Files
blender/intern/cycles/kernel/integrator/mnee.h
Andrii Symkin d832d993c5 Cycles: add new Spectrum and PackedSpectrum types
These replace float3 and packed_float3 in various places in the kernel where a
spectral color representation will be used in the future. That representation
will require more than 3 channels and conversion to from/RGB. The kernel code
was refactored to remove the assumption that Spectrum and RGB colors are the
same thing.

There are no functional changes, Spectrum is still a float3 and the conversion
functions are no-ops.

Differential Revision: https://developer.blender.org/D15535
2022-08-09 16:49:34 +02:00

1099 lines
40 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#ifdef __MNEE__
# include "kernel/light/sample.h"
/*
* Manifold Next Event Estimation
*
* This code adds manifold next event estimation through refractive surface(s) as a new sampling
* technique for direct lighting, i.e. finding the point on the refractive surface(s) along the
* path to a light sample, which satisfies fermat's principle for a given microfacet normal and
* the path's end points. This technique involves walking on the "specular manifold" using a pseudo
* newton solver. Such a manifold is defined by the specular constraint matrix from the manifold
* exploration framework [2]. For each refractive interface, this constraint is defined by
* enforcing that the generalized half-vector projection onto the interface local tangent plane is
* null. The newton solver guides the walk by linearizing the manifold locally before reprojecting
* the linear solution onto the refractive surface. See paper [1] for more details about
* the technique itself and [3] for the half-vector light transport formulation, from which it is
* derived.
*
* [1] Manifold Next Event Estimation
* Johannes Hanika, Marc Droske, and Luca Fascione. 2015.
* Comput. Graph. Forum 34, 4 (July 2015), 8797.
* https://jo.dreggn.org/home/2015_mnee.pdf
*
* [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with
* difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4,
* Article 58 (July 2012), 13 pages.
* https://www.cs.cornell.edu/projects/manifolds-sg12/
*
* [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport
* Simulation Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph.
* 33, 4, Article 102 (July 2014), 13 pages.
* https://cg.ivd.kit.edu/english/HSLT.php
*/
# define MNEE_MAX_ITERATIONS 64
# define MNEE_MAX_INTERSECTION_COUNT 10
# define MNEE_SOLVER_THRESHOLD 0.001f
# define MNEE_MINIMUM_STEP_SIZE 0.0001f
# define MNEE_MAX_CAUSTIC_CASTERS 6
# define MNEE_MIN_DISTANCE 0.001f
# define MNEE_MIN_PROGRESS_DISTANCE 0.0001f
# define MNEE_MIN_DETERMINANT 0.0001f
# define MNEE_PROJECTION_DISTANCE_MULTIPLIER 2.f
CCL_NAMESPACE_BEGIN
/* Manifold struct containing the local differential geometry quantity */
typedef ccl_private struct ManifoldVertex {
/* Position and partials */
float3 p;
float3 dp_du;
float3 dp_dv;
/* Normal and partials */
float3 n;
float3 ng;
float3 dn_du;
float3 dn_dv;
/* geometric info */
float2 uv;
int object;
int prim;
int shader;
/* closure info */
float eta;
ccl_private ShaderClosure *bsdf;
float2 n_offset;
/* constraint and its derivative matrices */
float2 constraint;
float4 a;
float4 b;
float4 c;
} ManifoldVertex;
/* Multiplication of a 2x2 matrix encoded in a row-major order float4 by a vector */
ccl_device_inline float2 mat22_mult(const float4 a, const float2 b)
{
return make_float2(a.x * b.x + a.y * b.y, a.z * b.x + a.w * b.y);
}
/* Multiplication of 2x2 matrices encoded in a row-major order float4 */
ccl_device_inline float4 mat22_mult(const float4 a, const float4 b)
{
return make_float4(
a.x * b.x + a.y * b.z, a.x * b.y + a.y * b.w, a.z * b.x + a.w * b.z, a.z * b.y + a.w * b.w);
}
/* Determinant of a 2x2 matrix encoded in a row-major order float4 */
ccl_device_inline float mat22_determinant(const float4 m)
{
return m.x * m.w - m.y * m.z;
}
/* Inverse of a 2x2 matrix encoded in a row-major order float4 */
ccl_device_inline float mat22_inverse(const float4 m, ccl_private float4 &m_inverse)
{
float det = mat22_determinant(m);
if (fabsf(det) < MNEE_MIN_DETERMINANT)
return 0.f;
m_inverse = make_float4(m.w, -m.y, -m.z, m.x) / det;
return det;
}
/* Update light sample */
ccl_device_forceinline void mnee_update_light_sample(KernelGlobals kg,
const float3 P,
ccl_private LightSample *ls)
{
/* correct light sample position/direction and pdf
* NOTE: preserve pdf in area measure */
const ccl_global KernelLight *klight = &kernel_data_fetch(lights, ls->lamp);
if (ls->type == LIGHT_POINT || ls->type == LIGHT_SPOT) {
ls->D = normalize_len(ls->P - P, &ls->t);
ls->Ng = -ls->D;
float2 uv = map_to_sphere(ls->Ng);
ls->u = uv.x;
ls->v = uv.y;
float invarea = klight->spot.invarea;
ls->eval_fac = (0.25f * M_1_PI_F) * invarea;
ls->pdf = invarea;
if (ls->type == LIGHT_SPOT) {
/* spot light attenuation */
float3 dir = make_float3(klight->spot.dir[0], klight->spot.dir[1], klight->spot.dir[2]);
ls->eval_fac *= spot_light_attenuation(
dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls->Ng);
}
}
else if (ls->type == LIGHT_AREA) {
float invarea = fabsf(klight->area.invarea);
ls->D = normalize_len(ls->P - P, &ls->t);
ls->pdf = invarea;
if (klight->area.tan_spread > 0.f) {
ls->eval_fac = 0.25f * invarea;
ls->eval_fac *= light_spread_attenuation(
ls->D, ls->Ng, klight->area.tan_spread, klight->area.normalize_spread);
}
}
ls->pdf *= kernel_data.integrator.pdf_lights;
}
/* Manifold vertex setup from ray and intersection data */
ccl_device_forceinline void mnee_setup_manifold_vertex(KernelGlobals kg,
ccl_private ManifoldVertex *vtx,
ccl_private ShaderClosure *bsdf,
const float eta,
const float2 n_offset,
ccl_private const Ray *ray,
ccl_private const Intersection *isect,
ccl_private ShaderData *sd_vtx)
{
sd_vtx->object = (isect->object == OBJECT_NONE) ? kernel_data_fetch(prim_object, isect->prim) :
isect->object;
sd_vtx->type = isect->type;
sd_vtx->flag = 0;
sd_vtx->object_flag = kernel_data_fetch(object_flag, sd_vtx->object);
/* Matrices and time. */
shader_setup_object_transforms(kg, sd_vtx, ray->time);
sd_vtx->time = ray->time;
sd_vtx->prim = isect->prim;
sd_vtx->ray_length = isect->t;
sd_vtx->u = isect->u;
sd_vtx->v = isect->v;
sd_vtx->shader = kernel_data_fetch(tri_shader, sd_vtx->prim);
float3 verts[3];
float3 normals[3];
if (sd_vtx->type & PRIMITIVE_TRIANGLE) {
/* Load triangle vertices and normals. */
triangle_vertices_and_normals(kg, sd_vtx->prim, verts, normals);
/* Compute refined position (same code as in triangle_point_from_uv). */
sd_vtx->P = (1.f - isect->u - isect->v) * verts[0] + isect->u * verts[1] + isect->v * verts[2];
if (!(sd_vtx->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
const Transform tfm = object_get_transform(kg, sd_vtx);
sd_vtx->P = transform_point(&tfm, sd_vtx->P);
}
}
else { /* if (sd_vtx->type & PRIMITIVE_MOTION_TRIANGLE) */
/* Load triangle vertices and normals. */
motion_triangle_vertices_and_normals(
kg, sd_vtx->object, sd_vtx->prim, sd_vtx->time, verts, normals);
/* Compute refined position. */
sd_vtx->P = motion_triangle_point_from_uv(
kg, sd_vtx, isect->object, isect->prim, isect->u, isect->v, verts);
}
/* Instance transform. */
if (!(sd_vtx->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_position_transform_auto(kg, sd_vtx, &verts[0]);
object_position_transform_auto(kg, sd_vtx, &verts[1]);
object_position_transform_auto(kg, sd_vtx, &verts[2]);
object_normal_transform_auto(kg, sd_vtx, &normals[0]);
object_normal_transform_auto(kg, sd_vtx, &normals[1]);
object_normal_transform_auto(kg, sd_vtx, &normals[2]);
}
/* Tangent space (position derivatives) WRT barycentric (u, v). */
float3 dp_du = verts[1] - verts[0];
float3 dp_dv = verts[2] - verts[0];
/* Geometric normal. */
vtx->ng = normalize(cross(dp_du, dp_dv));
if (sd_vtx->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED)
vtx->ng = -vtx->ng;
/* Shading normals: Interpolate normals between vertices. */
float n_len;
vtx->n = normalize_len(normals[0] * (1.0f - sd_vtx->u - sd_vtx->v) + normals[1] * sd_vtx->u +
normals[2] * sd_vtx->v,
&n_len);
/* Shading normal derivatives WRT barycentric (u, v)
* we calculate the derivative of n = |u*n0 + v*n1 + (1-u-v)*n2| using:
* d/du [f(u)/|f(u)|] = [d/du f(u)]/|f(u)| - f(u)/|f(u)|^3 <f(u), d/du f(u)>. */
const float inv_n_len = 1.f / n_len;
float3 dn_du = inv_n_len * (normals[1] - normals[0]);
float3 dn_dv = inv_n_len * (normals[2] - normals[0]);
dn_du -= vtx->n * dot(vtx->n, dn_du);
dn_dv -= vtx->n * dot(vtx->n, dn_dv);
/* Orthonormalize (dp_du,dp_dv) using a linear transformation, which
* we use on (dn_du,dn_dv) as well so the new (u,v) are consistent. */
const float inv_len_dp_du = 1.f / len(dp_du);
dp_du *= inv_len_dp_du;
dn_du *= inv_len_dp_du;
const float dpdu_dot_dpdv = dot(dp_du, dp_dv);
dp_dv -= dpdu_dot_dpdv * dp_du;
dn_dv -= dpdu_dot_dpdv * dn_du;
const float inv_len_dp_dv = 1.f / len(dp_dv);
dp_dv *= inv_len_dp_dv;
dn_dv *= inv_len_dp_dv;
/* Find consistent tangent frame for every point on the surface. */
make_orthonormals(vtx->ng, &vtx->dp_du, &vtx->dp_dv);
/* Apply the equivalent rotation to the normal derivatives. */
const float cos_theta = dot(dp_du, vtx->dp_du);
const float sin_theta = -dot(dp_dv, vtx->dp_du);
vtx->dn_du = cos_theta * dn_du - sin_theta * dn_dv;
vtx->dn_dv = sin_theta * dn_du + cos_theta * dn_dv;
/* Manifold vertex position. */
vtx->p = sd_vtx->P;
/* Initialize constraint and its derivates. */
vtx->a = vtx->c = zero_float4();
vtx->b = make_float4(1.f, 0.f, 0.f, 1.f);
vtx->constraint = zero_float2();
vtx->n_offset = n_offset;
/* Closure information. */
vtx->bsdf = bsdf;
vtx->eta = eta;
/* Geometric information. */
vtx->uv = make_float2(isect->u, isect->v);
vtx->object = sd_vtx->object;
vtx->prim = sd_vtx->prim;
vtx->shader = sd_vtx->shader;
}
/* Compute constraint derivatives. */
ccl_device_forceinline bool mnee_compute_constraint_derivatives(
int vertex_count,
ccl_private ManifoldVertex *vertices,
ccl_private const float3 &surface_sample_pos,
const bool light_fixed_direction,
const float3 light_sample)
{
for (int vi = 0; vi < vertex_count; vi++) {
ccl_private ManifoldVertex &v = vertices[vi];
/* Direction toward surface sample. */
float3 wi = (vi == 0) ? surface_sample_pos - v.p : vertices[vi - 1].p - v.p;
float ili = len(wi);
if (ili < MNEE_MIN_DISTANCE)
return false;
ili = 1.f / ili;
wi *= ili;
/* Direction toward light sample. */
float3 wo = (vi == vertex_count - 1) ?
(light_fixed_direction ? light_sample : light_sample - v.p) :
vertices[vi + 1].p - v.p;
float ilo = len(wo);
if (ilo < MNEE_MIN_DISTANCE)
return false;
ilo = 1.f / ilo;
wo *= ilo;
/* Invert ior if coming from inside. */
float eta = v.eta;
if (dot(wi, v.ng) < .0f)
eta = 1.f / eta;
/* Half vector. */
float3 H = -(wi + eta * wo);
float ilh = 1.f / len(H);
H *= ilh;
ilo *= eta * ilh;
ili *= ilh;
/* Local shading frame. */
float dp_du_dot_n = dot(v.dp_du, v.n);
float3 s = v.dp_du - dp_du_dot_n * v.n;
float inv_len_s = 1.f / len(s);
s *= inv_len_s;
float3 t = cross(v.n, s);
float3 dH_du, dH_dv;
/* Constraint derivatives WRT previous vertex. */
if (vi > 0) {
ccl_private ManifoldVertex &v_prev = vertices[vi - 1];
dH_du = (v_prev.dp_du - wi * dot(wi, v_prev.dp_du)) * ili;
dH_dv = (v_prev.dp_dv - wi * dot(wi, v_prev.dp_dv)) * ili;
dH_du -= H * dot(dH_du, H);
dH_dv -= H * dot(dH_dv, H);
dH_du = -dH_du;
dH_dv = -dH_dv;
v.a = make_float4(dot(dH_du, s), dot(dH_dv, s), dot(dH_du, t), dot(dH_dv, t));
}
/* Constraint derivatives WRT current vertex. */
if (vi == vertex_count - 1 && light_fixed_direction) {
dH_du = ili * (-v.dp_du + wi * dot(wi, v.dp_du));
dH_dv = ili * (-v.dp_dv + wi * dot(wi, v.dp_dv));
}
else {
dH_du = -v.dp_du * (ili + ilo) + wi * (dot(wi, v.dp_du) * ili) +
wo * (dot(wo, v.dp_du) * ilo);
dH_dv = -v.dp_dv * (ili + ilo) + wi * (dot(wi, v.dp_dv) * ili) +
wo * (dot(wo, v.dp_dv) * ilo);
}
dH_du -= H * dot(dH_du, H);
dH_dv -= H * dot(dH_dv, H);
dH_du = -dH_du;
dH_dv = -dH_dv;
float3 ds_du = -inv_len_s * (dot(v.dp_du, v.dn_du) * v.n + dp_du_dot_n * v.dn_du);
float3 ds_dv = -inv_len_s * (dot(v.dp_du, v.dn_dv) * v.n + dp_du_dot_n * v.dn_dv);
ds_du -= s * dot(s, ds_du);
ds_dv -= s * dot(s, ds_dv);
float3 dt_du = cross(v.dn_du, s) + cross(v.n, ds_du);
float3 dt_dv = cross(v.dn_dv, s) + cross(v.n, ds_dv);
v.b = make_float4(dot(dH_du, s) + dot(H, ds_du),
dot(dH_dv, s) + dot(H, ds_dv),
dot(dH_du, t) + dot(H, dt_du),
dot(dH_dv, t) + dot(H, dt_dv));
/* Constraint derivatives WRT next vertex. */
if (vi < vertex_count - 1) {
ccl_private ManifoldVertex &v_next = vertices[vi + 1];
dH_du = (v_next.dp_du - wo * dot(wo, v_next.dp_du)) * ilo;
dH_dv = (v_next.dp_dv - wo * dot(wo, v_next.dp_dv)) * ilo;
dH_du -= H * dot(dH_du, H);
dH_dv -= H * dot(dH_dv, H);
dH_du = -dH_du;
dH_dv = -dH_dv;
v.c = make_float4(dot(dH_du, s), dot(dH_dv, s), dot(dH_du, t), dot(dH_dv, t));
}
/* Constraint vector WRT. the local shading frame. */
v.constraint = make_float2(dot(s, H), dot(t, H)) - v.n_offset;
}
return true;
}
/* Invert (block) constraint derivative matrix and solve linear system so we can map dh back to dx:
* dh / dx = A
* dx = inverse(A) x dh
* to use for specular specular manifold walk
* (See for example http://faculty.washington.edu/finlayso/ebook/algebraic/advanced/LUtri.htm
* for block tridiagonal matrix based linear system solve) */
ccl_device_forceinline bool mnee_solve_matrix_h_to_x(int vertex_count,
ccl_private ManifoldVertex *vertices,
ccl_private float2 *dx)
{
float4 Li[MNEE_MAX_CAUSTIC_CASTERS];
float2 C[MNEE_MAX_CAUSTIC_CASTERS];
/* Block tridiagonal LU factorization. */
float4 Lk = vertices[0].b;
if (mat22_inverse(Lk, Li[0]) == 0.f)
return false;
C[0] = vertices[0].constraint;
for (int k = 1; k < vertex_count; k++) {
float4 A = mat22_mult(vertices[k].a, Li[k - 1]);
Lk = vertices[k].b - mat22_mult(A, vertices[k - 1].c);
if (mat22_inverse(Lk, Li[k]) == 0.f)
return false;
C[k] = vertices[k].constraint - mat22_mult(A, C[k - 1]);
}
dx[vertex_count - 1] = mat22_mult(Li[vertex_count - 1], C[vertex_count - 1]);
for (int k = vertex_count - 2; k > -1; k--)
dx[k] = mat22_mult(Li[k], C[k] - mat22_mult(vertices[k].c, dx[k + 1]));
return true;
}
/* Newton solver to walk on specular manifold. */
ccl_device_forceinline bool mnee_newton_solver(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private ShaderData *sd_vtx,
ccl_private const LightSample *ls,
int vertex_count,
ccl_private ManifoldVertex *vertices)
{
float2 dx[MNEE_MAX_CAUSTIC_CASTERS];
ManifoldVertex tentative[MNEE_MAX_CAUSTIC_CASTERS];
Ray projection_ray;
projection_ray.self.light_object = OBJECT_NONE;
projection_ray.self.light_prim = PRIM_NONE;
projection_ray.dP = differential_make_compact(sd->dP);
projection_ray.dD = differential_zero_compact();
projection_ray.tmin = 0.0f;
projection_ray.time = sd->time;
Intersection projection_isect;
const bool light_fixed_direction = (ls->t == FLT_MAX);
const float3 light_sample = light_fixed_direction ? ls->D : ls->P;
/* We start gently, potentially ramping up to beta = 1, since target configurations
* far from the seed path can send the proposed solution further than the linearized
* local differential geometric quantities are meant for (especially dn/du and dn/dv). */
float beta = .1f;
bool reduce_stepsize = false;
bool resolve_constraint = true;
for (int iteration = 0; iteration < MNEE_MAX_ITERATIONS; iteration++) {
if (resolve_constraint) {
/* Calculate constraint and its derivatives for vertices. */
if (!mnee_compute_constraint_derivatives(
vertex_count, vertices, sd->P, light_fixed_direction, light_sample))
return false;
/* Calculate constraint norm. */
float constraint_norm = 0.f;
for (int vi = 0; vi < vertex_count; vi++)
constraint_norm = fmaxf(constraint_norm, len(vertices[vi].constraint));
/* Return if solve successful. */
if (constraint_norm < MNEE_SOLVER_THRESHOLD)
return true;
/* Invert derivative matrix. */
if (!mnee_solve_matrix_h_to_x(vertex_count, vertices, dx))
return false;
}
/* Construct tentative new vertices and project back onto surface. */
for (int vi = 0; vi < vertex_count; vi++) {
ccl_private ManifoldVertex &mv = vertices[vi];
/* Tentative new position on linearized manifold (tangent plane). */
float3 tentative_p = mv.p - beta * (dx[vi].x * mv.dp_du + dx[vi].y * mv.dp_dv);
/* For certain configs, the first solve ends up below the receiver. */
if (vi == 0) {
const float3 wo = tentative_p - sd->P;
if (dot(sd->Ng, wo) <= 0.f) {
/* Change direction for the 1st interface. */
tentative_p = mv.p + beta * (dx[vi].x * mv.dp_du + dx[vi].y * mv.dp_dv);
}
}
/* Project tentative point from tangent plane back to surface
* we ignore all other intersections since this tentative path could lead
* valid to a valid path even if occluded. */
if (vi == 0) {
projection_ray.self.object = sd->object;
projection_ray.self.prim = sd->prim;
projection_ray.P = sd->P;
}
else {
ccl_private const ManifoldVertex &pv = vertices[vi - 1];
projection_ray.self.object = pv.object;
projection_ray.self.prim = pv.prim;
projection_ray.P = pv.p;
}
projection_ray.D = normalize_len(tentative_p - projection_ray.P, &projection_ray.tmax);
projection_ray.tmax *= MNEE_PROJECTION_DISTANCE_MULTIPLIER;
bool projection_success = false;
for (int isect_count = 0; isect_count < MNEE_MAX_INTERSECTION_COUNT; isect_count++) {
bool hit = scene_intersect(kg, &projection_ray, PATH_RAY_TRANSMIT, &projection_isect);
if (!hit)
break;
int hit_object = (projection_isect.object == OBJECT_NONE) ?
kernel_data_fetch(prim_object, projection_isect.prim) :
projection_isect.object;
if (hit_object == mv.object) {
projection_success = true;
break;
}
projection_ray.self.object = projection_isect.object;
projection_ray.self.prim = projection_isect.prim;
projection_ray.tmin = intersection_t_offset(projection_isect.t);
}
if (!projection_success) {
reduce_stepsize = true;
break;
}
/* Initialize tangent frame, which will be used as reference. */
ccl_private ManifoldVertex &tv = tentative[vi];
tv.p = mv.p;
tv.dp_du = mv.dp_du;
tv.dp_dv = mv.dp_dv;
/* Setup corrected manifold vertex. */
mnee_setup_manifold_vertex(
kg, &tv, mv.bsdf, mv.eta, mv.n_offset, &projection_ray, &projection_isect, sd_vtx);
/* Fail newton solve if we are not making progress, probably stuck trying to move off the
* edge of the mesh. */
const float distance = len(tv.p - mv.p);
if (distance < MNEE_MIN_PROGRESS_DISTANCE)
return false;
}
/* Check that tentative path is still transmissive. */
if (!reduce_stepsize) {
for (int vi = 0; vi < vertex_count; vi++) {
ccl_private ManifoldVertex &tv = tentative[vi];
/* Direction toward surface sample. */
const float3 wi = (vi == 0 ? sd->P : tentative[vi - 1].p) - tv.p;
/* Direction toward light sample. */
const float3 wo = (vi == vertex_count - 1) ? light_fixed_direction ? ls->D : ls->P - tv.p :
tentative[vi + 1].p - tv.p;
if (dot(tv.n, wi) * dot(tv.n, wo) >= 0.f) {
reduce_stepsize = true;
break;
}
}
}
if (reduce_stepsize) {
/* Adjust step if can't land on right surface. */
reduce_stepsize = false;
resolve_constraint = false;
beta *= .5f;
/* Fail newton solve if the stepsize is too small. */
if (beta < MNEE_MINIMUM_STEP_SIZE)
return false;
continue;
}
/* Copy tentative vertices to main vertex list. */
for (int vi = 0; vi < vertex_count; vi++)
vertices[vi] = tentative[vi];
/* Increase the step to get back to 1. */
resolve_constraint = true;
beta = min(1.f, 2.f * beta);
}
return false;
}
/* Sample bsdf in half-vector measure. */
ccl_device_forceinline float2
mnee_sample_bsdf_dh(ClosureType type, float alpha_x, float alpha_y, float sample_u, float sample_v)
{
float alpha2;
float cos_phi, sin_phi;
if (alpha_x == alpha_y) {
float phi = sample_v * M_2PI_F;
fast_sincosf(phi, &sin_phi, &cos_phi);
alpha2 = alpha_x * alpha_x;
}
else {
float phi = atanf(alpha_y / alpha_x * tanf(M_2PI_F * sample_v + M_PI_2_F));
if (sample_v > .5f)
phi += M_PI_F;
fast_sincosf(phi, &sin_phi, &cos_phi);
float alpha_x2 = alpha_x * alpha_x;
float alpha_y2 = alpha_y * alpha_y;
alpha2 = 1.f / (cos_phi * cos_phi / alpha_x2 + sin_phi * sin_phi / alpha_y2);
}
/* Map sampled angles to micro-normal direction h. */
float tan2_theta = alpha2;
if (type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID) {
tan2_theta *= -logf(1.0f - sample_u);
}
else { /* type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID assumed */
tan2_theta *= sample_u / (1.0f - sample_u);
}
float cos2_theta = 1.0f / (1.0f + tan2_theta);
float sin_theta = safe_sqrtf(1.0f - cos2_theta);
return make_float2(cos_phi * sin_theta, sin_phi * sin_theta);
}
/* Evaluate product term inside eq.6 at solution interface vi
* divided by corresponding sampled pdf:
* fr(vi)_do / pdf_dh(vi) x |do/dh| x |n.wo / n.h|
* We assume here that the pdf (in half-vector measure) is the same as
* the one calculation when sampling the microfacet normals from the
* specular chain above: this allows us to simplify the bsdf weight */
ccl_device_forceinline Spectrum mnee_eval_bsdf_contribution(ccl_private ShaderClosure *closure,
float3 wi,
float3 wo)
{
ccl_private MicrofacetBsdf *bsdf = (ccl_private MicrofacetBsdf *)closure;
float cosNO = dot(bsdf->N, wi);
float cosNI = dot(bsdf->N, wo);
float3 Ht = normalize(-(bsdf->ior * wo + wi));
float cosHO = dot(Ht, wi);
float alpha2 = bsdf->alpha_x * bsdf->alpha_y;
float cosThetaM = dot(bsdf->N, Ht);
float G;
if (bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID) {
/* Eq. 26, 27: now calculate G1(i,m) and G1(o,m). */
G = bsdf_beckmann_G1(bsdf->alpha_x, cosNO) * bsdf_beckmann_G1(bsdf->alpha_x, cosNI);
}
else { /* bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID assumed */
/* Eq. 34: now calculate G1(i,m) and G1(o,m). */
G = (2.f / (1.f + safe_sqrtf(1.f + alpha2 * (1.f - cosNO * cosNO) / (cosNO * cosNO)))) *
(2.f / (1.f + safe_sqrtf(1.f + alpha2 * (1.f - cosNI * cosNI) / (cosNI * cosNI))));
}
/*
* bsdf_do = (1 - F) * D_do * G * |h.wi| / (n.wi * n.wo)
* pdf_dh = D_dh * cosThetaM
* D_do = D_dh * |dh/do|
*
* contribution = bsdf_do * |do/dh| * |n.wo / n.h| / pdf_dh
* = (1 - F) * G * |h.wi / (n.wi * n.h^2)|
*/
return bsdf->weight * G * fabsf(cosHO / (cosNO * sqr(cosThetaM)));
}
/* Compute transfer matrix determinant |T1| = |dx1/dxn| (and |dh/dx| in the process) */
ccl_device_forceinline bool mnee_compute_transfer_matrix(ccl_private const ShaderData *sd,
ccl_private const LightSample *ls,
int vertex_count,
ccl_private ManifoldVertex *vertices,
ccl_private float *dx1_dxlight,
ccl_private float *dh_dx)
{
/* Simplified block tridiagonal LU factorization. */
float4 Li;
float4 U[MNEE_MAX_CAUSTIC_CASTERS - 1];
float4 Lk = vertices[0].b;
float Lk_det = mat22_inverse(Lk, Li);
if (Lk_det == 0.f)
return false;
float det_dh_dx = Lk_det;
for (int k = 1; k < vertex_count; k++) {
U[k - 1] = mat22_mult(Li, vertices[k - 1].c);
Lk = vertices[k].b - mat22_mult(vertices[k].a, U[k - 1]);
Lk_det = mat22_inverse(Lk, Li);
if (Lk_det == 0.f)
return false;
det_dh_dx *= Lk_det;
}
/* Fill out constraint derivatives WRT light vertex param. */
/* Local shading frame at last free vertex. */
int mi = vertex_count - 1;
ccl_private const ManifoldVertex &m = vertices[mi];
float3 s = normalize(m.dp_du - dot(m.dp_du, m.n) * m.n);
float3 t = cross(m.n, s);
/* Local differential geometry. */
float3 dp_du, dp_dv;
make_orthonormals(ls->Ng, &dp_du, &dp_dv);
/* Direction toward surface sample. */
float3 wi = vertex_count == 1 ? sd->P - m.p : vertices[mi - 1].p - m.p;
float ili = 1.f / len(wi);
wi *= ili;
/* Invert ior if coming from inside. */
float eta = m.eta;
if (dot(wi, m.ng) < .0f)
eta = 1.f / eta;
float dxn_dwn;
float4 dc_dlight;
if (ls->t == FLT_MAX) {
/* Constant direction toward light sample. */
float3 wo = ls->D;
/* Half vector. */
float3 H = -(wi + eta * wo);
float ilh = 1.f / len(H);
H *= ilh;
float ilo = -eta * ilh;
float cos_theta = dot(wo, m.n);
float sin_theta = safe_sqrtf(1.f - sqr(cos_theta));
float cos_phi = dot(wo, s);
float sin_phi = safe_sqrtf(1.f - sqr(cos_phi));
/* Wo = (cos_phi * sin_theta) * s + (sin_phi * sin_theta) * t + cos_theta * n. */
float3 dH_dtheta = ilo * (cos_theta * (cos_phi * s + sin_phi * t) - sin_theta * m.n);
float3 dH_dphi = ilo * sin_theta * (-sin_phi * s + cos_phi * t);
dH_dtheta -= H * dot(dH_dtheta, H);
dH_dphi -= H * dot(dH_dphi, H);
/* Constraint derivatives WRT light direction expressed
* in spherical coordinates (theta, phi). */
dc_dlight = make_float4(
dot(dH_dtheta, s), dot(dH_dphi, s), dot(dH_dtheta, t), dot(dH_dphi, t));
/* Jacobian to convert dtheta x dphi to dw measure. */
dxn_dwn = 1.f / fmaxf(MNEE_MIN_DISTANCE, fabsf(sin_theta));
}
else {
/* Direction toward light sample. */
float3 wo = ls->P - m.p;
float ilo = 1.f / len(wo);
wo *= ilo;
/* Half vector. */
float3 H = -(wi + eta * wo);
float ilh = 1.f / len(H);
H *= ilh;
ilo *= eta * ilh;
float3 dH_du = (dp_du - wo * dot(wo, dp_du)) * ilo;
float3 dH_dv = (dp_dv - wo * dot(wo, dp_dv)) * ilo;
dH_du -= H * dot(dH_du, H);
dH_dv -= H * dot(dH_dv, H);
dH_du = -dH_du;
dH_dv = -dH_dv;
dc_dlight = make_float4(dot(dH_du, s), dot(dH_dv, s), dot(dH_du, t), dot(dH_dv, t));
/* Neutral value since dc_dlight is already in the desired vertex area measure. */
dxn_dwn = 1.f;
}
/* Compute transfer matrix. */
float4 Tp = -mat22_mult(Li, dc_dlight);
for (int k = vertex_count - 2; k > -1; k--)
Tp = -mat22_mult(U[k], Tp);
*dx1_dxlight = fabsf(mat22_determinant(Tp)) * dxn_dwn;
*dh_dx = fabsf(det_dh_dx);
return true;
}
/* Calculate the path contribution. */
ccl_device_forceinline bool mnee_path_contribution(KernelGlobals kg,
IntegratorState state,
ccl_private ShaderData *sd,
ccl_private ShaderData *sd_mnee,
ccl_private LightSample *ls,
int vertex_count,
ccl_private ManifoldVertex *vertices,
ccl_private BsdfEval *throughput)
{
float wo_len;
float3 wo = normalize_len(vertices[0].p - sd->P, &wo_len);
/* Initialize throughput and evaluate receiver bsdf * |n.wo|. */
shader_bsdf_eval(kg, sd, wo, false, throughput, ls->shader);
/* Update light sample with new position / direct.ion
* and keep pdf in vertex area measure */
mnee_update_light_sample(kg, vertices[vertex_count - 1].p, ls);
/* Save state path bounce info in case a light path node is used in the refractive interface or
* light shader graph. */
const int transmission_bounce = INTEGRATOR_STATE(state, path, transmission_bounce);
const int diffuse_bounce = INTEGRATOR_STATE(state, path, diffuse_bounce);
const int bounce = INTEGRATOR_STATE(state, path, bounce);
/* Set diffuse bounce info . */
INTEGRATOR_STATE_WRITE(state, path, diffuse_bounce) = diffuse_bounce + 1;
/* Evaluate light sample
* in case the light has a node-based shader:
* 1. sd_mnee will be used to store light data, which is why we need to do
* this evaluation here. sd_mnee needs to contain the solution's last
* interface data at the end of the call for the shadow ray setup to work.
* 2. ls needs to contain the last interface data for the light shader to
* evaluate properly */
/* Set bounce info in case a light path node is used in the light shader graph. */
INTEGRATOR_STATE_WRITE(state, path, transmission_bounce) = transmission_bounce + vertex_count -
1;
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce + vertex_count;
Spectrum light_eval = light_sample_shader_eval(kg, state, sd_mnee, ls, sd->time);
bsdf_eval_mul(throughput, light_eval / ls->pdf);
/* Generalized geometry term. */
float dh_dx;
float dx1_dxlight;
if (!mnee_compute_transfer_matrix(sd, ls, vertex_count, vertices, &dx1_dxlight, &dh_dx))
return false;
/* Receiver bsdf eval above already contains |n.wo|. */
const float dw0_dx1 = fabsf(dot(wo, vertices[0].n)) / sqr(wo_len);
/* Clamp since it has a tendency to be unstable. */
const float G = fminf(dw0_dx1 * dx1_dxlight, 2.f);
bsdf_eval_mul(throughput, G);
/* Specular reflectance. */
/* Probe ray / isect. */
Ray probe_ray;
probe_ray.self.light_object = ls->object;
probe_ray.self.light_prim = ls->prim;
probe_ray.tmin = 0.0f;
probe_ray.dP = differential_make_compact(sd->dP);
probe_ray.dD = differential_zero_compact();
probe_ray.time = sd->time;
Intersection probe_isect;
probe_ray.self.object = sd->object;
probe_ray.self.prim = sd->prim;
probe_ray.P = sd->P;
float3 wi;
float wi_len;
for (int vi = 0; vi < vertex_count; vi++) {
ccl_private const ManifoldVertex &v = vertices[vi];
/* Check visibility. */
probe_ray.D = normalize_len(v.p - probe_ray.P, &probe_ray.tmax);
if (scene_intersect(kg, &probe_ray, PATH_RAY_TRANSMIT, &probe_isect)) {
int hit_object = (probe_isect.object == OBJECT_NONE) ?
kernel_data_fetch(prim_object, probe_isect.prim) :
probe_isect.object;
/* Test whether the ray hit the appropriate object at its intended location. */
if (hit_object != v.object || fabsf(probe_ray.tmax - probe_isect.t) > MNEE_MIN_DISTANCE)
return false;
}
probe_ray.self.object = v.object;
probe_ray.self.prim = v.prim;
probe_ray.P = v.p;
/* Set view looking dir. */
wi = -wo;
wi_len = wo_len;
/* Setup shader data for vertex vi. */
shader_setup_from_sample(kg,
sd_mnee,
v.p,
v.n,
wi,
v.shader,
v.object,
v.prim,
v.uv.x,
v.uv.y,
wi_len,
sd->time,
false,
LAMP_NONE);
/* Set bounce info in case a light path node is used in the refractive interface
* shader graph. */
INTEGRATOR_STATE_WRITE(state, path, transmission_bounce) = transmission_bounce + vi;
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce + 1 + vi;
/* Evaluate shader nodes at solution vi. */
shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
kg, state, sd_mnee, NULL, PATH_RAY_DIFFUSE, true);
/* Set light looking dir. */
wo = (vi == vertex_count - 1) ? (ls->t == FLT_MAX ? ls->D : ls->P - v.p) :
vertices[vi + 1].p - v.p;
wo = normalize_len(wo, &wo_len);
/* Evaluate product term inside eq.6 at solution interface. vi
* divided by corresponding sampled pdf:
* fr(vi)_do / pdf_dh(vi) x |do/dh| x |n.wo / n.h| */
Spectrum bsdf_contribution = mnee_eval_bsdf_contribution(v.bsdf, wi, wo);
bsdf_eval_mul(throughput, bsdf_contribution);
}
/* Restore original state path bounce info. */
INTEGRATOR_STATE_WRITE(state, path, transmission_bounce) = transmission_bounce;
INTEGRATOR_STATE_WRITE(state, path, diffuse_bounce) = diffuse_bounce;
INTEGRATOR_STATE_WRITE(state, path, bounce) = bounce;
return true;
}
/* Manifold next event estimation path sampling. */
ccl_device_forceinline int kernel_path_mnee_sample(KernelGlobals kg,
IntegratorState state,
ccl_private ShaderData *sd,
ccl_private ShaderData *sd_mnee,
ccl_private const RNGState *rng_state,
ccl_private LightSample *ls,
ccl_private BsdfEval *throughput)
{
/*
* 1. send seed ray from shading point to light sample position (or along sampled light
* direction), making sure it intersects a caustic caster at least once, ignoring all other
* intersections (the final path could be valid even though objects could occlude the light
* this seed point), building an array of manifold vertices.
*/
/* Setup probe ray. */
Ray probe_ray;
probe_ray.self.object = sd->object;
probe_ray.self.prim = sd->prim;
probe_ray.self.light_object = ls->object;
probe_ray.self.light_prim = ls->prim;
probe_ray.P = sd->P;
probe_ray.tmin = 0.0f;
if (ls->t == FLT_MAX) {
/* Distant / env light. */
probe_ray.D = ls->D;
probe_ray.tmax = ls->t;
}
else {
/* Other lights, avoid self-intersection. */
probe_ray.D = ls->P - probe_ray.P;
probe_ray.D = normalize_len(probe_ray.D, &probe_ray.tmax);
}
probe_ray.dP = differential_make_compact(sd->dP);
probe_ray.dD = differential_zero_compact();
probe_ray.time = sd->time;
Intersection probe_isect;
ManifoldVertex vertices[MNEE_MAX_CAUSTIC_CASTERS];
int vertex_count = 0;
for (int isect_count = 0; isect_count < MNEE_MAX_INTERSECTION_COUNT; isect_count++) {
bool hit = scene_intersect(kg, &probe_ray, PATH_RAY_TRANSMIT, &probe_isect);
if (!hit)
break;
const int object_flags = intersection_get_object_flags(kg, &probe_isect);
if (object_flags & SD_OBJECT_CAUSTICS_CASTER) {
/* Do we have enough slots. */
if (vertex_count >= MNEE_MAX_CAUSTIC_CASTERS)
return 0;
/* Reject caster if it is not a triangles mesh. */
if (!(probe_isect.type & PRIMITIVE_TRIANGLE))
return 0;
ccl_private ManifoldVertex &mv = vertices[vertex_count++];
/* Setup shader data on caustic caster and evaluate context. */
shader_setup_from_ray(kg, sd_mnee, &probe_ray, &probe_isect);
/* Reject caster if smooth normals are not available: Manifold exploration assumes local
* differential geometry can be created at any point on the surface which is not possible if
* normals are not smooth. */
if (!(sd_mnee->shader & SHADER_SMOOTH_NORMAL))
return 0;
/* Last bool argument is the MNEE flag (for TINY_MAX_CLOSURE cap in kernel_shader.h). */
shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_SHADOW>(
kg, state, sd_mnee, NULL, PATH_RAY_DIFFUSE, true);
/* Get and sample refraction bsdf */
bool found_transimissive_microfacet_bsdf = false;
for (int ci = 0; ci < sd_mnee->num_closure; ci++) {
ccl_private ShaderClosure *bsdf = &sd_mnee->closure[ci];
if (bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID ||
bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID ||
bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID ||
bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID ||
bsdf->type == CLOSURE_BSDF_REFRACTION_ID ||
bsdf->type == CLOSURE_BSDF_SHARP_GLASS_ID) {
/* Note that CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID and
* CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID are treated as
* CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID further below. */
found_transimissive_microfacet_bsdf = true;
ccl_private MicrofacetBsdf *microfacet_bsdf = (ccl_private MicrofacetBsdf *)bsdf;
/* Figure out appropriate index of refraction ratio. */
const float eta = (sd_mnee->flag & SD_BACKFACING) ? 1.0f / microfacet_bsdf->ior :
microfacet_bsdf->ior;
float2 h = zero_float2();
if (microfacet_bsdf->alpha_x > 0.f && microfacet_bsdf->alpha_y > 0.f) {
/* Sample transmissive microfacet bsdf. */
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
h = mnee_sample_bsdf_dh(
bsdf->type, microfacet_bsdf->alpha_x, microfacet_bsdf->alpha_y, bsdf_u, bsdf_v);
}
/* Setup differential geometry on vertex. */
mnee_setup_manifold_vertex(kg, &mv, bsdf, eta, h, &probe_ray, &probe_isect, sd_mnee);
break;
}
}
if (!found_transimissive_microfacet_bsdf)
return 0;
}
probe_ray.self.object = probe_isect.object;
probe_ray.self.prim = probe_isect.prim;
probe_ray.tmin = intersection_t_offset(probe_isect.t);
};
/* Mark the manifold walk invalid to keep mollification on by default. */
INTEGRATOR_STATE_WRITE(state, path, mnee) &= ~PATH_MNEE_VALID;
if (vertex_count == 0)
return 0;
/* Check whether the transmission depth limit is reached before continuing. */
if ((INTEGRATOR_STATE(state, path, transmission_bounce) + vertex_count - 1) >=
kernel_data.integrator.max_transmission_bounce)
return 0;
/* Check whether the diffuse depth limit is reached before continuing. */
if ((INTEGRATOR_STATE(state, path, diffuse_bounce) + 1) >=
kernel_data.integrator.max_diffuse_bounce)
return 0;
/* Check whether the overall depth limit is reached before continuing. */
if ((INTEGRATOR_STATE(state, path, bounce) + vertex_count) >= kernel_data.integrator.max_bounce)
return 0;
/* Mark the manifold walk valid to turn off mollification regardless of how successful the walk
* is: this is noticeable when another mnee is performed deeper in the path, for an internally
* reflected ray for example. If mollification was active for the reflection, a clear
* discontinuity is visible between direct and indirect contributions */
INTEGRATOR_STATE_WRITE(state, path, mnee) |= PATH_MNEE_VALID;
/* 2. Walk on the specular manifold to find vertices on the
* casters that satisfy snell's law for each interface
*/
if (mnee_newton_solver(kg, sd, sd_mnee, ls, vertex_count, vertices)) {
/* 3. If a solution exists, calculate contribution of the corresponding path */
if (!mnee_path_contribution(kg, state, sd, sd_mnee, ls, vertex_count, vertices, throughput))
return 0;
return vertex_count;
}
return 0;
}
CCL_NAMESPACE_END
#endif /* __MNEE__ */