Files
blender/intern/cycles/util/util_half.h
Brian Savery 044a77352f Cycles: add HIP device support for AMD GPUs
NOTE: this feature is not ready for user testing, and not yet enabled in daily
builds. It is being merged now for easier collaboration on development.

HIP is a heterogenous compute interface allowing C++ code to be executed on
GPUs similar to CUDA. It is intended to bring back AMD GPU rendering support
on Windows and Linux.

https://github.com/ROCm-Developer-Tools/HIP.

As of the time of writing, it should compile and run on Linux with existing
HIP compilers and driver runtimes. Publicly available compilers and drivers
for Windows will come later.

See task T91571 for more details on the current status and work remaining
to be done.

Credits:

Sayak Biswas (AMD)
Arya Rafii (AMD)
Brian Savery (AMD)

Differential Revision: https://developer.blender.org/D12578
2021-09-28 19:18:55 +02:00

180 lines
4.2 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_HALF_H__
#define __UTIL_HALF_H__
#include "util/util_math.h"
#include "util/util_types.h"
#if !defined(__KERNEL_GPU__) && defined(__KERNEL_SSE2__)
# include "util/util_simd.h"
#endif
CCL_NAMESPACE_BEGIN
/* Half Floats */
/* CUDA has its own half data type, no need to define then */
#if !defined(__KERNEL_CUDA__) && !defined(__KERNEL_HIP__)
/* Implementing this as a class rather than a typedef so that the compiler can tell it apart from
* unsigned shorts. */
class half {
public:
half() : v(0)
{
}
half(const unsigned short &i) : v(i)
{
}
operator unsigned short()
{
return v;
}
half &operator=(const unsigned short &i)
{
v = i;
return *this;
}
private:
unsigned short v;
};
#endif
struct half4 {
half x, y, z, w;
};
#if defined(__KERNEL_CUDA__) || defined(__KERNEL_HIP__)
ccl_device_inline void float4_store_half(half *h, float4 f)
{
h[0] = __float2half(f.x);
h[1] = __float2half(f.y);
h[2] = __float2half(f.z);
h[3] = __float2half(f.w);
}
#else
ccl_device_inline void float4_store_half(half *h, float4 f)
{
# ifndef __KERNEL_SSE2__
for (int i = 0; i < 4; i++) {
/* optimized float to half for pixels:
* assumes no negative, no nan, no inf, and sets denormal to 0 */
union {
uint i;
float f;
} in;
in.f = (f[i] > 0.0f) ? ((f[i] < 65504.0f) ? f[i] : 65504.0f) : 0.0f;
int x = in.i;
int absolute = x & 0x7FFFFFFF;
int Z = absolute + 0xC8000000;
int result = (absolute < 0x38800000) ? 0 : Z;
int rshift = (result >> 13);
h[i] = (rshift & 0x7FFF);
}
# else
/* same as above with SSE */
ssef x = min(max(load4f(f), 0.0f), 65504.0f);
# ifdef __KERNEL_AVX2__
ssei rpack = _mm_cvtps_ph(x, 0);
# else
ssei absolute = cast(x) & 0x7FFFFFFF;
ssei Z = absolute + 0xC8000000;
ssei result = andnot(absolute < 0x38800000, Z);
ssei rshift = (result >> 13) & 0x7FFF;
ssei rpack = _mm_packs_epi32(rshift, rshift);
# endif
_mm_storel_pi((__m64 *)h, _mm_castsi128_ps(rpack));
# endif
}
# ifndef __KERNEL_HIP__
ccl_device_inline float half_to_float(half h)
{
float f;
*((int *)&f) = ((h & 0x8000) << 16) | (((h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
return f;
}
# else
ccl_device_inline float half_to_float(std::uint32_t a) noexcept
{
std::uint32_t u = ((a << 13) + 0x70000000U) & 0x8fffe000U;
std::uint32_t v = __float_as_uint(__uint_as_float(u) *
__uint_as_float(0x77800000U) /*0x1.0p+112f*/) +
0x38000000U;
u = (a & 0x7fff) != 0 ? v : u;
return __uint_as_float(u) * __uint_as_float(0x07800000U) /*0x1.0p-112f*/;
}
# endif /* __KERNEL_HIP__ */
ccl_device_inline float4 half4_to_float4(half4 h)
{
float4 f;
f.x = half_to_float(h.x);
f.y = half_to_float(h.y);
f.z = half_to_float(h.z);
f.w = half_to_float(h.w);
return f;
}
ccl_device_inline half float_to_half(float f)
{
const uint u = __float_as_uint(f);
/* Sign bit, shifted to its position. */
uint sign_bit = u & 0x80000000;
sign_bit >>= 16;
/* Exponent. */
uint exponent_bits = u & 0x7f800000;
/* Non-sign bits. */
uint value_bits = u & 0x7fffffff;
value_bits >>= 13; /* Align mantissa on MSB. */
value_bits -= 0x1c000; /* Adjust bias. */
/* Flush-to-zero. */
value_bits = (exponent_bits < 0x38800000) ? 0 : value_bits;
/* Clamp-to-max. */
value_bits = (exponent_bits > 0x47000000) ? 0x7bff : value_bits;
/* Denormals-as-zero. */
value_bits = (exponent_bits == 0 ? 0 : value_bits);
/* Re-insert sign bit and return. */
return (value_bits | sign_bit);
}
#endif
CCL_NAMESPACE_END
#endif /* __UTIL_HALF_H__ */