Files
blender/tests/performance/api/graph.py
Brecht Van Lommel dc3f46d96b Tests: performance testing framework
These are scripts for benchmarking Blender features on real-world .blend
files. They were originally written for benchmarking Cycles performance, and
were made generic so they can be used for more Blender features.

The benchmarks can be run locally by developers. But the plan is to also run
these as part of continuous integration to track performance over time.

Currently there are tests for Cycles rendering and .blend file loading.

Documentation:
https://wiki.blender.org/wiki/Tools/Tests/Performance

Main features:
* User created configurations to quickly run, re-run and analyze a selected
  subset of tests.
* Supports both benchmarking with existing builds, and automatic building of
  specified git commits, tags and branches.
* Generate HTML page with bar and line graphs from test results.
* Controlled using simple command line tool.
* For writing tests, convenient abstraction to run a Python function in Blender
  with arguments and return value.

Ref T74730

Differential Revision: https://developer.blender.org/D11662
2021-07-05 12:32:32 +02:00

106 lines
4.0 KiB
Python

# Apache License, Version 2.0
from . import TestQueue
import json
import pathlib
from typing import Dict, List
class TestGraph:
def __init__(self, json_filepaths: List[pathlib.Path]):
# Initialize graph from JSON file. Note that this is implemented without
# accessing any benchmark environment or configuration. This ways benchmarks
# run on various machines can be aggregated and the graph generated on another
# machine.
# Gather entries for each device.
devices = {}
for json_filepath in json_filepaths:
queue = TestQueue(json_filepath)
for entry in queue.entries:
if entry.status in ('done', 'outdated'):
device_name = entry.device_name
if device_name in devices.keys():
devices[device_name].append(entry)
else:
devices[device_name] = [entry]
data = []
for device_name, device_entries in devices.items():
# Gather used categories.
categories = {}
for entry in device_entries:
category = entry.category
if category in categories.keys():
categories[category].append(entry)
else:
categories[category] = [entry]
# Generate one graph for every device x category combination.
for category, category_entries in categories.items():
entries = sorted(category_entries, key=lambda entry: (entry.revision, entry.test))
chart_type = 'line' if entries[0].benchmark_type == 'time_series' else 'comparison'
data.append(self.chart(device_name, category, entries, chart_type))
self.json = json.dumps(data, indent=2)
def chart(self, device_name: str, category: str, entries: List, chart_type: str) -> Dict:
# Gather used tests.
tests = {}
for entry in entries:
test = entry.test
if test not in tests.keys():
tests[test] = len(tests)
# Gather used revisions.
revisions = {}
revision_dates = {}
for entry in entries:
revision = entry.revision
if revision not in revisions.keys():
revisions[revision] = len(revisions)
revision_dates[revision] = int(entry.date)
# Google Charts JSON data layout is like a spreadsheat table, with
# colums, rows and cells. We create one column for revision labels,
# and one column for each test.
cols = []
if chart_type == 'line':
cols.append({'id': '', 'label': 'Date', 'type': 'date'})
else:
cols.append({'id': '', 'label': 'Revision', 'type': 'string'})
for test, test_index in tests.items():
cols.append({'id': '', 'label': test, 'type': 'number'})
rows = []
for revision, revision_index in revisions.items():
if chart_type == 'line':
date = revision_dates[revision]
row = [{'f': None, 'v': 'Date({0})'.format(date * 1000)}]
else:
row = [{'f': None, 'v': revision}]
row += [{}] * len(tests)
rows.append({'c': row})
for entry in entries:
test_index = tests[entry.test]
revision_index = revisions[entry.revision]
time = entry.output['time']
rows[revision_index]['c'][test_index + 1] = {'f': None, 'v': time}
data = {'cols': cols, 'rows': rows}
return {'device': device_name, 'category': category, 'data': data, 'chart_type': chart_type}
def write(self, filepath: pathlib.Path) -> None:
# Write HTML page with JSON graph data embedded.
template_dir = pathlib.Path(__file__).parent
with open(template_dir / 'graph.template.html', 'r') as f:
template = f.read()
contents = template.replace('%JSON_DATA%', self.json)
with open(filepath, "w") as f:
f.write(contents)