
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
109 lines
3.4 KiB
C
109 lines
3.4 KiB
C
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef struct OrenNayarBsdf {
|
|
SHADER_CLOSURE_BASE;
|
|
|
|
float roughness;
|
|
float a;
|
|
float b;
|
|
} OrenNayarBsdf;
|
|
|
|
static_assert(sizeof(ShaderClosure) >= sizeof(OrenNayarBsdf), "OrenNayarBsdf is too large!");
|
|
|
|
ccl_device Spectrum bsdf_oren_nayar_get_intensity(ccl_private const ShaderClosure *sc,
|
|
float3 n,
|
|
float3 v,
|
|
float3 l)
|
|
{
|
|
ccl_private const OrenNayarBsdf *bsdf = (ccl_private const OrenNayarBsdf *)sc;
|
|
float nl = max(dot(n, l), 0.0f);
|
|
float nv = max(dot(n, v), 0.0f);
|
|
float t = dot(l, v) - nl * nv;
|
|
|
|
if (t > 0.0f)
|
|
t /= max(nl, nv) + FLT_MIN;
|
|
float is = nl * (bsdf->a + bsdf->b * t);
|
|
return make_spectrum(is);
|
|
}
|
|
|
|
ccl_device int bsdf_oren_nayar_setup(ccl_private OrenNayarBsdf *bsdf)
|
|
{
|
|
float sigma = bsdf->roughness;
|
|
|
|
bsdf->type = CLOSURE_BSDF_OREN_NAYAR_ID;
|
|
|
|
sigma = saturatef(sigma);
|
|
|
|
float div = 1.0f / (M_PI_F + ((3.0f * M_PI_F - 4.0f) / 6.0f) * sigma);
|
|
|
|
bsdf->a = 1.0f * div;
|
|
bsdf->b = sigma * div;
|
|
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_oren_nayar_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const OrenNayarBsdf *bsdf = (ccl_private const OrenNayarBsdf *)sc;
|
|
if (dot(bsdf->N, omega_in) > 0.0f) {
|
|
*pdf = 0.5f * M_1_PI_F;
|
|
return bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, omega_in);
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_oren_nayar_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device int bsdf_oren_nayar_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private Spectrum *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const OrenNayarBsdf *bsdf = (ccl_private const OrenNayarBsdf *)sc;
|
|
sample_uniform_hemisphere(bsdf->N, randu, randv, omega_in, pdf);
|
|
|
|
if (dot(Ng, *omega_in) > 0.0f) {
|
|
*eval = bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, *omega_in);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the bounce
|
|
*domega_in_dx = (2.0f * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
|
|
*domega_in_dy = (2.0f * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
|
|
#endif
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
*eval = zero_spectrum();
|
|
}
|
|
|
|
return LABEL_REFLECT | LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|