Files
blender/extern/curve_fit_nd/intern/curve_fit_inline.h
Campbell Barton e56e7bd1ec Add lib for n-dimensional cubic curve fitting
This will be used for calculating bezier curves from freehand drawing,
may be used for other areas too.

Original code from GraphicsGems, 1990 (FitCurve.c),
with updates from OpenToonz, under 3 clause BSD license.
with own minor modifications for integration with Blender:
- support adding extra custom-data.
- improved handle clamping.
2016-04-15 20:33:58 +10:00

263 lines
5.8 KiB
C

/*
* Copyright (c) 2016, Blender Foundation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the <organization> nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file curve_fit_inline.h
* \ingroup curve_fit
*/
/** \name Simple Vector Math Lib
* \{ */
#ifdef _MSC_VER
# define MINLINE static __forceinline
#else
# define MINLINE static inline
#endif
MINLINE double sq(const double d)
{
return d * d;
}
#ifndef _MSC_VER
MINLINE double min(const double a, const double b)
{
return b < a ? b : a;
}
MINLINE double max(const double a, const double b)
{
return a < b ? b : a;
}
#endif
MINLINE void zero_vn(
double v0[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v0[j] = 0.0;
}
}
MINLINE void flip_vn_vnvn(
double v_out[], const double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] + (v0[j] - v1[j]);
}
}
MINLINE void copy_vnvn(
double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v0[j] = v1[j];
}
}
MINLINE double dot_vnvn(
const double v0[], const double v1[], const uint dims)
{
double d = 0.0;
for (uint j = 0; j < dims; j++) {
d += v0[j] * v1[j];
}
return d;
}
MINLINE void add_vn_vnvn(
double v_out[], const double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] + v1[j];
}
}
MINLINE void sub_vn_vnvn(
double v_out[], const double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] - v1[j];
}
}
MINLINE void iadd_vnvn(
double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v0[j] += v1[j];
}
}
MINLINE void isub_vnvn(
double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
v0[j] -= v1[j];
}
}
MINLINE void madd_vn_vnvn_fl(
double v_out[],
const double v0[], const double v1[],
const double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] + v1[j] * f;
}
}
MINLINE void msub_vn_vnvn_fl(
double v_out[],
const double v0[], const double v1[],
const double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] - v1[j] * f;
}
}
MINLINE void miadd_vn_vn_fl(
double v_out[], const double v0[], double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] += v0[j] * f;
}
}
#if 0
MINLINE void misub_vn_vn_fl(
double v_out[], const double v0[], double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] -= v0[j] * f;
}
}
#endif
MINLINE void mul_vnvn_fl(
double v_out[],
const double v0[], const double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v_out[j] = v0[j] * f;
}
}
MINLINE void imul_vn_fl(double v0[], const double f, const uint dims)
{
for (uint j = 0; j < dims; j++) {
v0[j] *= f;
}
}
MINLINE double len_squared_vnvn(
const double v0[], const double v1[], const uint dims)
{
double d = 0.0;
for (uint j = 0; j < dims; j++) {
d += sq(v0[j] - v1[j]);
}
return d;
}
MINLINE double len_squared_vn(
const double v0[], const uint dims)
{
double d = 0.0;
for (uint j = 0; j < dims; j++) {
d += sq(v0[j]);
}
return d;
}
MINLINE double len_vnvn(
const double v0[], const double v1[], const uint dims)
{
return sqrt(len_squared_vnvn(v0, v1, dims));
}
#if 0
static double len_vn(
const double v0[], const uint dims)
{
return sqrt(len_squared_vn(v0, dims));
}
MINLINE double normalize_vn(
double v0[], const uint dims)
{
double d = len_squared_vn(v0, dims);
if (d != 0.0 && ((d = sqrt(d)) != 0.0)) {
imul_vn_fl(v0, 1.0 / d, dims);
}
return d;
}
#endif
/* v_out = (v0 - v1).normalized() */
MINLINE double normalize_vn_vnvn(
double v_out[],
const double v0[], const double v1[], const uint dims)
{
double d = 0.0;
for (uint j = 0; j < dims; j++) {
double a = v0[j] - v1[j];
d += sq(a);
v_out[j] = a;
}
if (d != 0.0 && ((d = sqrt(d)) != 0.0)) {
imul_vn_fl(v_out, 1.0 / d, dims);
}
return d;
}
MINLINE bool is_almost_zero_ex(double val, double eps)
{
return (-eps < val) && (val < eps);
}
MINLINE bool is_almost_zero(double val)
{
return is_almost_zero_ex(val, 1e-8);
}
MINLINE bool equals_vnvn(
const double v0[], const double v1[], const uint dims)
{
for (uint j = 0; j < dims; j++) {
if (v0[j] != v1[j]) {
return false;
}
}
return true;
}
/** \} */