Files
blender/source/blender/blenkernel/intern/effect.c
2010-09-18 03:55:56 +00:00

1026 lines
27 KiB
C

/* effect.c
*
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stddef.h>
#include "BLI_storage.h" /* _LARGEFILE_SOURCE */
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_ipo_types.h"
#include "DNA_key_types.h"
#include "DNA_lattice_types.h"
#include "DNA_listBase.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_jitter.h"
#include "BLI_listbase.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "PIL_time.h"
#include "BKE_action.h"
#include "BKE_anim.h" /* needed for where_on_path */
#include "BKE_armature.h"
#include "BKE_blender.h"
#include "BKE_collision.h"
#include "BKE_constraint.h"
#include "BKE_deform.h"
#include "BKE_depsgraph.h"
#include "BKE_displist.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_ipo.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_utildefines.h"
#include "RE_render_ext.h"
#include "RE_shader_ext.h"
/* fluid sim particle import */
#ifndef DISABLE_ELBEEM
#include "DNA_object_fluidsim.h"
#include "LBM_fluidsim.h"
#include <zlib.h>
#include <string.h>
#endif // DISABLE_ELBEEM
//XXX #include "BIF_screen.h"
EffectorWeights *BKE_add_effector_weights(Group *group)
{
EffectorWeights *weights = MEM_callocN(sizeof(EffectorWeights), "EffectorWeights");
int i;
for(i=0; i<NUM_PFIELD_TYPES; i++)
weights->weight[i] = 1.0f;
weights->global_gravity = 1.0f;
weights->group = group;
return weights;
}
PartDeflect *object_add_collision_fields(int type)
{
PartDeflect *pd;
pd= MEM_callocN(sizeof(PartDeflect), "PartDeflect");
pd->forcefield = type;
pd->pdef_sbdamp = 0.1f;
pd->pdef_sbift = 0.2f;
pd->pdef_sboft = 0.02f;
pd->seed = ((unsigned int)(ceil(PIL_check_seconds_timer()))+1) % 128;
pd->f_strength = 1.0f;
pd->f_damp = 1.0f;
/* set sensible defaults based on type */
switch(type) {
case PFIELD_VORTEX:
pd->shape = PFIELD_SHAPE_PLANE;
break;
case PFIELD_WIND:
pd->shape = PFIELD_SHAPE_PLANE;
pd->f_flow = 1.0f; /* realistic wind behavior */
break;
case PFIELD_TEXTURE:
pd->f_size = 1.0f;
break;
}
pd->flag = PFIELD_DO_LOCATION|PFIELD_DO_ROTATION;
return pd;
}
/* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
typedef struct VeNoCo {
float co[3], no[3];
} VeNoCo;
/* ***************** PARTICLES ***************** */
/* deprecated, only keep this for readfile.c */
PartEff *give_parteff(Object *ob)
{
PartEff *paf;
paf= ob->effect.first;
while(paf) {
if(paf->type==EFF_PARTICLE) return paf;
paf= paf->next;
}
return 0;
}
void free_effect(Effect *eff)
{
PartEff *paf;
if(eff->type==EFF_PARTICLE) {
paf= (PartEff *)eff;
if(paf->keys) MEM_freeN(paf->keys);
}
MEM_freeN(eff);
}
void free_effects(ListBase *lb)
{
Effect *eff;
eff= lb->first;
while(eff) {
BLI_remlink(lb, eff);
free_effect(eff);
eff= lb->first;
}
}
/* -------------------------- Effectors ------------------ */
void free_partdeflect(PartDeflect *pd)
{
if(!pd)
return;
if(pd->tex)
pd->tex->id.us--;
if(pd->rng)
rng_free(pd->rng);
MEM_freeN(pd);
}
static void precalculate_effector(EffectorCache *eff)
{
unsigned int cfra = (unsigned int)(eff->scene->r.cfra >= 0 ? eff->scene->r.cfra : -eff->scene->r.cfra);
if(!eff->pd->rng)
eff->pd->rng = rng_new(eff->pd->seed + cfra);
else
rng_srandom(eff->pd->rng, eff->pd->seed + cfra);
if(eff->pd->forcefield == PFIELD_GUIDE && eff->ob->type==OB_CURVE) {
Curve *cu= eff->ob->data;
if(cu->flag & CU_PATH) {
if(cu->path==NULL || cu->path->data==NULL)
makeDispListCurveTypes(eff->scene, eff->ob, 0);
if(cu->path && cu->path->data) {
where_on_path(eff->ob, 0.0, eff->guide_loc, eff->guide_dir, NULL, &eff->guide_radius, NULL);
mul_m4_v3(eff->ob->obmat, eff->guide_loc);
mul_mat3_m4_v3(eff->ob->obmat, eff->guide_dir);
}
}
}
else if(eff->pd->shape == PFIELD_SHAPE_SURFACE) {
eff->surmd = (SurfaceModifierData *)modifiers_findByType ( eff->ob, eModifierType_Surface );
if(eff->ob->type == OB_CURVE)
eff->flag |= PE_USE_NORMAL_DATA;
}
else if(eff->psys)
psys_update_particle_tree(eff->psys, eff->scene->r.cfra);
}
static EffectorCache *new_effector_cache(Scene *scene, Object *ob, ParticleSystem *psys, PartDeflect *pd)
{
EffectorCache *eff = MEM_callocN(sizeof(EffectorCache), "EffectorCache");
eff->scene = scene;
eff->ob = ob;
eff->psys = psys;
eff->pd = pd;
eff->frame = -1;
precalculate_effector(eff);
return eff;
}
static void add_object_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, Object *ob_src)
{
EffectorCache *eff = NULL;
if( ob == ob_src || weights->weight[ob->pd->forcefield] == 0.0f )
return;
if (ob->pd->shape == PFIELD_SHAPE_POINTS && !ob->derivedFinal )
return;
if(*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
eff = new_effector_cache(scene, ob, NULL, ob->pd);
BLI_addtail(*effectors, eff);
}
static void add_particles_to_effectors(ListBase **effectors, Scene *scene, EffectorWeights *weights, Object *ob, ParticleSystem *psys, ParticleSystem *psys_src)
{
ParticleSettings *part= psys->part;
if( !psys_check_enabled(ob, psys) )
return;
if( psys == psys_src && (part->flag & PART_SELF_EFFECT) == 0)
return;
if( part->pd && part->pd->forcefield && weights->weight[part->pd->forcefield] != 0.0f) {
if(*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd));
}
if (part->pd2 && part->pd2->forcefield && weights->weight[part->pd2->forcefield] != 0.0f) {
if(*effectors == NULL)
*effectors = MEM_callocN(sizeof(ListBase), "effectors list");
BLI_addtail(*effectors, new_effector_cache(scene, ob, psys, part->pd2));
}
}
/* returns ListBase handle with objects taking part in the effecting */
ListBase *pdInitEffectors(Scene *scene, Object *ob_src, ParticleSystem *psys_src, EffectorWeights *weights)
{
Base *base;
unsigned int layer= ob_src->lay;
ListBase *effectors = NULL;
if(weights->group) {
GroupObject *go;
for(go= weights->group->gobject.first; go; go= go->next) {
if( (go->ob->lay & layer) ) {
if( go->ob->pd && go->ob->pd->forcefield )
add_object_to_effectors(&effectors, scene, weights, go->ob, ob_src);
if( go->ob->particlesystem.first ) {
ParticleSystem *psys= go->ob->particlesystem.first;
for( ; psys; psys=psys->next )
add_particles_to_effectors(&effectors, scene, weights, go->ob, psys, psys_src);
}
}
}
}
else {
for(base = scene->base.first; base; base= base->next) {
if( (base->lay & layer) ) {
if( base->object->pd && base->object->pd->forcefield )
add_object_to_effectors(&effectors, scene, weights, base->object, ob_src);
if( base->object->particlesystem.first ) {
ParticleSystem *psys= base->object->particlesystem.first;
for( ; psys; psys=psys->next )
add_particles_to_effectors(&effectors, scene, weights, base->object, psys, psys_src);
}
}
}
}
return effectors;
}
void pdEndEffectors(ListBase **effectors)
{
if(*effectors) {
EffectorCache *eff = (*effectors)->first;
for(; eff; eff=eff->next) {
if(eff->guide_data)
MEM_freeN(eff->guide_data);
}
BLI_freelistN(*effectors);
MEM_freeN(*effectors);
*effectors = NULL;
}
}
void pd_point_from_particle(ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, EffectedPoint *point)
{
point->loc = state->co;
point->vel = state->vel;
point->index = pa - sim->psys->particles;
point->size = pa->size;
/* TODO: point->charge */
point->charge = 1.0f;
point->vel_to_sec = 1.0f;
point->vel_to_frame = psys_get_timestep(sim);
point->flag = 0;
if(sim->psys->part->flag & PART_ROT_DYN) {
point->ave = state->ave;
point->rot = state->rot;
}
else
point->ave = point->rot = NULL;
point->psys = sim->psys;
}
void pd_point_from_loc(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = 0;
point->ave = point->rot = NULL;
point->psys = NULL;
}
void pd_point_from_soft(Scene *scene, float *loc, float *vel, int index, EffectedPoint *point)
{
point->loc = loc;
point->vel = vel;
point->index = index;
point->size = 0.0f;
point->vel_to_sec = (float)scene->r.frs_sec;
point->vel_to_frame = 1.0f;
point->flag = PE_WIND_AS_SPEED;
point->ave = point->rot = NULL;
point->psys = NULL;
}
/************************************************/
/* Effectors */
/************************************************/
// triangle - ray callback function
static void eff_tri_ray_hit(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
// whenever we hit a bounding box, we don't check further
hit->dist = -1;
hit->index = 1;
}
// get visibility of a wind ray
static float eff_calc_visibility(ListBase *colliders, EffectorCache *eff, EffectorData *efd, EffectedPoint *point)
{
ListBase *colls = colliders;
ColliderCache *col;
float norm[3], len = 0.0;
float visibility = 1.0, absorption = 0.0;
if(!(eff->pd->flag & PFIELD_VISIBILITY))
return visibility;
if(!colls)
colls = get_collider_cache(eff->scene, NULL, NULL);
if(!colls)
return visibility;
negate_v3_v3(norm, efd->vec_to_point);
len = normalize_v3(norm);
// check all collision objects
for(col = colls->first; col; col = col->next)
{
CollisionModifierData *collmd = col->collmd;
if(col->ob == eff->ob)
continue;
if(collmd->bvhtree)
{
BVHTreeRayHit hit;
hit.index = -1;
hit.dist = len + FLT_EPSILON;
// check if the way is blocked
if(BLI_bvhtree_ray_cast(collmd->bvhtree, point->loc, norm, 0.0f, &hit, eff_tri_ray_hit, NULL)>=0)
{
absorption= col->ob->pd->absorption;
// visibility is only between 0 and 1, calculated from 1-absorption
visibility *= CLAMPIS(1.0f-absorption, 0.0f, 1.0f);
if(visibility <= 0.0f)
break;
}
}
}
if(!colliders)
free_collider_cache(&colls);
return visibility;
}
// noise function for wind e.g.
static float wind_func(struct RNG *rng, float strength)
{
int random = (rng_getInt(rng)+1) % 128; // max 2357
float force = rng_getFloat(rng) + 1.0f;
float ret;
float sign = 0;
sign = ((float)random > 64.0) ? 1.0: -1.0; // dividing by 2 is not giving equal sign distribution
ret = sign*((float)random / force)*strength/128.0f;
return ret;
}
/* maxdist: zero effect from this distance outwards (if usemax) */
/* mindist: full effect up to this distance (if usemin) */
/* power: falloff with formula 1/r^power */
static float falloff_func(float fac, int usemin, float mindist, int usemax, float maxdist, float power)
{
/* first quick checks */
if(usemax && fac > maxdist)
return 0.0f;
if(usemin && fac < mindist)
return 1.0f;
if(!usemin)
mindist = 0.0;
return pow((double)1.0+fac-mindist, (double)-power);
}
static float falloff_func_dist(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMIN, pd->mindist, pd->flag&PFIELD_USEMAX, pd->maxdist, pd->f_power);
}
static float falloff_func_rad(PartDeflect *pd, float fac)
{
return falloff_func(fac, pd->flag&PFIELD_USEMINR, pd->minrad, pd->flag&PFIELD_USEMAXR, pd->maxrad, pd->f_power_r);
}
float effector_falloff(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, EffectorWeights *weights)
{
float temp[3];
float falloff = weights ? weights->weight[0] * weights->weight[eff->pd->forcefield] : 1.0f;
float fac, r_fac;
fac = dot_v3v3(efd->nor, efd->vec_to_point2);
if(eff->pd->zdir == PFIELD_Z_POS && fac < 0.0f)
falloff=0.0f;
else if(eff->pd->zdir == PFIELD_Z_NEG && fac > 0.0f)
falloff=0.0f;
else switch(eff->pd->falloff){
case PFIELD_FALL_SPHERE:
falloff*= falloff_func_dist(eff->pd, efd->distance);
break;
case PFIELD_FALL_TUBE:
falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
VECADDFAC(temp, efd->vec_to_point, efd->nor, -fac);
r_fac= len_v3(temp);
falloff*= falloff_func_rad(eff->pd, r_fac);
break;
case PFIELD_FALL_CONE:
falloff*= falloff_func_dist(eff->pd, ABS(fac));
if(falloff == 0.0f)
break;
r_fac=saacos(fac/len_v3(efd->vec_to_point))*180.0f/(float)M_PI;
falloff*= falloff_func_rad(eff->pd, r_fac);
break;
}
return falloff;
}
int closest_point_on_surface(SurfaceModifierData *surmd, float *co, float *surface_co, float *surface_nor, float *surface_vel)
{
BVHTreeNearest nearest;
nearest.index = -1;
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(surmd->bvhtree->tree, co, &nearest, surmd->bvhtree->nearest_callback, surmd->bvhtree);
if(nearest.index != -1) {
VECCOPY(surface_co, nearest.co);
if(surface_nor) {
VECCOPY(surface_nor, nearest.no);
}
if(surface_vel) {
MFace *mface = CDDM_get_face(surmd->dm, nearest.index);
VECCOPY(surface_vel, surmd->v[mface->v1].co);
add_v3_v3(surface_vel, surmd->v[mface->v2].co);
add_v3_v3(surface_vel, surmd->v[mface->v3].co);
if(mface->v4)
add_v3_v3(surface_vel, surmd->v[mface->v4].co);
mul_v3_fl(surface_vel, mface->v4 ? 0.25f : 0.333f);
}
return 1;
}
return 0;
}
int get_effector_data(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int real_velocity)
{
float cfra = eff->scene->r.cfra;
int ret = 0;
if(eff->pd && eff->pd->shape==PFIELD_SHAPE_SURFACE && eff->surmd) {
/* closest point in the object surface is an effector */
float vec[3];
/* using velocity corrected location allows for easier sliding over effector surface */
copy_v3_v3(vec, point->vel);
mul_v3_fl(vec, point->vel_to_frame);
add_v3_v3(vec, point->loc);
ret = closest_point_on_surface(eff->surmd, vec, efd->loc, efd->nor, real_velocity ? efd->vel : NULL);
efd->size = 0.0f;
}
else if(eff->pd && eff->pd->shape==PFIELD_SHAPE_POINTS) {
if(eff->ob->derivedFinal) {
DerivedMesh *dm = eff->ob->derivedFinal;
dm->getVertCo(dm, *efd->index, efd->loc);
dm->getVertNo(dm, *efd->index, efd->nor);
mul_m4_v3(eff->ob->obmat, efd->loc);
mul_mat3_m4_v3(eff->ob->obmat, efd->nor);
normalize_v3(efd->nor);
efd->size = 0.0f;
/**/
ret = 1;
}
}
else if(eff->psys) {
ParticleSimulationData sim = {eff->scene, eff->ob, eff->psys, NULL, NULL};
ParticleData *pa = eff->psys->particles + *efd->index;
ParticleKey state;
/* exclude the particle itself for self effecting particles */
if(eff->psys == point->psys && *efd->index == point->index)
;
else {
/* TODO: time from actual previous calculated frame (step might not be 1) */
state.time = cfra - 1.0;
ret = psys_get_particle_state(&sim, *efd->index, &state, 0);
/* TODO */
//if(eff->pd->forcefiled == PFIELD_HARMONIC && ret==0) {
// if(pa->dietime < eff->psys->cfra)
// eff->flag |= PE_VELOCITY_TO_IMPULSE;
//}
VECCOPY(efd->loc, state.co);
VECCOPY(efd->nor, state.vel);
if(real_velocity) {
VECCOPY(efd->vel, state.vel);
}
efd->size = pa->size;
}
}
else {
/* use center of object for distance calculus */
Object *ob = eff->ob;
Object obcopy = *ob;
/* XXX this is not thread-safe, but used from multiple threads by
particle system */
where_is_object_time(eff->scene, ob, cfra);
/* use z-axis as normal*/
normalize_v3_v3(efd->nor, ob->obmat[2]);
/* for vortex the shape chooses between old / new force */
if(eff->pd && eff->pd->shape == PFIELD_SHAPE_PLANE) {
/* efd->loc is closes point on effector xy-plane */
float temp[3], translate[3];
sub_v3_v3v3(temp, point->loc, ob->obmat[3]);
project_v3_v3v3(translate, temp, efd->nor);
add_v3_v3v3(efd->loc, ob->obmat[3], translate);
}
else {
VECCOPY(efd->loc, ob->obmat[3]);
}
if(real_velocity) {
VECCOPY(efd->vel, ob->obmat[3]);
where_is_object_time(eff->scene, ob, cfra - 1.0);
sub_v3_v3v3(efd->vel, efd->vel, ob->obmat[3]);
}
*eff->ob = obcopy;
efd->size = 0.0f;
ret = 1;
}
if(ret) {
sub_v3_v3v3(efd->vec_to_point, point->loc, efd->loc);
efd->distance = len_v3(efd->vec_to_point);
/* rest length for harmonic effector, will have to see later if this could be extended to other effectors */
if(eff->pd && eff->pd->forcefield == PFIELD_HARMONIC && eff->pd->f_size)
mul_v3_fl(efd->vec_to_point, (efd->distance-eff->pd->f_size)/efd->distance);
if(eff->flag & PE_USE_NORMAL_DATA) {
VECCOPY(efd->vec_to_point2, efd->vec_to_point);
VECCOPY(efd->nor2, efd->nor);
}
else {
/* for some effectors we need the object center every time */
sub_v3_v3v3(efd->vec_to_point2, point->loc, eff->ob->obmat[3]);
normalize_v3_v3(efd->nor2, eff->ob->obmat[2]);
}
}
return ret;
}
static void get_effector_tot(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, int *tot, int *p)
{
if(eff->pd->shape == PFIELD_SHAPE_POINTS) {
efd->index = p;
*p = 0;
*tot = eff->ob->derivedFinal ? eff->ob->derivedFinal->numVertData : 1;
if(*tot && eff->pd->forcefield == PFIELD_HARMONIC && point->index >= 0) {
*p = point->index % *tot;
*tot = *p+1;
}
}
else if(eff->psys) {
efd->index = p;
*p = 0;
*tot = eff->psys->totpart;
if(eff->pd->forcefield == PFIELD_CHARGE) {
/* Only the charge of the effected particle is used for
interaction, not fall-offs. If the fall-offs aren't the
same this will be unphysical, but for animation this
could be the wanted behavior. If you want physical
correctness the fall-off should be spherical 2.0 anyways.
*/
efd->charge = eff->pd->f_strength;
}
else if(eff->pd->forcefield == PFIELD_HARMONIC && (eff->pd->flag & PFIELD_MULTIPLE_SPRINGS)==0) {
/* every particle is mapped to only one harmonic effector particle */
*p= point->index % eff->psys->totpart;
*tot= *p + 1;
}
}
else {
*p = 0;
*tot = 1;
}
}
static void do_texture_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
{
TexResult result[4];
float tex_co[3], strength, force[3];
float nabla = eff->pd->tex_nabla;
int hasrgb;
short mode = eff->pd->tex_mode;
if(!eff->pd->tex)
return;
result[0].nor = result[1].nor = result[2].nor = result[3].nor = 0;
strength= eff->pd->f_strength * efd->falloff;
VECCOPY(tex_co,point->loc);
if(eff->pd->flag & PFIELD_TEX_2D) {
float fac=-dot_v3v3(tex_co, efd->nor);
VECADDFAC(tex_co, tex_co, efd->nor, fac);
}
if(eff->pd->flag & PFIELD_TEX_OBJECT) {
mul_m4_v3(eff->ob->obmat, tex_co);
}
hasrgb = multitex_ext(eff->pd->tex, tex_co, NULL,NULL, 0, result);
if(hasrgb && mode==PFIELD_TEX_RGB) {
force[0] = (0.5f - result->tr) * strength;
force[1] = (0.5f - result->tg) * strength;
force[2] = (0.5f - result->tb) * strength;
}
else {
strength/=nabla;
tex_co[0] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+1);
tex_co[0] -= nabla;
tex_co[1] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+2);
tex_co[1] -= nabla;
tex_co[2] += nabla;
multitex_ext(eff->pd->tex, tex_co, NULL, NULL, 0, result+3);
if(mode == PFIELD_TEX_GRAD || !hasrgb) { /* if we dont have rgb fall back to grad */
force[0] = (result[0].tin - result[1].tin) * strength;
force[1] = (result[0].tin - result[2].tin) * strength;
force[2] = (result[0].tin - result[3].tin) * strength;
}
else { /*PFIELD_TEX_CURL*/
float dbdy, dgdz, drdz, dbdx, dgdx, drdy;
dbdy = result[2].tb - result[0].tb;
dgdz = result[3].tg - result[0].tg;
drdz = result[3].tr - result[0].tr;
dbdx = result[1].tb - result[0].tb;
dgdx = result[1].tg - result[0].tg;
drdy = result[2].tr - result[0].tr;
force[0] = (dbdy - dgdz) * strength;
force[1] = (drdz - dbdx) * strength;
force[2] = (dgdx - drdy) * strength;
}
}
if(eff->pd->flag & PFIELD_TEX_2D){
float fac = -dot_v3v3(force, efd->nor);
VECADDFAC(force, force, efd->nor, fac);
}
add_v3_v3(total_force, force);
}
void do_physical_effector(EffectorCache *eff, EffectorData *efd, EffectedPoint *point, float *total_force)
{
PartDeflect *pd = eff->pd;
RNG *rng = pd->rng;
float force[3]={0,0,0};
float temp[3];
float fac;
float strength = pd->f_strength;
float damp = pd->f_damp;
float noise_factor = pd->f_noise;
if(noise_factor > 0.0f) {
strength += wind_func(rng, noise_factor);
if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG))
damp += wind_func(rng, noise_factor);
}
VECCOPY(force, efd->vec_to_point);
switch(pd->forcefield){
case PFIELD_WIND:
VECCOPY(force, efd->nor);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_FORCE:
normalize_v3(force);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_VORTEX:
/* old vortex force */
if(pd->shape == PFIELD_SHAPE_POINT) {
cross_v3_v3v3(force, efd->nor, efd->vec_to_point);
normalize_v3(force);
mul_v3_fl(force, strength * efd->distance * efd->falloff);
}
else {
/* new vortex force */
cross_v3_v3v3(temp, efd->nor2, efd->vec_to_point2);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, efd->nor2, temp);
mul_v3_fl(force, strength * efd->falloff);
VECADDFAC(temp, temp, point->vel, -point->vel_to_sec);
add_v3_v3(force, temp);
}
break;
case PFIELD_MAGNET:
if(eff->pd->shape == PFIELD_SHAPE_POINT)
/* magnetic field of a moving charge */
cross_v3_v3v3(temp, efd->nor, efd->vec_to_point);
else
copy_v3_v3(temp, efd->nor);
normalize_v3(temp);
mul_v3_fl(temp, strength * efd->falloff);
cross_v3_v3v3(force, point->vel, temp);
mul_v3_fl(force, point->vel_to_sec);
break;
case PFIELD_HARMONIC:
mul_v3_fl(force, -strength * efd->falloff);
copy_v3_v3(temp, point->vel);
mul_v3_fl(temp, -damp * 2.0f * (float)sqrt(fabs(strength)) * point->vel_to_sec);
add_v3_v3(force, temp);
break;
case PFIELD_CHARGE:
mul_v3_fl(force, point->charge * strength * efd->falloff);
break;
case PFIELD_LENNARDJ:
fac = pow((efd->size + point->size) / efd->distance, 6.0);
fac = - fac * (1.0 - fac) / efd->distance;
/* limit the repulsive term drastically to avoid huge forces */
fac = ((fac>2.0) ? 2.0 : fac);
mul_v3_fl(force, strength * fac);
break;
case PFIELD_BOID:
/* Boid field is handled completely in boids code. */
return;
case PFIELD_TURBULENCE:
if(pd->flag & PFIELD_GLOBAL_CO) {
VECCOPY(temp, point->loc);
}
else {
VECADD(temp, efd->vec_to_point2, efd->nor2);
}
force[0] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[0], temp[1], temp[2], 2,0,2);
force[1] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[1], temp[2], temp[0], 2,0,2);
force[2] = -1.0f + 2.0f * BLI_gTurbulence(pd->f_size, temp[2], temp[0], temp[1], 2,0,2);
mul_v3_fl(force, strength * efd->falloff);
break;
case PFIELD_DRAG:
VECCOPY(force, point->vel);
fac = normalize_v3(force) * point->vel_to_sec;
strength = MIN2(strength, 2.0f);
damp = MIN2(damp, 2.0f);
mul_v3_fl(force, -efd->falloff * fac * (strength * fac + damp));
break;
}
if(pd->flag & PFIELD_DO_LOCATION) {
VECADDFAC(total_force, total_force, force, 1.0f/point->vel_to_sec);
if(ELEM(pd->forcefield, PFIELD_HARMONIC, PFIELD_DRAG)==0 && pd->f_flow != 0.0f) {
VECADDFAC(total_force, total_force, point->vel, -pd->f_flow * efd->falloff);
}
}
if(pd->flag & PFIELD_DO_ROTATION && point->ave && point->rot) {
float xvec[3] = {1.0f, 0.0f, 0.0f};
float dave[3];
mul_qt_v3(point->rot, xvec);
cross_v3_v3v3(dave, xvec, force);
if(pd->f_flow != 0.0f) {
VECADDFAC(dave, dave, point->ave, -pd->f_flow * efd->falloff);
}
add_v3_v3(point->ave, dave);
}
}
/* -------- pdDoEffectors() --------
generic force/speed system, now used for particles and softbodies
scene = scene where it runs in, for time and stuff
lb = listbase with objects that take part in effecting
opco = global coord, as input
force = force accumulator
speed = actual current speed which can be altered
cur_time = "external" time in frames, is constant for static particles
loc_time = "local" time in frames, range <0-1> for the lifetime of particle
par_layer = layer the caller is in
flags = only used for softbody wind now
guide = old speed of particle
*/
void pdDoEffectors(ListBase *effectors, ListBase *colliders, EffectorWeights *weights, EffectedPoint *point, float *force, float *impulse)
{
/*
Modifies the force on a particle according to its
relation with the effector object
Different kind of effectors include:
Forcefields: Gravity-like attractor
(force power is related to the inverse of distance to the power of a falloff value)
Vortex fields: swirling effectors
(particles rotate around Z-axis of the object. otherwise, same relation as)
(Forcefields, but this is not done through a force/acceleration)
Guide: particles on a path
(particles are guided along a curve bezier or old nurbs)
(is independent of other effectors)
*/
EffectorCache *eff;
EffectorData efd;
int p=0, tot = 1;
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? (yes would be cool to add that, ton) */
if(effectors) for(eff = effectors->first; eff; eff=eff->next) {
/* object effectors were fully checked to be OK to evaluate! */
get_effector_tot(eff, &efd, point, &tot, &p);
for(; p<tot; p++) {
if(get_effector_data(eff, &efd, point, 0)) {
efd.falloff= effector_falloff(eff, &efd, point, weights);
if(efd.falloff > 0.0f)
efd.falloff *= eff_calc_visibility(colliders, eff, &efd, point);
if(efd.falloff <= 0.0f)
; /* don't do anything */
else if(eff->pd->forcefield == PFIELD_TEXTURE)
do_texture_effector(eff, &efd, point, force);
else {
float temp1[3]={0,0,0}, temp2[3];
VECCOPY(temp1, force);
do_physical_effector(eff, &efd, point, force);
// for softbody backward compatibility
if(point->flag & PE_WIND_AS_SPEED && impulse){
VECSUB(temp2, force, temp1);
VECSUB(impulse, impulse, temp2);
}
}
}
else if(eff->flag & PE_VELOCITY_TO_IMPULSE && impulse) {
/* special case for harmonic effector */
VECADD(impulse, impulse, efd.vel);
}
}
}
}