSDF_DIFFUSE(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type));
bsdf_eval_accum(result_eval, is_diffuse, eval * sc->weight, 1.0f);
sum_pdf += bsdf_pdf * sc->sample_weight;
}
}
sum_sample_weight += sc->sample_weight;
}
}
return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
}
#ifndef __KERNEL_CUDA__
ccl_device
#else
ccl_device_inline
#endif
float
shader_bsdf_eval(const KernelGlobals *kg,
ShaderData *sd,
const float3 omega_in,
const bool is_transmission,
BsdfEval *bsdf_eval,
const uint light_shader_flags)
{
bsdf_eval_init(bsdf_eval, false, zero_float3());
return _shader_bsdf_multi_eval(
kg, sd, omega_in, is_transmission, NULL, bsdf_eval, 0.0f, 0.0f, light_shader_flags);
}
/* Randomly sample a BSSRDF or BSDF proportional to ShaderClosure.sample_weight. */
ccl_device_inline const ShaderClosure *shader_bsdf_bssrdf_pick(const ShaderData *ccl_restrict sd,
float *randu)
{
int sampled = 0;
if (sd->num_closure > 1) {
/* Pick a BSDF or based on sample weights. */
float sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sum += sc->sample_weight;
}
}
float r = (*randu) * sum;
float partial_sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
float next_sum = partial_sum + sc->sample_weight;
if (r < next_sum) {
sampled = i;
/* Rescale to reuse for direction sample, to better preserve stratification. */
*randu = (r - partial_sum) / sc->sample_weight;
break;
}
partial_sum = next_sum;
}
}
}
return &sd->closure[sampled];
}
/* Return weight for picked BSSRDF. */
ccl_device_inline float3 shader_bssrdf_sample_weight(const ShaderData *ccl_restrict sd,
const ShaderClosure *ccl_restrict bssrdf_sc)
{
float3 weight = bssrdf_sc->weight;
if (sd->num_closure > 1) {
float sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
sum += sc->sample_weight;
}
}
weight *= sum / bssrdf_sc->sample_weight;
}
return weight;
}
/* Sample direction for picked BSDF, and return evaluation and pdf for all
* BSDFs combined using MIS. */
ccl_device int shader_bsdf_sample_closure(const KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
float randu,
float randv,
BsdfEval *bsdf_eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
/* BSSRDF should already have been handled elsewhere. */
kernel_assert(CLOSURE_IS_BSDF(sc->type));
int label;
float3 eval = zero_float3();
*pdf = 0.0f;
label = bsdf_sample(kg, sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if (*pdf != 0.0f) {
const bool is_diffuse = (CLOSURE_IS_BSDF_DIFFUSE(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type));
bsdf_eval_init(bsdf_eval, is_diffuse, eval * sc->weight);
if (sd->num_closure > 1) {
const bool is_transmission = shader_bsdf_is_transmission(sd, *omega_in);
float sweight = sc->sample_weight;
*pdf = _shader_bsdf_multi_eval(
kg, sd, *omega_in, is_transmission, sc, bsdf_eval, *pdf * sweight, sweight, 0);
}
}
return label;
}
ccl_device float shader_bsdf_average_roughness(const ShaderData *sd)
{
float roughness = 0.0f;
float sum_weight = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF(sc->type)) {
/* sqrt once to undo the squaring from multiplying roughness on the
* two axes, and once for the squared roughness convention. */
float weight = fabsf(average(sc->weight));
roughness += weight * sqrtf(safe_sqrtf(bsdf_get_roughness_squared(sc)));
sum_weight += weight;
}
}
return (sum_weight > 0.0f) ? roughness / sum_weight : 0.0f;
}
ccl_device float3 shader_bsdf_transparency(const KernelGlobals *kg, const ShaderData *sd)
{
if (sd->flag & SD_HAS_ONLY_VOLUME) {
return one_float3();
}
else if (sd->flag & SD_TRANSPARENT) {
return sd->closure_transparent_extinction;
}
else {
return zero_float3();
}
}
ccl_device void shader_bsdf_disable_transparency(const KernelGlobals *kg, ShaderData *sd)
{
if (sd->flag & SD_TRANSPARENT) {
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
sc->sample_weight = 0.0f;
sc->weight = zero_float3();
}
}
sd->flag &= ~SD_TRANSPARENT;
}
}
ccl_device float3 shader_bsdf_alpha(const KernelGlobals *kg, const ShaderData *sd)
{
float3 alpha = one_float3() - shader_bsdf_transparency(kg, sd);
alpha = max(alpha, zero_float3());
alpha = min(alpha, one_float3());
return alpha;
}
ccl_device float3 shader_bsdf_diffuse(const KernelGlobals *kg, const ShaderData *sd)
{
float3 eval = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type) || CLOSURE_IS_BSSRDF(sc->type) ||
CLOSURE_IS_BSDF_BSSRDF(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_glossy(const KernelGlobals *kg, const ShaderData *sd)
{
float3 eval = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_GLOSSY(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_transmission(const KernelGlobals *kg, const ShaderData *sd)
{
float3 eval = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
eval += sc->weight;
}
return eval;
}
ccl_device float3 shader_bsdf_average_normal(const KernelGlobals *kg, const ShaderData *sd)
{
float3 N = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
N += sc->N * fabsf(average(sc->weight));
}
return (is_zero(N)) ? sd->N : normalize(N);
}
ccl_device float3 shader_bsdf_ao_normal(const KernelGlobals *kg, const ShaderData *sd)
{
float3 N = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
const DiffuseBsdf *bsdf = (const DiffuseBsdf *)sc;
N += bsdf->N * fabsf(average(sc->weight));
}
}
return (is_zero(N)) ? sd->N : normalize(N);
}
#ifdef __SUBSURFACE__
ccl_device float3 shader_bssrdf_normal(const ShaderData *sd)
{
float3 N = zero_float3();
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_BSSRDF(sc->type)) {
const Bssrdf *bssrdf = (const Bssrdf *)sc;
float avg_weight = fabsf(average(sc->weight));
N += bssrdf->N * avg_weight;
}
}
return (is_zero(N)) ? sd->N : normalize(N);
}
#endif /* __SUBSURFACE__ */
/* Constant emission optimization */
ccl_device bool shader_constant_emission_eval(const KernelGlobals *kg, int shader, float3 *eval)
{
int shader_index = shader & SHADER_MASK;
int shader_flag = kernel_tex_fetch(__shaders, shader_index).flags;
if (shader_flag & SD_HAS_CONSTANT_EMISSION) {
*eval = make_float3(kernel_tex_fetch(__shaders, shader_index).constant_emission[0],
kernel_tex_fetch(__shaders, shader_index).constant_emission[1],
kernel_tex_fetch(__shaders, shader_index).constant_emission[2]);
return true;
}
return false;
}
/* Background */
ccl_device float3 shader_background_eval(const ShaderData *sd)
{
if (sd->flag & SD_EMISSION) {
return sd->closure_emission_background;
}
else {
return zero_float3();
}
}
/* Emission */
ccl_device float3 shader_emissive_eval(const ShaderData *sd)
{
if (sd->flag & SD_EMISSION) {
return emissive_simple_eval(sd->Ng, sd->I) * sd->closure_emission_background;
}
else {
return zero_float3();
}
}
/* Holdout */
ccl_device float3 shader_holdout_apply(const KernelGlobals *kg, ShaderData *sd)
{
float3 weight = zero_float3();
/* For objects marked as holdout, preserve transparency and remove all other
* closures, replacing them with a holdout weight. */
if (sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
if ((sd->flag & SD_TRANSPARENT) && !(sd->flag & SD_HAS_ONLY_VOLUME)) {
weight = one_float3() - sd->closure_transparent_extinction;
for (int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if (!CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
sc->type = NBUILTIN_CLOSURES;
}
}
sd->flag &= ~(SD_CLOSURE_FLAGS - (SD_TRANSPARENT | SD_BSDF));
}
else {
weight = one_float3();
}
}
else {
for (int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if (CLOSURE_IS_HOLDOUT(sc->type)) {
weight += sc->weight;
}
}
}
return weight;
}
/* Surface Evaluation */
template<uint node_feature_mask>
ccl_device void shader_eval_surface(INTEGRATOR_STATE_CONST_ARGS,
ShaderData *ccl_restrict sd,
ccl_global float *ccl_restrict buffer,
int path_flag)
{
/* If path is being terminated, we are tracing a shadow ray or evaluating
* emission, then we don't need to store closures. The emission and shadow
* shader data also do not have a closure array to save GPU memory. */
int max_closures;
if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
max_closures = 0;
}
else {
max_closures = kernel_data.max_closures;
}
sd->num_closure = 0;
sd->num_closure_left = max_closures;
#ifdef __OSL__
if (kg->osl) {
if (sd->object == OBJECT_NONE && sd->lamp == LAMP_NONE) {
OSLShader::eval_background(INTEGRATOR_STATE_PASS, sd, path_flag);
}
else {
OSLShader::eval_surface(INTEGRATOR_STATE_PASS, sd, path_flag);
}
}
else
#endif
{
#ifdef __SVM__
svm_eval_nodes<node_feature_mask, SHADER_TYPE_SURFACE>(
INTEGRATOR_STATE_PASS, sd, buffer, path_flag);
#else
if (sd->object == OBJECT_NONE) {
sd->closure_emission_background = make_float3(0.8f, 0.8f, 0.8f);
sd->flag |= SD_EMISSION;
}
else {
DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(
sd, sizeof(DiffuseBsdf), make_float3(0.8f, 0.8f, 0.8f));
if (bsdf != NULL) {
bsdf->N = sd->N;
sd->flag |= bsdf_diffuse_setup(bsdf);
}
}
#endif
}
if (KERNEL_NODES_FEATURE(BSDF) && (sd->flag & SD_BSDF_NEEDS_LCG)) {
sd->lcg_state = lcg_state_init(INTEGRATOR_STATE(path, rng_hash),
INTEGRATOR_STATE(path, rng_offset),
INTEGRATOR_STATE(path, sample),
0xb4bc3953);
}
}
/* Volume */
#ifdef __VOLUME__
ccl_device_inline float _shader_volume_phase_multi_eval(const ShaderData *sd,
const ShaderVolumePhases *phases,
const float3 omega_in,
int skip_phase,
BsdfEval *result_eval,
float sum_pdf,
float sum_sample_weight)
{
for (int i = 0; i < phases->num_closure; i++) {
if (i == skip_phase)
continue;
const ShaderVolumeClosure *svc = &phases->closure[i];
float phase_pdf = 0.0f;
float3 eval = volume_phase_eval(sd, svc, omega_in, &phase_pdf);
if (phase_pdf != 0.0f) {
bsdf_eval_accum(result_eval, false, eval, 1.0f);
sum_pdf += phase_pdf * svc->sample_weight;
}
sum_sample_weight += svc->sample_weight;
}
return (sum_sample_weight > 0.0f) ? sum_pdf / sum_sample_weight : 0.0f;
}
ccl_device float shader_volume_phase_eval(const KernelGlobals *kg,
const ShaderData *sd,
const ShaderVolumePhases *phases,
const float3 omega_in,
BsdfEval *phase_eval)
{
bsdf_eval_init(phase_eval, false, zero_float3());
return _shader_volume_phase_multi_eval(sd, phases, omega_in, -1, phase_eval, 0.0f, 0.0f);
}
ccl_device int shader_volume_phase_sample(const KernelGlobals *kg,
const ShaderData *sd,
const ShaderVolumePhases *phases,
float randu,
float randv,
BsdfEval *phase_eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
int sampled = 0;
if (phases->num_closure > 1) {
/* pick a phase closure based on sample weights */
float sum = 0.0f;
for (sampled = 0; sampled < phases->num_closure; sampled++) {
const ShaderVolumeClosure *svc = &phases->closure[sampled];
sum += svc->sample_weight;
}
float r = randu * sum;
float partial_sum = 0.0f;
for (sampled = 0; sampled < phases->num_closure; sampled++) {
const ShaderVolumeClosure *svc = &phases->closure[sampled];
float next_sum = partial_sum + svc->sample_weight;
if (r <= next_sum) {
/* Rescale to reuse for BSDF direction sample. */
randu = (r - partial_sum) / svc->sample_weight;
break;
}
partial_sum = next_sum;
}
if (sampled == phases->num_closure) {
*pdf = 0.0f;
return LABEL_NONE;
}
}
/* todo: this isn't quite correct, we don't weight anisotropy properly
* depending on color channels, even if this is perhaps not a common case */
const ShaderVolumeClosure *svc = &phases->closure[sampled];
int label;
float3 eval = zero_float3();
*pdf = 0.0f;
label = volume_phase_sample(sd, svc, randu, randv, &eval, omega_in, domega_in, pdf);
if (*pdf != 0.0f) {
bsdf_eval_init(phase_eval, false, eval);
}
return label;
}
ccl_device int shader_phase_sample_closure(const KernelGlobals *kg,
const ShaderData *sd,
const ShaderVolumeClosure *sc,
float randu,
float randv,
BsdfEval *phase_eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
int label;
float3 eval = zero_float3();
*pdf = 0.0f;
label = volume_phase_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if (*pdf != 0.0f)
bsdf_eval_init(phase_eval, false, eval);
return label;
}
/* Volume Evaluation */
template<const bool shadow, typename StackReadOp>
ccl_device_inline void shader_eval_volume(INTEGRATOR_STATE_CONST_ARGS,
ShaderData *ccl_restrict sd,
const int path_flag,
StackReadOp stack_read)
{
/* If path is being terminated, we are tracing a shadow ray or evaluating
* emission, then we don't need to store closures. The emission and shadow
* shader data also do not have a closure array to save GPU memory. */
int max_closures;
if (path_flag & (PATH_RAY_TERMINATE | PATH_RAY_SHADOW | PATH_RAY_EMISSION)) {
max_closures = 0;
}
else {
max_closures = kernel_data.max_closures;
}
/* reset closures once at the start, we will be accumulating the closures
* for all volumes in the stack into a single array of closures */
sd->num_closure = 0;
sd->num_closure_left = max_closures;
sd->flag = 0;
sd->object_flag = 0;
for (int i = 0;; i++) {
const VolumeStack entry = stack_read(i);
if (entry.shader == SHADER_NONE) {
break;
}
/* Setup shader-data from stack. it's mostly setup already in
* shader_setup_from_volume, this switching should be quick. */
sd->object = entry.object;
sd->lamp = LAMP_NONE;
sd->shader = entry.shader;
sd->flag &= ~SD_SHADER_FLAGS;
sd->flag |= kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).flags;
sd->object_flag &= ~SD_OBJECT_FLAGS;
if (sd->object != OBJECT_NONE) {
sd->object_flag |= kernel_tex_fetch(__object_flag, sd->object);
# ifdef __OBJECT_MOTION__
/* todo: this is inefficient for motion blur, we should be
* caching matrices instead of recomputing them each step */
shader_setup_object_transforms(kg, sd, sd->time);
# endif
}
/* evaluate shader */
# ifdef __SVM__
# ifdef __OSL__
if (kg->osl) {
OSLShader::eval_volume(INTEGRATOR_STATE_PASS, sd, path_flag);
}
else
# endif
{
svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_VOLUME, SHADER_TYPE_VOLUME>(
INTEGRATOR_STATE_PASS, sd, NULL, path_flag);
}
# endif
/* Merge closures to avoid exceeding number of closures limit. */
if (!shadow) {
if (i > 0) {
shader_merge_volume_closures(sd);
}
}
}
}
#endif /* __VOLUME__ */
/* Displacement Evaluation */
ccl_device void shader_eval_displacement(INTEGRATOR_STATE_CONST_ARGS, ShaderData *sd)
{
sd->num_closure = 0;
sd->num_closure_left = 0;
/* this will modify sd->P */
#ifdef __SVM__
# ifdef __OSL__
if (kg->osl)
OSLShader::eval_displacement(INTEGRATOR_STATE_PASS, sd);
else
# endif
{
svm_eval_nodes<KERNEL_FEATURE_NODE_MASK_DISPLACEMENT, SHADER_TYPE_DISPLACEMENT>(
INTEGRATOR_STATE_PASS, sd, NULL, 0);
}
#endif
}
/* Transparent Shadows */
#ifdef __TRANSPARENT_SHADOWS__
ccl_device bool shader_transparent_shadow(const KernelGlobals *kg, Intersection *isect)
{
return (intersection_get_shader_flags(kg, isect) & SD_HAS_TRANSPARENT_SHADOW) != 0;
}
#endif /* __TRANSPARENT_SHADOWS__ */
ccl_device float shader_cryptomatte_id(const KernelGlobals *kg, int shader)
{
return kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).cryptomatte_id;
}
CCL_NAMESPACE_END