
These replace float3 and packed_float3 in various places in the kernel where a spectral color representation will be used in the future. That representation will require more than 3 channels and conversion to from/RGB. The kernel code was refactored to remove the assumption that Spectrum and RGB colors are the same thing. There are no functional changes, Spectrum is still a float3 and the conversion functions are no-ops. Differential Revision: https://developer.blender.org/D15535
178 lines
5.8 KiB
C
178 lines
5.8 KiB
C
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
/* DISNEY PRINCIPLED DIFFUSE BRDF
|
|
*
|
|
* Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
|
|
*
|
|
* "Extending the Disney BRDF to a BSDF with Integrated Subsurface Scattering" (2015)
|
|
* For the separation of retro-reflection, "2.3 Dielectric BRDF with integrated
|
|
* subsurface scattering"
|
|
*/
|
|
|
|
#include "kernel/closure/bsdf_util.h"
|
|
|
|
#include "kernel/sample/mapping.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
enum PrincipledDiffuseBsdfComponents {
|
|
PRINCIPLED_DIFFUSE_FULL = 1,
|
|
PRINCIPLED_DIFFUSE_LAMBERT = 2,
|
|
PRINCIPLED_DIFFUSE_LAMBERT_EXIT = 4,
|
|
PRINCIPLED_DIFFUSE_RETRO_REFLECTION = 8,
|
|
};
|
|
|
|
typedef struct PrincipledDiffuseBsdf {
|
|
SHADER_CLOSURE_BASE;
|
|
|
|
float roughness;
|
|
int components;
|
|
} PrincipledDiffuseBsdf;
|
|
|
|
static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledDiffuseBsdf),
|
|
"PrincipledDiffuseBsdf is too large!");
|
|
|
|
ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
|
|
bsdf->components = PRINCIPLED_DIFFUSE_FULL;
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device Spectrum
|
|
bsdf_principled_diffuse_compute_brdf(ccl_private const PrincipledDiffuseBsdf *bsdf,
|
|
float3 N,
|
|
float3 V,
|
|
float3 L,
|
|
ccl_private float *pdf)
|
|
{
|
|
const float NdotL = dot(N, L);
|
|
|
|
if (NdotL <= 0) {
|
|
return zero_spectrum();
|
|
}
|
|
|
|
const float NdotV = dot(N, V);
|
|
|
|
const float FV = schlick_fresnel(NdotV);
|
|
const float FL = schlick_fresnel(NdotL);
|
|
|
|
float f = 0.0f;
|
|
|
|
/* Lambertian component. */
|
|
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_LAMBERT)) {
|
|
f += (1.0f - 0.5f * FV) * (1.0f - 0.5f * FL);
|
|
}
|
|
else if (bsdf->components & PRINCIPLED_DIFFUSE_LAMBERT_EXIT) {
|
|
f += (1.0f - 0.5f * FL);
|
|
}
|
|
|
|
/* Retro-reflection component. */
|
|
if (bsdf->components & (PRINCIPLED_DIFFUSE_FULL | PRINCIPLED_DIFFUSE_RETRO_REFLECTION)) {
|
|
/* H = normalize(L + V); // Bisector of an angle between L and V
|
|
* LH2 = 2 * dot(L, H)^2 = 2cos(x)^2 = cos(2x) + 1 = dot(L, V) + 1,
|
|
* half-angle x between L and V is at most 90 deg. */
|
|
const float LH2 = dot(L, V) + 1;
|
|
const float RR = bsdf->roughness * LH2;
|
|
f += RR * (FL + FV + FL * FV * (RR - 1.0f));
|
|
}
|
|
|
|
float value = M_1_PI_F * NdotL * f;
|
|
|
|
return make_spectrum(value);
|
|
}
|
|
|
|
/* Compute Fresnel at entry point, to be combined with #PRINCIPLED_DIFFUSE_LAMBERT_EXIT
|
|
* at the exit point to get the complete BSDF. */
|
|
ccl_device_inline float bsdf_principled_diffuse_compute_entry_fresnel(const float NdotV)
|
|
{
|
|
const float FV = schlick_fresnel(NdotV);
|
|
return (1.0f - 0.5f * FV);
|
|
}
|
|
|
|
/* Ad-hoc weight adjustment to avoid retro-reflection taking away half the
|
|
* samples from BSSRDF. */
|
|
ccl_device_inline float bsdf_principled_diffuse_retro_reflection_sample_weight(
|
|
ccl_private PrincipledDiffuseBsdf *bsdf, const float3 I)
|
|
{
|
|
return bsdf->roughness * schlick_fresnel(dot(bsdf->N, I));
|
|
}
|
|
|
|
ccl_device int bsdf_principled_diffuse_setup(ccl_private PrincipledDiffuseBsdf *bsdf,
|
|
int components)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
|
|
bsdf->components = components;
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_principled_diffuse_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;
|
|
|
|
float3 N = bsdf->N;
|
|
float3 V = I; // outgoing
|
|
float3 L = omega_in; // incoming
|
|
|
|
if (dot(N, omega_in) > 0.0f) {
|
|
*pdf = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
|
|
return bsdf_principled_diffuse_compute_brdf(bsdf, N, V, L, pdf);
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
}
|
|
|
|
ccl_device Spectrum bsdf_principled_diffuse_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return zero_spectrum();
|
|
}
|
|
|
|
ccl_device int bsdf_principled_diffuse_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private Spectrum *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const PrincipledDiffuseBsdf *bsdf = (ccl_private const PrincipledDiffuseBsdf *)sc;
|
|
|
|
float3 N = bsdf->N;
|
|
|
|
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
|
|
|
|
if (dot(Ng, *omega_in) > 0) {
|
|
*eval = bsdf_principled_diffuse_compute_brdf(bsdf, N, I, *omega_in, pdf);
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the diffuse bounce
|
|
*domega_in_dx = -((2 * dot(N, dIdx)) * N - dIdx);
|
|
*domega_in_dy = -((2 * dot(N, dIdy)) * N - dIdy);
|
|
#endif
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
*eval = zero_spectrum();
|
|
}
|
|
return LABEL_REFLECT | LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|