Files
blender/source/blender/modifiers/intern/MOD_array.c
Bastien Montagne e53cf14280 Cleanup/refactor: Move get_mesh_eval_for_modifier from MOD_util to BKE_modifier.
Because some modifiers' actual code is in BKE... Also renamed to more
BKE-valid name BKE_modifier_get_evaluated_mesh_from_object.
2018-05-09 12:47:23 +02:00

791 lines
26 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 by the Blender Foundation.
* All rights reserved.
*
* Contributor(s): Daniel Dunbar
* Ton Roosendaal,
* Ben Batt,
* Brecht Van Lommel,
* Campbell Barton,
* Patrice Bertrand
*
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file blender/modifiers/intern/MOD_array.c
* \ingroup modifiers
*
* Array modifier: duplicates the object multiple times along an axis.
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "DNA_curve_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_displist.h"
#include "BKE_curve.h"
#include "BKE_library_query.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_object_deform.h"
#include "MOD_util.h"
#include "DEG_depsgraph.h"
static void initData(ModifierData *md)
{
ArrayModifierData *amd = (ArrayModifierData *) md;
/* default to 2 duplicates distributed along the x-axis by an
* offset of 1 object-width
*/
amd->start_cap = amd->end_cap = amd->curve_ob = amd->offset_ob = NULL;
amd->count = 2;
zero_v3(amd->offset);
amd->scale[0] = 1;
amd->scale[1] = amd->scale[2] = 0;
amd->length = 0;
amd->merge_dist = 0.01;
amd->fit_type = MOD_ARR_FIXEDCOUNT;
amd->offset_type = MOD_ARR_OFF_RELATIVE;
amd->flags = 0;
}
static void foreachObjectLink(
ModifierData *md, Object *ob,
ObjectWalkFunc walk, void *userData)
{
ArrayModifierData *amd = (ArrayModifierData *) md;
walk(userData, ob, &amd->start_cap, IDWALK_CB_NOP);
walk(userData, ob, &amd->end_cap, IDWALK_CB_NOP);
walk(userData, ob, &amd->curve_ob, IDWALK_CB_NOP);
walk(userData, ob, &amd->offset_ob, IDWALK_CB_NOP);
}
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
ArrayModifierData *amd = (ArrayModifierData *)md;
if (amd->start_cap != NULL) {
DEG_add_object_relation(ctx->node, amd->start_cap, DEG_OB_COMP_TRANSFORM, "Array Modifier Start Cap");
DEG_add_object_relation(ctx->node, amd->start_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier Start Cap");
}
if (amd->end_cap != NULL) {
DEG_add_object_relation(ctx->node, amd->end_cap, DEG_OB_COMP_TRANSFORM, "Array Modifier End Cap");
DEG_add_object_relation(ctx->node, amd->end_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier End Cap");
}
if (amd->curve_ob) {
struct Depsgraph *depsgraph = DEG_get_graph_from_handle(ctx->node);
DEG_add_object_relation(ctx->node, amd->curve_ob, DEG_OB_COMP_GEOMETRY, "Array Modifier Curve");
DEG_add_special_eval_flag(depsgraph, &amd->curve_ob->id, DAG_EVAL_NEED_CURVE_PATH);
}
if (amd->offset_ob != NULL) {
DEG_add_object_relation(ctx->node, amd->offset_ob, DEG_OB_COMP_TRANSFORM, "Array Modifier Offset");
}
}
BLI_INLINE float sum_v3(const float v[3])
{
return v[0] + v[1] + v[2];
}
/* Structure used for sorting vertices, when processing doubles */
typedef struct SortVertsElem {
int vertex_num; /* The original index of the vertex, prior to sorting */
float co[3]; /* Its coordinates */
float sum_co; /* sum_v3(co), just so we don't do the sum many times. */
} SortVertsElem;
static int svert_sum_cmp(const void *e1, const void *e2)
{
const SortVertsElem *sv1 = e1;
const SortVertsElem *sv2 = e2;
if (sv1->sum_co > sv2->sum_co) return 1;
else if (sv1->sum_co < sv2->sum_co) return -1;
else return 0;
}
static void svert_from_mvert(SortVertsElem *sv, const MVert *mv, const int i_begin, const int i_end)
{
int i;
for (i = i_begin; i < i_end; i++, sv++, mv++) {
sv->vertex_num = i;
copy_v3_v3(sv->co, mv->co);
sv->sum_co = sum_v3(mv->co);
}
}
/**
* Take as inputs two sets of verts, to be processed for detection of doubles and mapping.
* Each set of verts is defined by its start within mverts array and its num_verts;
* It builds a mapping for all vertices within source, to vertices within target, or -1 if no double found
* The int doubles_map[num_verts_source] array must have been allocated by caller.
*/
static void dm_mvert_map_doubles(
int *doubles_map,
const MVert *mverts,
const int target_start,
const int target_num_verts,
const int source_start,
const int source_num_verts,
const float dist)
{
const float dist3 = ((float)M_SQRT3 + 0.00005f) * dist; /* Just above sqrt(3) */
int i_source, i_target, i_target_low_bound, target_end, source_end;
SortVertsElem *sorted_verts_target, *sorted_verts_source;
SortVertsElem *sve_source, *sve_target, *sve_target_low_bound;
bool target_scan_completed;
target_end = target_start + target_num_verts;
source_end = source_start + source_num_verts;
/* build array of MVerts to be tested for merging */
sorted_verts_target = MEM_malloc_arrayN(target_num_verts, sizeof(SortVertsElem), __func__);
sorted_verts_source = MEM_malloc_arrayN(source_num_verts, sizeof(SortVertsElem), __func__);
/* Copy target vertices index and cos into SortVertsElem array */
svert_from_mvert(sorted_verts_target, mverts + target_start, target_start, target_end);
/* Copy source vertices index and cos into SortVertsElem array */
svert_from_mvert(sorted_verts_source, mverts + source_start, source_start, source_end);
/* sort arrays according to sum of vertex coordinates (sumco) */
qsort(sorted_verts_target, target_num_verts, sizeof(SortVertsElem), svert_sum_cmp);
qsort(sorted_verts_source, source_num_verts, sizeof(SortVertsElem), svert_sum_cmp);
sve_target_low_bound = sorted_verts_target;
i_target_low_bound = 0;
target_scan_completed = false;
/* Scan source vertices, in SortVertsElem sorted array, */
/* all the while maintaining the lower bound of possible doubles in target vertices */
for (i_source = 0, sve_source = sorted_verts_source;
i_source < source_num_verts;
i_source++, sve_source++)
{
int best_target_vertex = -1;
float best_dist_sq = dist * dist;
float sve_source_sumco;
/* If source has already been assigned to a target (in an earlier call, with other chunks) */
if (doubles_map[sve_source->vertex_num] != -1) {
continue;
}
/* If target fully scanned already, then all remaining source vertices cannot have a double */
if (target_scan_completed) {
doubles_map[sve_source->vertex_num] = -1;
continue;
}
sve_source_sumco = sum_v3(sve_source->co);
/* Skip all target vertices that are more than dist3 lower in terms of sumco */
/* and advance the overall lower bound, applicable to all remaining vertices as well. */
while ((i_target_low_bound < target_num_verts) &&
(sve_target_low_bound->sum_co < sve_source_sumco - dist3))
{
i_target_low_bound++;
sve_target_low_bound++;
}
/* If end of target list reached, then no more possible doubles */
if (i_target_low_bound >= target_num_verts) {
doubles_map[sve_source->vertex_num] = -1;
target_scan_completed = true;
continue;
}
/* Test target candidates starting at the low bound of possible doubles, ordered in terms of sumco */
i_target = i_target_low_bound;
sve_target = sve_target_low_bound;
/* i_target will scan vertices in the [v_source_sumco - dist3; v_source_sumco + dist3] range */
while ((i_target < target_num_verts) &&
(sve_target->sum_co <= sve_source_sumco + dist3))
{
/* Testing distance for candidate double in target */
/* v_target is within dist3 of v_source in terms of sumco; check real distance */
float dist_sq;
if ((dist_sq = len_squared_v3v3(sve_source->co, sve_target->co)) <= best_dist_sq) {
/* Potential double found */
best_dist_sq = dist_sq;
best_target_vertex = sve_target->vertex_num;
/* If target is already mapped, we only follow that mapping if final target remains
* close enough from current vert (otherwise no mapping at all).
* Note that if we later find another target closer than this one, then we check it. But if other
* potential targets are farther, then there will be no mapping at all for this source. */
while (best_target_vertex != -1 && !ELEM(doubles_map[best_target_vertex], -1, best_target_vertex)) {
if (compare_len_v3v3(mverts[sve_source->vertex_num].co,
mverts[doubles_map[best_target_vertex]].co,
dist))
{
best_target_vertex = doubles_map[best_target_vertex];
}
else {
best_target_vertex = -1;
}
}
}
i_target++;
sve_target++;
}
/* End of candidate scan: if none found then no doubles */
doubles_map[sve_source->vertex_num] = best_target_vertex;
}
MEM_freeN(sorted_verts_source);
MEM_freeN(sorted_verts_target);
}
static void mesh_merge_transform(
Mesh *result, Mesh *cap_mesh, float cap_offset[4][4],
unsigned int cap_verts_index, unsigned int cap_edges_index, int cap_loops_index, int cap_polys_index,
int cap_nverts, int cap_nedges, int cap_nloops, int cap_npolys, int *remap, int remap_len)
{
int *index_orig;
int i;
MVert *mv;
MEdge *me;
MLoop *ml;
MPoly *mp;
MDeformVert *dvert;
CustomData_copy_data(&cap_mesh->vdata, &result->vdata, 0, cap_verts_index, cap_nverts);
CustomData_copy_data(&cap_mesh->edata, &result->edata, 0, cap_edges_index, cap_nedges);
CustomData_copy_data(&cap_mesh->ldata, &result->ldata, 0, cap_loops_index, cap_nloops);
CustomData_copy_data(&cap_mesh->pdata, &result->pdata, 0, cap_polys_index, cap_npolys);
mv = result->mvert + cap_verts_index;
for (i = 0; i < cap_nverts; i++, mv++) {
mul_m4_v3(cap_offset, mv->co);
/* Reset MVert flags for caps */
mv->flag = mv->bweight = 0;
}
/* remap the vertex groups if necessary */
dvert = result->dvert + cap_verts_index;
if (dvert != NULL) {
BKE_object_defgroup_index_map_apply(dvert, cap_nverts, remap, remap_len);
}
/* adjust cap edge vertex indices */
me = result->medge + cap_edges_index;
for (i = 0; i < cap_nedges; i++, me++) {
me->v1 += cap_verts_index;
me->v2 += cap_verts_index;
}
/* adjust cap poly loopstart indices */
mp = result->mpoly + cap_polys_index;
for (i = 0; i < cap_npolys; i++, mp++) {
mp->loopstart += cap_loops_index;
}
/* adjust cap loop vertex and edge indices */
ml = result->mloop + cap_loops_index;
for (i = 0; i < cap_nloops; i++, ml++) {
ml->v += cap_verts_index;
ml->e += cap_edges_index;
}
/* set origindex */
index_orig = CustomData_get_layer(&result->vdata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_verts_index, cap_nverts, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_edges_index, cap_nedges, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_polys_index, cap_npolys, ORIGINDEX_NONE);
}
index_orig = CustomData_get_layer(&result->ldata, CD_ORIGINDEX);
if (index_orig) {
copy_vn_i(index_orig + cap_loops_index, cap_nloops, ORIGINDEX_NONE);
}
}
static Mesh *arrayModifier_doArray(
ArrayModifierData *amd, const ModifierEvalContext *ctx, Mesh *mesh)
{
const float eps = 1e-6f;
const MVert *src_mvert;
MVert *mv, *mv_prev, *result_dm_verts;
MEdge *me;
MLoop *ml;
MPoly *mp;
int i, j, c, count;
float length = amd->length;
/* offset matrix */
float offset[4][4];
float scale[3];
bool offset_has_scale;
float current_offset[4][4];
float final_offset[4][4];
int *full_doubles_map = NULL;
int tot_doubles;
const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
const bool use_recalc_normals = (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) || use_merge;
const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob);
int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;
Mesh *result, *start_cap_mesh = NULL, *end_cap_mesh = NULL;
int *vgroup_start_cap_remap = NULL;
int vgroup_start_cap_remap_len = 0;
int *vgroup_end_cap_remap = NULL;
int vgroup_end_cap_remap_len = 0;
chunk_nverts = mesh->totvert;
chunk_nedges = mesh->totedge;
chunk_nloops = mesh->totloop;
chunk_npolys = mesh->totpoly;
count = amd->count;
if (amd->start_cap && amd->start_cap != ctx->object && amd->start_cap->type == OB_MESH) {
vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(
amd->start_cap, ctx->object, &vgroup_start_cap_remap_len);
start_cap_mesh = BKE_modifier_get_evaluated_mesh_from_object(amd->start_cap, ctx->flag);
if (start_cap_mesh) {
start_cap_nverts = start_cap_mesh->totvert;
start_cap_nedges = start_cap_mesh->totedge;
start_cap_nloops = start_cap_mesh->totloop;
start_cap_npolys = start_cap_mesh->totpoly;
}
}
if (amd->end_cap && amd->end_cap != ctx->object && amd->end_cap->type == OB_MESH) {
vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(
amd->end_cap, ctx->object, &vgroup_end_cap_remap_len);
end_cap_mesh = BKE_modifier_get_evaluated_mesh_from_object(amd->end_cap, ctx->flag);
if (end_cap_mesh) {
end_cap_nverts = end_cap_mesh->totvert;
end_cap_nedges = end_cap_mesh->totedge;
end_cap_nloops = end_cap_mesh->totloop;
end_cap_npolys = end_cap_mesh->totpoly;
}
}
/* Build up offset array, cumulating all settings options */
unit_m4(offset);
src_mvert = mesh->mvert;
if (amd->offset_type & MOD_ARR_OFF_CONST) {
add_v3_v3(offset[3], amd->offset);
}
if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
float min[3], max[3];
const MVert *src_mv;
INIT_MINMAX(min, max);
for (src_mv = src_mvert, j = chunk_nverts; j--; src_mv++) {
minmax_v3v3_v3(min, max, src_mv->co);
}
for (j = 3; j--; ) {
offset[3][j] += amd->scale[j] * (max[j] - min[j]);
}
}
if (use_offset_ob) {
float obinv[4][4];
float result_mat[4][4];
if (ctx->object)
invert_m4_m4(obinv, ctx->object->obmat);
else
unit_m4(obinv);
mul_m4_series(result_mat, offset,
obinv, amd->offset_ob->obmat);
copy_m4_m4(offset, result_mat);
}
/* Check if there is some scaling. If scaling, then we will not translate mapping */
mat4_to_size(scale, offset);
offset_has_scale = !is_one_v3(scale);
if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob) {
Curve *cu = amd->curve_ob->data;
if (cu) {
if (amd->curve_ob->curve_cache && amd->curve_ob->curve_cache->path) {
float scale_fac = mat4_to_scale(amd->curve_ob->obmat);
length = scale_fac * amd->curve_ob->curve_cache->path->totdist;
}
}
}
/* calculate the maximum number of copies which will fit within the
* prescribed length */
if (amd->fit_type == MOD_ARR_FITLENGTH || amd->fit_type == MOD_ARR_FITCURVE) {
float dist = len_v3(offset[3]);
if (dist > eps) {
/* this gives length = first copy start to last copy end
* add a tiny offset for floating point rounding errors */
count = (length + eps) / dist + 1;
}
else {
/* if the offset has no translation, just make one copy */
count = 1;
}
}
if (count < 1)
count = 1;
/* The number of verts, edges, loops, polys, before eventually merging doubles */
result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;
/* Initialize a result dm */
result = BKE_mesh_new_nomain_from_template(mesh, result_nverts, result_nedges, 0, result_nloops, result_npolys);
result_dm_verts = result->mvert;
if (use_merge) {
/* Will need full_doubles_map for handling merge */
full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
copy_vn_i(full_doubles_map, result_nverts, -1);
}
/* copy customdata to original geometry */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, chunk_nverts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, chunk_nedges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, chunk_nloops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, chunk_npolys);
/* Subsurf for eg wont have mesh data in the custom data arrays.
* now add mvert/medge/mpoly layers. */
if (!CustomData_has_layer(&mesh->vdata, CD_MVERT)) {
memcpy(result->mvert, mesh->mvert, sizeof(*result->mvert) * mesh->totvert);
}
if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) {
memcpy(result->medge, mesh->medge, sizeof(*result->medge) * mesh->totedge);
}
if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) {
memcpy(result->mloop, mesh->mloop, sizeof(*result->mloop) * mesh->totloop);
memcpy(result->mpoly, mesh->mpoly, sizeof(*result->mpoly) * mesh->totpoly);
}
/* Remember first chunk, in case of cap merge */
first_chunk_start = 0;
first_chunk_nverts = chunk_nverts;
unit_m4(current_offset);
for (c = 1; c < count; c++) {
/* copy customdata to new geometry */
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, c * chunk_nverts, chunk_nverts);
CustomData_copy_data(&mesh->edata, &result->edata, 0, c * chunk_nedges, chunk_nedges);
CustomData_copy_data(&mesh->ldata, &result->ldata, 0, c * chunk_nloops, chunk_nloops);
CustomData_copy_data(&mesh->pdata, &result->pdata, 0, c * chunk_npolys, chunk_npolys);
mv_prev = result_dm_verts;
mv = mv_prev + c * chunk_nverts;
/* recalculate cumulative offset here */
mul_m4_m4m4(current_offset, current_offset, offset);
/* apply offset to all new verts */
for (i = 0; i < chunk_nverts; i++, mv++, mv_prev++) {
mul_m4_v3(current_offset, mv->co);
/* We have to correct normals too, if we do not tag them as dirty! */
if (!use_recalc_normals) {
float no[3];
normal_short_to_float_v3(no, mv->no);
mul_mat3_m4_v3(current_offset, no);
normalize_v3(no);
normal_float_to_short_v3(mv->no, no);
}
}
/* adjust edge vertex indices */
me = result->medge + c * chunk_nedges;
for (i = 0; i < chunk_nedges; i++, me++) {
me->v1 += c * chunk_nverts;
me->v2 += c * chunk_nverts;
}
mp = result->mpoly + c * chunk_npolys;
for (i = 0; i < chunk_npolys; i++, mp++) {
mp->loopstart += c * chunk_nloops;
}
/* adjust loop vertex and edge indices */
ml = result->mloop + c * chunk_nloops;
for (i = 0; i < chunk_nloops; i++, ml++) {
ml->v += c * chunk_nverts;
ml->e += c * chunk_nedges;
}
/* Handle merge between chunk n and n-1 */
if (use_merge && (c >= 1)) {
if (!offset_has_scale && (c >= 2)) {
/* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
* ... that is except if scaling makes the distance grow */
int k;
int this_chunk_index = c * chunk_nverts;
int prev_chunk_index = (c - 1) * chunk_nverts;
for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
int target = full_doubles_map[prev_chunk_index];
if (target != -1) {
target += chunk_nverts; /* translate mapping */
while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
/* If target is already mapped, we only follow that mapping if final target remains
* close enough from current vert (otherwise no mapping at all). */
if (compare_len_v3v3(result_dm_verts[this_chunk_index].co,
result_dm_verts[full_doubles_map[target]].co,
amd->merge_dist))
{
target = full_doubles_map[target];
}
else {
target = -1;
}
}
}
full_doubles_map[this_chunk_index] = target;
}
}
else {
dm_mvert_map_doubles(
full_doubles_map,
result_dm_verts,
(c - 1) * chunk_nverts,
chunk_nverts,
c * chunk_nverts,
chunk_nverts,
amd->merge_dist);
}
}
}
/* handle UVs */
if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
const int totuv = CustomData_number_of_layers(&result->ldata, CD_MLOOPUV);
for (i = 0; i < totuv; i++) {
MLoopUV *dmloopuv = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, i);
dmloopuv += chunk_nloops;
for (c = 1; c < count; c++) {
const float uv_offset[2] = {
amd->uv_offset[0] * (float)c,
amd->uv_offset[1] * (float)c,
};
int l_index = chunk_nloops;
for (; l_index-- != 0; dmloopuv++) {
dmloopuv->uv[0] += uv_offset[0];
dmloopuv->uv[1] += uv_offset[1];
}
}
}
}
last_chunk_start = (count - 1) * chunk_nverts;
last_chunk_nverts = chunk_nverts;
copy_m4_m4(final_offset, current_offset);
if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
/* Merge first and last copies */
dm_mvert_map_doubles(
full_doubles_map,
result_dm_verts,
last_chunk_start,
last_chunk_nverts,
first_chunk_start,
first_chunk_nverts,
amd->merge_dist);
}
/* start capping */
if (start_cap_mesh) {
float start_offset[4][4];
int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
invert_m4_m4(start_offset, offset);
mesh_merge_transform(
result, start_cap_mesh, start_offset,
result_nverts - start_cap_nverts - end_cap_nverts,
result_nedges - start_cap_nedges - end_cap_nedges,
result_nloops - start_cap_nloops - end_cap_nloops,
result_npolys - start_cap_npolys - end_cap_npolys,
start_cap_nverts, start_cap_nedges, start_cap_nloops, start_cap_npolys,
vgroup_start_cap_remap, vgroup_start_cap_remap_len);
/* Identify doubles with first chunk */
if (use_merge) {
dm_mvert_map_doubles(
full_doubles_map,
result_dm_verts,
first_chunk_start,
first_chunk_nverts,
start_cap_start,
start_cap_nverts,
amd->merge_dist);
}
}
if (end_cap_mesh) {
float end_offset[4][4];
int end_cap_start = result_nverts - end_cap_nverts;
mul_m4_m4m4(end_offset, current_offset, offset);
mesh_merge_transform(
result, end_cap_mesh, end_offset,
result_nverts - end_cap_nverts,
result_nedges - end_cap_nedges,
result_nloops - end_cap_nloops,
result_npolys - end_cap_npolys,
end_cap_nverts, end_cap_nedges, end_cap_nloops, end_cap_npolys,
vgroup_end_cap_remap, vgroup_end_cap_remap_len);
/* Identify doubles with last chunk */
if (use_merge) {
dm_mvert_map_doubles(
full_doubles_map,
result_dm_verts,
last_chunk_start,
last_chunk_nverts,
end_cap_start,
end_cap_nverts,
amd->merge_dist);
}
}
/* done capping */
/* Handle merging */
tot_doubles = 0;
if (use_merge) {
for (i = 0; i < result_nverts; i++) {
int new_i = full_doubles_map[i];
if (new_i != -1) {
/* We have to follow chains of doubles (merge start/end especially is likely to create some),
* those are not supported at all by CDDM_merge_verts! */
while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
new_i = full_doubles_map[new_i];
}
if (i == new_i) {
full_doubles_map[i] = -1;
}
else {
full_doubles_map[i] = new_i;
tot_doubles++;
}
}
}
if (tot_doubles > 0) {
result = BKE_mesh_merge_verts(result, full_doubles_map, tot_doubles, MESH_MERGE_VERTS_DUMP_IF_EQUAL);
}
MEM_freeN(full_doubles_map);
}
/* In case org dm has dirty normals, or we made some merging, mark normals as dirty in new mesh!
* TODO: we may need to set other dirty flags as well?
*/
if (use_recalc_normals) {
result->runtime.cd_dirty_vert |= CD_MASK_NORMAL;
}
if (vgroup_start_cap_remap) {
MEM_freeN(vgroup_start_cap_remap);
}
if (vgroup_end_cap_remap) {
MEM_freeN(vgroup_end_cap_remap);
}
return result;
}
static Mesh *applyModifier(ModifierData *md, const ModifierEvalContext *ctx,
Mesh *mesh)
{
ArrayModifierData *amd = (ArrayModifierData *) md;
return arrayModifier_doArray(amd, ctx, mesh);
}
ModifierTypeInfo modifierType_Array = {
/* name */ "Array",
/* structName */ "ArrayModifierData",
/* structSize */ sizeof(ArrayModifierData),
/* type */ eModifierTypeType_Constructive,
/* flags */ eModifierTypeFlag_AcceptsMesh |
eModifierTypeFlag_SupportsMapping |
eModifierTypeFlag_SupportsEditmode |
eModifierTypeFlag_EnableInEditmode |
eModifierTypeFlag_AcceptsCVs,
/* copyData */ modifier_copyData_generic,
/* deformVerts_DM */ NULL,
/* deformMatrices_DM */ NULL,
/* deformVertsEM_DM */ NULL,
/* deformMatricesEM_DM*/NULL,
/* applyModifier_DM */ NULL,
/* applyModifierEM_DM */NULL,
/* deformVerts */ NULL,
/* deformMatrices */ NULL,
/* deformVertsEM */ NULL,
/* deformMatricesEM */ NULL,
/* applyModifier */ applyModifier,
/* applyModifierEM */ NULL,
/* initData */ initData,
/* requiredDataMask */ NULL,
/* freeData */ NULL,
/* isDisabled */ NULL,
/* updateDepsgraph */ updateDepsgraph,
/* dependsOnTime */ NULL,
/* dependsOnNormals */ NULL,
/* foreachObjectLink */ foreachObjectLink,
/* foreachIDLink */ NULL,
/* foreachTexLink */ NULL,
};