
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
153 lines
4.8 KiB
C
153 lines
4.8 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Adapted from Open Shading Language
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011-2022 Blender Foundation. */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/sample/mapping.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef struct VelvetBsdf {
|
|
SHADER_CLOSURE_BASE;
|
|
|
|
float sigma;
|
|
float invsigma2;
|
|
} VelvetBsdf;
|
|
|
|
static_assert(sizeof(ShaderClosure) >= sizeof(VelvetBsdf), "VelvetBsdf is too large!");
|
|
|
|
ccl_device int bsdf_ashikhmin_velvet_setup(ccl_private VelvetBsdf *bsdf)
|
|
{
|
|
float sigma = fmaxf(bsdf->sigma, 0.01f);
|
|
bsdf->invsigma2 = 1.0f / (sigma * sigma);
|
|
|
|
bsdf->type = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
|
|
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_ashikhmin_velvet_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const VelvetBsdf *bsdf = (ccl_private const VelvetBsdf *)sc;
|
|
float m_invsigma2 = bsdf->invsigma2;
|
|
float3 N = bsdf->N;
|
|
|
|
float cosNO = dot(N, I);
|
|
float cosNI = dot(N, omega_in);
|
|
if (cosNO > 0 && cosNI > 0) {
|
|
float3 H = normalize(omega_in + I);
|
|
|
|
float cosNH = dot(N, H);
|
|
float cosHO = fabsf(dot(I, H));
|
|
|
|
if (!(fabsf(cosNH) < 1.0f - 1e-5f && cosHO > 1e-5f)) {
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
float cosNHdivHO = cosNH / cosHO;
|
|
cosNHdivHO = fmaxf(cosNHdivHO, 1e-5f);
|
|
|
|
float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
|
|
float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
|
|
|
|
float sinNH2 = 1 - cosNH * cosNH;
|
|
float sinNH4 = sinNH2 * sinNH2;
|
|
float cotangent2 = (cosNH * cosNH) / sinNH2;
|
|
|
|
float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * M_1_PI_F / sinNH4;
|
|
float G = fminf(1.0f, fminf(fac1, fac2)); // TODO: derive G from D analytically
|
|
|
|
float out = 0.25f * (D * G) / cosNO;
|
|
|
|
*pdf = 0.5f * M_1_PI_F;
|
|
return make_spectrum(out);
|
|
}
|
|
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_ashikhmin_velvet_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device int bsdf_ashikhmin_velvet_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private Spectrum *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const VelvetBsdf *bsdf = (ccl_private const VelvetBsdf *)sc;
|
|
float m_invsigma2 = bsdf->invsigma2;
|
|
float3 N = bsdf->N;
|
|
|
|
// we are viewing the surface from above - send a ray out with uniform
|
|
// distribution over the hemisphere
|
|
sample_uniform_hemisphere(N, randu, randv, omega_in, pdf);
|
|
|
|
if (dot(Ng, *omega_in) > 0) {
|
|
float3 H = normalize(*omega_in + I);
|
|
|
|
float cosNI = dot(N, *omega_in);
|
|
float cosNO = dot(N, I);
|
|
float cosNH = dot(N, H);
|
|
float cosHO = fabsf(dot(I, H));
|
|
|
|
if (fabsf(cosNO) > 1e-5f && fabsf(cosNH) < 1.0f - 1e-5f && cosHO > 1e-5f) {
|
|
float cosNHdivHO = cosNH / cosHO;
|
|
cosNHdivHO = fmaxf(cosNHdivHO, 1e-5f);
|
|
|
|
float fac1 = 2 * fabsf(cosNHdivHO * cosNO);
|
|
float fac2 = 2 * fabsf(cosNHdivHO * cosNI);
|
|
|
|
float sinNH2 = 1 - cosNH * cosNH;
|
|
float sinNH4 = sinNH2 * sinNH2;
|
|
float cotangent2 = (cosNH * cosNH) / sinNH2;
|
|
|
|
float D = expf(-cotangent2 * m_invsigma2) * m_invsigma2 * M_1_PI_F / sinNH4;
|
|
float G = fminf(1.0f, fminf(fac1, fac2)); // TODO: derive G from D analytically
|
|
|
|
float power = 0.25f * (D * G) / cosNO;
|
|
|
|
*eval = make_spectrum(power);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the retroreflective bounce
|
|
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
|
|
#endif
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
*eval = zero_spectrum();
|
|
}
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
*eval = zero_spectrum();
|
|
}
|
|
return LABEL_REFLECT | LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|