Files
blender/intern/cycles/kernel/svm/svm_closure.h
Brecht Van Lommel d43682d51b Cycles: Subsurface Scattering
New features:

* Bump mapping now works with SSS
* Texture Blur factor for SSS, see the documentation for details:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Subsurface_Scattering

Work in progress for feedback:

Initial implementation of the "BSSRDF Importance Sampling" paper, which uses
a different importance sampling method. It gives better quality results in
many ways, with the availability of both Cubic and Gaussian falloff functions,
but also tends to be more noisy when using the progressive integrator and does
not give great results with some geometry. It works quite well for the
non-progressive integrator and is often less noisy there.

This code may still change a lot, so unless you're testing it may be best to
stick to the Compatible falloff function.

Skin test render and file that takes advantage of the gaussian falloff:
http://www.pasteall.org/pic/show.php?id=57661
http://www.pasteall.org/pic/show.php?id=57662
http://www.pasteall.org/blend/23501
2013-08-18 14:15:57 +00:00

669 lines
18 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
__device void svm_node_glass_setup(ShaderData *sd, ShaderClosure *sc, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
if(refract) {
sc->data0 = eta;
sc->data1 = 0.0f;
sd->flag |= bsdf_refraction_setup(sc);
}
else
sd->flag |= bsdf_reflection_setup(sc);
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = eta;
if(refract)
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
}
__device_inline ShaderClosure *svm_node_closure_get_non_bsdf(ShaderData *sd, ClosureType type, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
if(sd->num_closure < MAX_CLOSURE) {
sc->weight *= mix_weight;
sc->type = type;
#ifdef __OSL__
sc->prim = NULL;
#endif
sd->num_closure++;
return sc;
}
return NULL;
#else
return &sd->closure;
#endif
}
__device_inline ShaderClosure *svm_node_closure_get_bsdf(ShaderData *sd, float mix_weight)
{
#ifdef __MULTI_CLOSURE__
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
if(sample_weight > 1e-5f && sd->num_closure < MAX_CLOSURE) {
sc->weight = weight;
sc->sample_weight = sample_weight;
sd->num_closure++;
#ifdef __OSL__
sc->prim = NULL;
#endif
return sc;
}
return NULL;
#else
return &sd->closure;
#endif
}
__device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, float randb, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
uint4 data_node = read_node(kg, offset);
float3 N = stack_valid(data_node.y)? stack_load_float3(stack, data_node.y): sd->N;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
case CLOSURE_BSDF_DIFFUSE_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
float roughness = param1;
if(roughness == 0.0f) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sd->flag |= bsdf_diffuse_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = 0.0f;
sd->flag |= bsdf_oren_nayar_setup(sc);
}
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->N = N;
sd->flag |= bsdf_translucent_setup(sc);
}
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->N = N;
sd->flag |= bsdf_transparent_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = 0.0f;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
sd->flag |= bsdf_reflection_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
sd->flag |= bsdf_microfacet_beckmann_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
float eta = fmaxf(param2, 1.0f + 1e-5f);
sc->data1 = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID)
sd->flag |= bsdf_refraction_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
sd->flag |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
sd->flag |= bsdf_microfacet_ggx_refraction_setup(sc);
}
break;
}
case CLOSURE_BSDF_SHARP_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
/* index of refraction */
float eta = fmaxf(param2, 1.0f + 1e-5f);
eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
#ifdef __MULTI_CLOSURE__
/* reflection */
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight;
float sample_weight = sc->sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*fresnel);
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, false);
}
/* refraction */
sc = &sd->closure[sd->num_closure];
sc->weight = weight;
sc->sample_weight = sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*(1.0f - fresnel));
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, true);
}
#else
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
bool refract = (randb > fresnel);
svm_node_glass_setup(sd, sc, type, eta, roughness, refract);
}
#endif
break;
}
case CLOSURE_BSDF_WARD_ID: {
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.no_caustics && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
#ifdef __ANISOTROPIC__
sc->T = stack_load_float3(stack, data_node.z);
/* rotate tangent */
float rotation = stack_load_float(stack, data_node.w);
if(rotation != 0.0f)
sc->T = rotate_around_axis(sc->T, sc->N, rotation * M_2PI_F);
/* compute roughness */
float roughness = param1;
float anisotropy = clamp(param2, -0.99f, 0.99f);
if(anisotropy < 0.0f) {
sc->data0 = roughness/(1.0f + anisotropy);
sc->data1 = roughness*(1.0f + anisotropy);
}
else {
sc->data0 = roughness*(1.0f - anisotropy);
sc->data1 = roughness/(1.0f - anisotropy);
}
sd->flag |= bsdf_ward_setup(sc);
#else
sd->flag |= bsdf_diffuse_setup(sc);
#endif
}
break;
}
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
/* sigma */
sc->data0 = clamp(param1, 0.0f, 1.0f);
sc->data1 = 0.0f;
sd->flag |= bsdf_ashikhmin_velvet_setup(sc);
}
break;
}
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
case CLOSURE_BSDF_GLOSSY_TOON_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
/* Normal, Size and Smooth */
sc->N = N;
sc->data0 = param1;
sc->data1 = param2;
if (type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
sd->flag |= bsdf_diffuse_toon_setup(sc);
else
sd->flag |= bsdf_glossy_toon_setup(sc);
}
break;
}
#ifdef __SUBSURFACE__
case CLOSURE_BSSRDF_COMPATIBLE_ID:
case CLOSURE_BSSRDF_CUBIC_ID:
case CLOSURE_BSSRDF_GAUSSIAN_ID: {
ShaderClosure *sc = &sd->closure[sd->num_closure];
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(type != CLOSURE_BSSRDF_COMPATIBLE_ID && (path_flag & PATH_RAY_DIFFUSE_ANCESTOR))
param1 = 0.0f;
if(sample_weight > 1e-5f && sd->num_closure+2 < MAX_CLOSURE) {
/* radius * scale */
float3 radius = stack_load_float3(stack, data_node.w)*param1;
/* texture color blur */
float texture_blur = param2;
/* create one closure per color channel */
if(fabsf(weight.x) > 0.0f) {
sc->weight = make_float3(weight.x, 0.0f, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.x;
sc->data1 = texture_blur;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
if(fabsf(weight.y) > 0.0f) {
sc->weight = make_float3(0.0f, weight.y, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.y;
sc->data1 = texture_blur;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
if(fabsf(weight.z) > 0.0f) {
sc->weight = make_float3(0.0f, 0.0f, weight.z);
sc->sample_weight = sample_weight;
sc->data0 = radius.z;
sc->data1 = texture_blur;
#ifdef __OSL__
sc->prim = NULL;
#endif
sc->N = N;
sd->flag |= bssrdf_setup(sc, (ClosureType)type);
sd->num_closure++;
sc++;
}
}
break;
}
#endif
default:
break;
}
}
__device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
uint type, param1_offset, param2_offset;
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
#else
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, NULL);
float mix_weight = 1.0f;
#endif
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
//float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
case CLOSURE_VOLUME_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
float density = param1;
sd->flag |= volume_transparent_setup(sc, density);
}
break;
}
case CLOSURE_VOLUME_ISOTROPIC_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
float density = param1;
sd->flag |= volume_isotropic_setup(sc, density);
}
break;
}
default:
break;
}
}
__device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_EMISSION_ID;
#endif
sd->flag |= SD_EMISSION;
}
__device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_BACKGROUND_ID;
#endif
}
__device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_HOLDOUT_ID;
#endif
sd->flag |= SD_HOLDOUT;
}
__device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
#ifdef __MULTI_CLOSURE__
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, 1.0f);
#else
ShaderClosure *sc = &sd->closure;
sc->type = CLOSURE_AMBIENT_OCCLUSION_ID;
#endif
sd->flag |= SD_AO;
}
/* Closure Nodes */
__device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
#ifdef __MULTI_CLOSURE__
if(sd->num_closure < MAX_CLOSURE)
sd->closure[sd->num_closure].weight = weight;
#else
sd->closure.weight = weight;
#endif
}
__device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_set_weight_total(KernelGlobals *kg, ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
if(sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
uint total_power = node.w;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
if(total_power && sd->object != ~0)
weight /= object_surface_area(kg, sd->object);
svm_node_closure_store_weight(sd, weight);
}
__device void svm_node_mix_closure(ShaderData *sd, float *stack,
uint4 node, int *offset, float *randb)
{
#ifdef __MULTI_CLOSURE__
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
#else
/* pick a closure and make the random number uniform over 0..1 again.
* closure 1 starts on the next node, for closure 2 the start is at an
* offset from the current node, so we jump */
uint weight_offset = node.y;
uint node_jump = node.z;
float weight = stack_load_float(stack, weight_offset);
weight = clamp(weight, 0.0f, 1.0f);
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
#endif
}
__device void svm_node_add_closure(ShaderData *sd, float *stack, uint unused,
uint node_jump, int *offset, float *randb, float *closure_weight)
{
#ifdef __MULTI_CLOSURE__
/* nothing to do, handled in compiler */
#else
/* pick one of the two closures with probability 0.5. sampling quality
* is not going to be great, for that we'd need to evaluate the weights
* of the two closures being added */
float weight = 0.5f;
if(*randb < weight) {
*offset += node_jump;
*randb = *randb/weight;
}
else
*randb = (*randb - weight)/(1.0f - weight);
*closure_weight *= 2.0f;
#endif
}
/* (Bump) normal */
__device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END