
Depth sorting for Transparent polygons. Use ZTransp in Material buttons to enable. This will cause an object's polygons to be sorted (back to front for alpha polygons, front to back for solid polygons.)
438 lines
12 KiB
C++
438 lines
12 KiB
C++
/**
|
|
* $Id$
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "KX_BlenderRenderTools.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#ifdef WIN32
|
|
// OpenGL gl.h needs 'windows.h' on windows platforms
|
|
#include <windows.h>
|
|
#endif //WIN32
|
|
#ifdef __APPLE__
|
|
#include <OpenGL/gl.h>
|
|
#else
|
|
#include <GL/gl.h>
|
|
#endif
|
|
|
|
#include "RAS_IRenderTools.h"
|
|
#include "RAS_IRasterizer.h"
|
|
#include "RAS_LightObject.h"
|
|
#include "RAS_ICanvas.h"
|
|
|
|
|
|
// next two includes/dependencies come from the shadow feature
|
|
// it needs the gameobject and the sumo physics scene for a raycast
|
|
#include "KX_GameObject.h"
|
|
|
|
#include "KX_BlenderPolyMaterial.h"
|
|
#include "Value.h"
|
|
|
|
#include "KX_BlenderGL.h" // for text printing
|
|
#include "STR_String.h"
|
|
#include "RAS_BucketManager.h" // for polymaterial (needed for textprinting)
|
|
|
|
#include "SM_Scene.h"
|
|
#include "SumoPhysicsEnvironment.h"
|
|
#include "KX_SumoPhysicsController.h"
|
|
#include "KX_Scene.h"
|
|
|
|
KX_BlenderRenderTools::KX_BlenderRenderTools()
|
|
{
|
|
glGetIntegerv(GL_MAX_LIGHTS, (GLint*) &m_numgllights);
|
|
if (m_numgllights < 8)
|
|
m_numgllights = 8;
|
|
}
|
|
|
|
/**
|
|
ProcessLighting performs lighting on objects. the layer is a bitfield that contains layer information.
|
|
There are 20 'official' layers in blender.
|
|
A light is applied on an object only when they are in the same layer.
|
|
OpenGL has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in a scene.
|
|
*/
|
|
|
|
int KX_BlenderRenderTools::ProcessLighting(int layer)
|
|
{
|
|
|
|
int result = false;
|
|
|
|
if (layer < 0)
|
|
{
|
|
DisableOpenGLLights();
|
|
result = false;
|
|
} else
|
|
{
|
|
if (m_clientobject)
|
|
{
|
|
|
|
|
|
if (applyLights(layer))
|
|
{
|
|
EnableOpenGLLights();
|
|
result = true;
|
|
} else
|
|
{
|
|
DisableOpenGLLights();
|
|
result = false;
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
return result;
|
|
|
|
|
|
}
|
|
|
|
|
|
void KX_BlenderRenderTools::BeginFrame(RAS_IRasterizer* rasty)
|
|
{
|
|
m_clientobject = NULL;
|
|
m_lastblenderobject = NULL;
|
|
m_lastblenderlights = false;
|
|
m_lastlayer = -1;
|
|
m_lastlighting = false;
|
|
m_modified = true;
|
|
DisableOpenGLLights();
|
|
|
|
|
|
}
|
|
|
|
|
|
void KX_BlenderRenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode )
|
|
{
|
|
/* FIXME:
|
|
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
|
|
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
|
|
|
|
Program received signal SIGABRT, Aborted.
|
|
[Switching to Thread 16384 (LWP 1519)]
|
|
0x40477571 in kill () from /lib/libc.so.6
|
|
(gdb) bt
|
|
#7 0x08334368 in MT_Vector3::normalized() const ()
|
|
#8 0x0833e6ec in KX_BlenderRenderTools::applyTransform(RAS_IRasterizer*, double*, int) ()
|
|
*/
|
|
|
|
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
|
|
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
|
|
{
|
|
// rotate the billboard/halo
|
|
//page 360/361 3D Game Engine Design, David Eberly for a discussion
|
|
// on screen aligned and axis aligned billboards
|
|
// assumed is that the preprocessor transformed all billboard polygons
|
|
// so that their normal points into the positive x direction (1.0 , 0.0 , 0.0)
|
|
// when new parenting for objects is done, this rotation
|
|
// will be moved into the object
|
|
|
|
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
|
|
MT_Point3 campos = rasty->GetCameraPosition();
|
|
MT_Vector3 dir = (campos - objpos).safe_normalized();
|
|
MT_Vector3 up(0,0,1.0);
|
|
|
|
KX_GameObject* gameobj = (KX_GameObject*) this->m_clientobject;
|
|
// get scaling of halo object
|
|
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
|
|
|
|
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
|
|
if (screenaligned)
|
|
{
|
|
up = (up - up.dot(dir) * dir).safe_normalized();
|
|
} else
|
|
{
|
|
dir = (dir - up.dot(dir)*up).safe_normalized();
|
|
}
|
|
|
|
MT_Vector3 left = dir.normalized();
|
|
dir = (left.cross(up)).normalized();
|
|
|
|
// we have calculated the row vectors, now we keep
|
|
// local scaling into account:
|
|
|
|
left *= size[0];
|
|
dir *= size[1];
|
|
up *= size[2];
|
|
double maat[16]={
|
|
left[0], left[1],left[2], 0,
|
|
dir[0], dir[1],dir[2],0,
|
|
up[0],up[1],up[2],0,
|
|
0,0,0,1};
|
|
glTranslated(objpos[0],objpos[1],objpos[2]);
|
|
glMultMatrixd(maat);
|
|
|
|
} else
|
|
{
|
|
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
|
|
{
|
|
// shadow must be cast to the ground, physics system needed here!
|
|
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
|
|
KX_GameObject *gameobj = (KX_GameObject*) this->m_clientobject;
|
|
MT_Vector3 direction = MT_Vector3(0,0,-1);
|
|
|
|
|
|
direction.normalize();
|
|
direction *= 100000;
|
|
|
|
MT_Point3 topoint = frompoint + direction;
|
|
MT_Point3 resultpoint;
|
|
MT_Vector3 resultnormal;
|
|
|
|
//todo:
|
|
//use physics abstraction
|
|
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
|
|
SumoPhysicsEnvironment *spe = dynamic_cast<SumoPhysicsEnvironment *>( kxscene->GetPhysicsEnvironment());
|
|
SM_Scene *scene = spe->GetSumoScene();
|
|
KX_SumoPhysicsController *spc = dynamic_cast<KX_SumoPhysicsController *>( gameobj->GetPhysicsController());
|
|
KX_GameObject *parent = gameobj->GetParent();
|
|
if (!spc && parent)
|
|
spc = dynamic_cast<KX_SumoPhysicsController *>(parent->GetPhysicsController());
|
|
if (parent)
|
|
parent->Release();
|
|
SM_Object *thisObj = spc?spc->GetSumoObject():NULL;
|
|
|
|
if (scene->rayTest(thisObj, frompoint, topoint, resultpoint, resultnormal))
|
|
{
|
|
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
|
|
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
|
|
left = (dir.cross(resultnormal)).safe_normalized();
|
|
// for the up vector, we take the 'resultnormal' returned by the physics
|
|
|
|
double maat[16]={
|
|
left[0], left[1], left[2], 0,
|
|
dir[0], dir[1], dir[2], 0,
|
|
resultnormal[0],resultnormal[1],resultnormal[2], 0,
|
|
0, 0, 0, 1};
|
|
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
|
|
//glMultMatrixd(oglmatrix);
|
|
glMultMatrixd(maat);
|
|
} else
|
|
{
|
|
glMultMatrixd(oglmatrix);
|
|
}
|
|
} else
|
|
{
|
|
|
|
// 'normal' object
|
|
glMultMatrixd(oglmatrix);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Render Text renders text into a (series of) polygon, using a texture font,
|
|
Each character consists of one polygon (one quad or two triangles)
|
|
*/
|
|
void KX_BlenderRenderTools::RenderText(int mode,RAS_IPolyMaterial* polymat,float v1[3],float v2[3],float v3[3],float v4[3])
|
|
{
|
|
|
|
STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
|
|
|
|
KX_BlenderPolyMaterial* blenderpoly = (KX_BlenderPolyMaterial*)polymat;
|
|
struct TFace* tface = blenderpoly->GetTFace();
|
|
|
|
BL_RenderText( mode,mytext,mytext.Length(),tface,v1,v2,v3,v4);
|
|
|
|
}
|
|
|
|
|
|
|
|
KX_BlenderRenderTools::~KX_BlenderRenderTools()
|
|
{
|
|
};
|
|
|
|
|
|
void KX_BlenderRenderTools::EndFrame(RAS_IRasterizer* rasty)
|
|
{
|
|
}
|
|
|
|
|
|
|
|
void KX_BlenderRenderTools::DisableOpenGLLights()
|
|
{
|
|
glDisable(GL_LIGHTING);
|
|
glDisable(GL_COLOR_MATERIAL);
|
|
#ifndef SLOWPAINT
|
|
glDisableClientState(GL_NORMAL_ARRAY);
|
|
#endif //SLOWPAINT
|
|
}
|
|
|
|
|
|
void KX_BlenderRenderTools::EnableOpenGLLights()
|
|
{
|
|
glEnable(GL_LIGHTING);
|
|
|
|
glColorMaterial(GL_FRONT_AND_BACK,GL_DIFFUSE);
|
|
glEnable(GL_COLOR_MATERIAL);
|
|
#ifndef SLOWPAINT
|
|
glEnableClientState(GL_NORMAL_ARRAY);
|
|
#endif //SLOWPAINT
|
|
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, false);
|
|
}
|
|
|
|
|
|
/**
|
|
* Rendering text using 2D bitmap functionality.
|
|
*/
|
|
void KX_BlenderRenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode,
|
|
const char* text,
|
|
int xco,
|
|
int yco,
|
|
int width,
|
|
int height)
|
|
{
|
|
switch (mode) {
|
|
case RAS_IRenderTools::RAS_TEXT_PADDED: {
|
|
STR_String tmpstr(text);
|
|
BL_print_gamedebug_line_padded(tmpstr.Ptr(),xco,yco,width,height);
|
|
break;
|
|
}
|
|
default: {
|
|
STR_String tmpstr(text);
|
|
BL_print_gamedebug_line(tmpstr.Ptr(),xco,yco,width,height);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void KX_BlenderRenderTools::PushMatrix()
|
|
{
|
|
glPushMatrix();
|
|
}
|
|
|
|
void KX_BlenderRenderTools::PopMatrix()
|
|
{
|
|
glPopMatrix();
|
|
}
|
|
|
|
|
|
|
|
int KX_BlenderRenderTools::applyLights(int objectlayer)
|
|
{
|
|
// taken from blender source, incompatibility between Blender Object / GameObject
|
|
|
|
int count;
|
|
float vec[4];
|
|
|
|
vec[3]= 1.0;
|
|
|
|
for(count=0; count<m_numgllights; count++)
|
|
glDisable((GLenum)(GL_LIGHT0+count));
|
|
|
|
//std::vector<struct RAS_LightObject*> m_lights;
|
|
std::vector<struct RAS_LightObject*>::iterator lit = m_lights.begin();
|
|
|
|
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
|
|
{
|
|
RAS_LightObject* lightdata = (*lit);
|
|
if (lightdata->m_layer & objectlayer)
|
|
{
|
|
|
|
glPushMatrix();
|
|
glLoadMatrixf(m_viewmat);
|
|
|
|
|
|
vec[0] = (*(lightdata->m_worldmatrix))(0,3);
|
|
vec[1] = (*(lightdata->m_worldmatrix))(1,3);
|
|
vec[2] = (*(lightdata->m_worldmatrix))(2,3);
|
|
vec[3] = 1;
|
|
|
|
|
|
if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) {
|
|
|
|
vec[0] = (*(lightdata->m_worldmatrix))(0,2);
|
|
vec[1] = (*(lightdata->m_worldmatrix))(1,2);
|
|
vec[2] = (*(lightdata->m_worldmatrix))(2,2);
|
|
//vec[0]= base->object->obmat[2][0];
|
|
//vec[1]= base->object->obmat[2][1];
|
|
//vec[2]= base->object->obmat[2][2];
|
|
vec[3]= 0.0;
|
|
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
|
|
}
|
|
else {
|
|
//vec[3]= 1.0;
|
|
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
|
|
glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0);
|
|
glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance);
|
|
// without this next line it looks backward compatible.
|
|
//attennuation still is acceptable
|
|
// glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, la->att2/(la->dist*la->dist));
|
|
|
|
if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) {
|
|
vec[0] = -(*(lightdata->m_worldmatrix))(0,2);
|
|
vec[1] = -(*(lightdata->m_worldmatrix))(1,2);
|
|
vec[2] = -(*(lightdata->m_worldmatrix))(2,2);
|
|
//vec[0]= -base->object->obmat[2][0];
|
|
//vec[1]= -base->object->obmat[2][1];
|
|
//vec[2]= -base->object->obmat[2][2];
|
|
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec);
|
|
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0);
|
|
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend);
|
|
}
|
|
else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0);
|
|
}
|
|
|
|
vec[0]= lightdata->m_energy*lightdata->m_red;
|
|
vec[1]= lightdata->m_energy*lightdata->m_green;
|
|
vec[2]= lightdata->m_energy*lightdata->m_blue;
|
|
vec[3]= 1.0;
|
|
glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec);
|
|
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec);
|
|
glEnable((GLenum)(GL_LIGHT0+count));
|
|
|
|
count++;
|
|
|
|
glPopMatrix();
|
|
}
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
RAS_IPolyMaterial* KX_BlenderRenderTools::CreateBlenderPolyMaterial(
|
|
const STR_String &texname,
|
|
bool ba,const STR_String& matname,int tile,int tilexrep,int tileyrep,int mode,bool transparant,bool zsort, int lightlayer
|
|
,bool bIsTriangle,void* clientobject,void* tface)
|
|
{
|
|
return new KX_BlenderPolyMaterial(
|
|
|
|
texname,
|
|
ba,matname,tile,tilexrep,tileyrep,mode,transparant,zsort, lightlayer
|
|
,bIsTriangle,clientobject,(struct TFace*)tface);
|
|
}
|
|
|
|
unsigned int KX_BlenderRenderTools::m_numgllights;
|