
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
280 lines
9.9 KiB
C
280 lines
9.9 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Adapted from Open Shading Language
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011-2022 Blender Foundation. */
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef struct HairBsdf {
|
|
SHADER_CLOSURE_BASE;
|
|
|
|
float3 T;
|
|
float roughness1;
|
|
float roughness2;
|
|
float offset;
|
|
} HairBsdf;
|
|
|
|
static_assert(sizeof(ShaderClosure) >= sizeof(HairBsdf), "HairBsdf is too large!");
|
|
|
|
ccl_device int bsdf_hair_reflection_setup(ccl_private HairBsdf *bsdf)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_HAIR_REFLECTION_ID;
|
|
bsdf->roughness1 = clamp(bsdf->roughness1, 0.001f, 1.0f);
|
|
bsdf->roughness2 = clamp(bsdf->roughness2, 0.001f, 1.0f);
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device int bsdf_hair_transmission_setup(ccl_private HairBsdf *bsdf)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_HAIR_TRANSMISSION_ID;
|
|
bsdf->roughness1 = clamp(bsdf->roughness1, 0.001f, 1.0f);
|
|
bsdf->roughness2 = clamp(bsdf->roughness2, 0.001f, 1.0f);
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_hair_reflection_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const HairBsdf *bsdf = (ccl_private const HairBsdf *)sc;
|
|
float offset = bsdf->offset;
|
|
float3 Tg = bsdf->T;
|
|
float roughness1 = bsdf->roughness1;
|
|
float roughness2 = bsdf->roughness2;
|
|
|
|
float Iz = dot(Tg, I);
|
|
float3 locy = normalize(I - Tg * Iz);
|
|
|
|
float theta_r = M_PI_2_F - fast_acosf(Iz);
|
|
|
|
float omega_in_z = dot(Tg, omega_in);
|
|
float3 omega_in_y = normalize(omega_in - Tg * omega_in_z);
|
|
|
|
float theta_i = M_PI_2_F - fast_acosf(omega_in_z);
|
|
float cosphi_i = dot(omega_in_y, locy);
|
|
|
|
if (M_PI_2_F - fabsf(theta_i) < 0.001f || cosphi_i < 0.0f) {
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
float roughness1_inv = 1.0f / roughness1;
|
|
float roughness2_inv = 1.0f / roughness2;
|
|
float phi_i = fast_acosf(cosphi_i) * roughness2_inv;
|
|
phi_i = fabsf(phi_i) < M_PI_F ? phi_i : M_PI_F;
|
|
float costheta_i = fast_cosf(theta_i);
|
|
|
|
float a_R = fast_atan2f(((M_PI_2_F + theta_r) * 0.5f - offset) * roughness1_inv, 1.0f);
|
|
float b_R = fast_atan2f(((-M_PI_2_F + theta_r) * 0.5f - offset) * roughness1_inv, 1.0f);
|
|
|
|
float theta_h = (theta_i + theta_r) * 0.5f;
|
|
float t = theta_h - offset;
|
|
|
|
float phi_pdf = fast_cosf(phi_i * 0.5f) * 0.25f * roughness2_inv;
|
|
float theta_pdf = roughness1 /
|
|
(2 * (t * t + roughness1 * roughness1) * (a_R - b_R) * costheta_i);
|
|
*pdf = phi_pdf * theta_pdf;
|
|
|
|
return make_spectrum(*pdf);
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_hair_transmission_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_hair_reflection_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_hair_transmission_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const HairBsdf *bsdf = (ccl_private const HairBsdf *)sc;
|
|
float offset = bsdf->offset;
|
|
float3 Tg = bsdf->T;
|
|
float roughness1 = bsdf->roughness1;
|
|
float roughness2 = bsdf->roughness2;
|
|
float Iz = dot(Tg, I);
|
|
float3 locy = normalize(I - Tg * Iz);
|
|
|
|
float theta_r = M_PI_2_F - fast_acosf(Iz);
|
|
|
|
float omega_in_z = dot(Tg, omega_in);
|
|
float3 omega_in_y = normalize(omega_in - Tg * omega_in_z);
|
|
|
|
float theta_i = M_PI_2_F - fast_acosf(omega_in_z);
|
|
float phi_i = fast_acosf(dot(omega_in_y, locy));
|
|
|
|
if (M_PI_2_F - fabsf(theta_i) < 0.001f) {
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
float costheta_i = fast_cosf(theta_i);
|
|
|
|
float roughness1_inv = 1.0f / roughness1;
|
|
float a_TT = fast_atan2f(((M_PI_2_F + theta_r) / 2 - offset) * roughness1_inv, 1.0f);
|
|
float b_TT = fast_atan2f(((-M_PI_2_F + theta_r) / 2 - offset) * roughness1_inv, 1.0f);
|
|
float c_TT = 2 * fast_atan2f(M_PI_2_F / roughness2, 1.0f);
|
|
|
|
float theta_h = (theta_i + theta_r) / 2;
|
|
float t = theta_h - offset;
|
|
float phi = fabsf(phi_i);
|
|
|
|
float p = M_PI_F - phi;
|
|
float theta_pdf = roughness1 /
|
|
(2 * (t * t + roughness1 * roughness1) * (a_TT - b_TT) * costheta_i);
|
|
float phi_pdf = roughness2 / (c_TT * (p * p + roughness2 * roughness2));
|
|
|
|
*pdf = phi_pdf * theta_pdf;
|
|
return make_spectrum(*pdf);
|
|
}
|
|
|
|
ccl_device int bsdf_hair_reflection_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private Spectrum *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const HairBsdf *bsdf = (ccl_private const HairBsdf *)sc;
|
|
float offset = bsdf->offset;
|
|
float3 Tg = bsdf->T;
|
|
float roughness1 = bsdf->roughness1;
|
|
float roughness2 = bsdf->roughness2;
|
|
float Iz = dot(Tg, I);
|
|
float3 locy = normalize(I - Tg * Iz);
|
|
float3 locx = cross(locy, Tg);
|
|
float theta_r = M_PI_2_F - fast_acosf(Iz);
|
|
|
|
float roughness1_inv = 1.0f / roughness1;
|
|
float a_R = fast_atan2f(((M_PI_2_F + theta_r) * 0.5f - offset) * roughness1_inv, 1.0f);
|
|
float b_R = fast_atan2f(((-M_PI_2_F + theta_r) * 0.5f - offset) * roughness1_inv, 1.0f);
|
|
|
|
float t = roughness1 * tanf(randu * (a_R - b_R) + b_R);
|
|
|
|
float theta_h = t + offset;
|
|
float theta_i = 2 * theta_h - theta_r;
|
|
|
|
float costheta_i, sintheta_i;
|
|
fast_sincosf(theta_i, &sintheta_i, &costheta_i);
|
|
|
|
float phi = 2 * safe_asinf(1 - 2 * randv) * roughness2;
|
|
|
|
float phi_pdf = fast_cosf(phi * 0.5f) * 0.25f / roughness2;
|
|
|
|
float theta_pdf = roughness1 /
|
|
(2 * (t * t + roughness1 * roughness1) * (a_R - b_R) * costheta_i);
|
|
|
|
float sinphi, cosphi;
|
|
fast_sincosf(phi, &sinphi, &cosphi);
|
|
*omega_in = (cosphi * costheta_i) * locy - (sinphi * costheta_i) * locx + (sintheta_i)*Tg;
|
|
|
|
// differentials - TODO: find a better approximation for the reflective bounce
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
*domega_in_dx = 2 * dot(locy, dIdx) * locy - dIdx;
|
|
*domega_in_dy = 2 * dot(locy, dIdy) * locy - dIdy;
|
|
#endif
|
|
|
|
*pdf = fabsf(phi_pdf * theta_pdf);
|
|
if (M_PI_2_F - fabsf(theta_i) < 0.001f)
|
|
*pdf = 0.0f;
|
|
|
|
*eval = make_spectrum(*pdf);
|
|
|
|
return LABEL_REFLECT | LABEL_GLOSSY;
|
|
}
|
|
|
|
ccl_device int bsdf_hair_transmission_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private Spectrum *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const HairBsdf *bsdf = (ccl_private const HairBsdf *)sc;
|
|
float offset = bsdf->offset;
|
|
float3 Tg = bsdf->T;
|
|
float roughness1 = bsdf->roughness1;
|
|
float roughness2 = bsdf->roughness2;
|
|
float Iz = dot(Tg, I);
|
|
float3 locy = normalize(I - Tg * Iz);
|
|
float3 locx = cross(locy, Tg);
|
|
float theta_r = M_PI_2_F - fast_acosf(Iz);
|
|
|
|
float roughness1_inv = 1.0f / roughness1;
|
|
float a_TT = fast_atan2f(((M_PI_2_F + theta_r) / 2 - offset) * roughness1_inv, 1.0f);
|
|
float b_TT = fast_atan2f(((-M_PI_2_F + theta_r) / 2 - offset) * roughness1_inv, 1.0f);
|
|
float c_TT = 2 * fast_atan2f(M_PI_2_F / roughness2, 1.0f);
|
|
|
|
float t = roughness1 * tanf(randu * (a_TT - b_TT) + b_TT);
|
|
|
|
float theta_h = t + offset;
|
|
float theta_i = 2 * theta_h - theta_r;
|
|
|
|
float costheta_i, sintheta_i;
|
|
fast_sincosf(theta_i, &sintheta_i, &costheta_i);
|
|
|
|
float p = roughness2 * tanf(c_TT * (randv - 0.5f));
|
|
float phi = p + M_PI_F;
|
|
float theta_pdf = roughness1 /
|
|
(2 * (t * t + roughness1 * roughness1) * (a_TT - b_TT) * costheta_i);
|
|
float phi_pdf = roughness2 / (c_TT * (p * p + roughness2 * roughness2));
|
|
|
|
float sinphi, cosphi;
|
|
fast_sincosf(phi, &sinphi, &cosphi);
|
|
*omega_in = (cosphi * costheta_i) * locy - (sinphi * costheta_i) * locx + (sintheta_i)*Tg;
|
|
|
|
// differentials - TODO: find a better approximation for the transmission bounce
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
*domega_in_dx = 2 * dot(locy, dIdx) * locy - dIdx;
|
|
*domega_in_dy = 2 * dot(locy, dIdy) * locy - dIdy;
|
|
#endif
|
|
|
|
*pdf = fabsf(phi_pdf * theta_pdf);
|
|
if (M_PI_2_F - fabsf(theta_i) < 0.001f) {
|
|
*pdf = 0.0f;
|
|
}
|
|
|
|
*eval = make_spectrum(*pdf);
|
|
|
|
/* TODO(sergey): Should always be negative, but seems some precision issue
|
|
* is involved here.
|
|
*/
|
|
kernel_assert(dot(locy, *omega_in) < 1e-4f);
|
|
|
|
return LABEL_TRANSMIT | LABEL_GLOSSY;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|