Files
blender/intern/boolop/intern/BOP_Interface.cpp
Campbell Barton e632b966ec BKE_global.h include path wasnt correct. made boxpack2d.c a bit more
readable. no functionality changes.
2008-08-02 21:39:01 +00:00

531 lines
15 KiB
C++

/**
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <iostream>
#include <map>
#include "../extern/BOP_Interface.h"
#include "../../bsp/intern/BSP_CSGMesh_CFIterator.h"
#include "BOP_BSPTree.h"
#include "BOP_Mesh.h"
#include "BOP_Face2Face.h"
#include "BOP_Merge.h"
#include "BOP_Merge2.h"
#include "BOP_Chrono.h"
#if defined(BOP_ORIG_MERGE) && defined(BOP_NEW_MERGE)
#include "../../../source/blender/blenkernel/BKE_global.h"
#endif
BoolOpState BOP_intersectionBoolOp(BOP_Mesh* meshC,
BOP_Faces* facesA,
BOP_Faces* facesB,
bool invertMeshA,
bool invertMeshB);
BOP_Face3* BOP_createFace(BOP_Mesh* mesh,
BOP_Index vertex1,
BOP_Index vertex2,
BOP_Index vertex3,
BOP_Index origFace);
void BOP_addMesh(BOP_Mesh* mesh,
BOP_Faces* meshFacesId,
CSG_FaceIteratorDescriptor& face_it,
CSG_VertexIteratorDescriptor& vertex_it,
bool invert);
BSP_CSGMesh* BOP_newEmptyMesh();
BSP_CSGMesh* BOP_exportMesh(BOP_Mesh* inputMesh,
bool invert);
void BOP_meshFilter(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp);
void BOP_simplifiedMeshFilter(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp, bool inverted);
void BOP_meshClassify(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp);
/**
* Performs a generic booleam operation, the entry point for external modules.
* @param opType Boolean operation type BOP_INTERSECTION, BOP_UNION, BOP_DIFFERENCE
* @param outputMesh Output mesh, the final result (the object C)
* @param obAFaces Object A faces list
* @param obAVertices Object A vertices list
* @param obBFaces Object B faces list
* @param obBVertices Object B vertices list
* @param interpFunc Interpolating function
* @return operation state: BOP_OK, BOP_NO_SOLID, BOP_ERROR
*/
BoolOpState BOP_performBooleanOperation(BoolOpType opType,
BSP_CSGMesh** outputMesh,
CSG_FaceIteratorDescriptor obAFaces,
CSG_VertexIteratorDescriptor obAVertices,
CSG_FaceIteratorDescriptor obBFaces,
CSG_VertexIteratorDescriptor obBVertices)
{
#ifdef DEBUG
cout << "BEGIN BOP_performBooleanOperation" << endl;
#endif
// Set invert flags depending on boolean operation type:
// INTERSECTION: A^B = and(A,B)
// UNION: A|B = not(and(not(A),not(B)))
// DIFFERENCE: A-B = and(A,not(B))
bool invertMeshA = (opType == BOP_UNION);
bool invertMeshB = (opType != BOP_INTERSECTION);
bool invertMeshC = (opType == BOP_UNION);
// Faces list for both objects, used by boolean op.
BOP_Faces meshAFacesId;
BOP_Faces meshBFacesId;
// Build C-mesh, the output mesh
BOP_Mesh meshC;
// Add A-mesh into C-mesh
BOP_addMesh(&meshC, &meshAFacesId, obAFaces, obAVertices, invertMeshA);
// Add B-mesh into C-mesh
BOP_addMesh(&meshC, &meshBFacesId, obBFaces, obBVertices, invertMeshB);
// for now, allow operations on non-manifold (non-solid) meshes
#if 0
if (!meshC.isClosedMesh())
return BOP_NO_SOLID;
#endif
// Perform the intersection boolean operation.
BoolOpState result = BOP_intersectionBoolOp(&meshC, &meshAFacesId, &meshBFacesId,
invertMeshA, invertMeshB);
// Invert the output mesh if is required
*outputMesh = BOP_exportMesh(&meshC, invertMeshC);
#ifdef DEBUG
cout << "END BOP_performBooleanOperation" << endl;
#endif
return result;
}
/**
* Computes the intersection boolean operation. Creates a new mesh resulting from
* an intersection of two meshes.
* @param meshC Input & Output mesh
* @param facesA Mesh A faces list
* @param facesB Mesh B faces list
* @param invertMeshA determines if object A is inverted
* @param invertMeshB determines if object B is inverted
* @return operation state: BOP_OK, BOP_NO_SOLID, BOP_ERROR
*/
BoolOpState BOP_intersectionBoolOp(BOP_Mesh* meshC,
BOP_Faces* facesA,
BOP_Faces* facesB,
bool invertMeshA,
bool invertMeshB)
{
#ifdef DEBUG
BOP_Chrono chrono;
float t = 0.0f;
float c = 0.0f;
chrono.start();
cout << "---" << endl;
#endif
// Create BSPs trees for mesh A & B
BOP_BSPTree bspA;
bspA.addMesh(meshC, *facesA);
BOP_BSPTree bspB;
bspB.addMesh(meshC, *facesB);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Create BSP " << c << endl;
#endif
unsigned int numVertices = meshC->getNumVertexs();
// mesh pre-filter
BOP_simplifiedMeshFilter(meshC, facesA, &bspB, invertMeshB);
if ((0.25*facesA->size()) > bspB.getDeep())
BOP_meshFilter(meshC, facesA, &bspB);
BOP_simplifiedMeshFilter(meshC, facesB, &bspA, invertMeshA);
if ((0.25*facesB->size()) > bspA.getDeep())
BOP_meshFilter(meshC, facesB, &bspA);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "mesh Filter " << c << endl;
#endif
// Face 2 Face
BOP_Face2Face(meshC,facesA,facesB);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Face2Face " << c << endl;
#endif
// BSP classification
BOP_meshClassify(meshC,facesA,&bspB);
BOP_meshClassify(meshC,facesB,&bspA);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Classification " << c << endl;
#endif
// Process overlapped faces
BOP_removeOverlappedFaces(meshC,facesA,facesB);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Remove overlap " << c << endl;
#endif
// Sew two meshes
BOP_sew(meshC,facesA,facesB);
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Sew " << c << endl;
#endif
// Merge faces
#ifdef BOP_ORIG_MERGE
#ifndef BOP_NEW_MERGE
BOP_Merge::getInstance().mergeFaces(meshC,numVertices);
#endif
#endif
#ifdef BOP_NEW_MERGE
#ifndef BOP_ORIG_MERGE
BOP_Merge2::getInstance().mergeFaces(meshC,numVertices);
#else
static int state = -1;
if (G.rt == 100) {
if( state != 1 ) {
cout << "Boolean code using old merge technique." << endl;
state = 1;
}
BOP_Merge::getInstance().mergeFaces(meshC,numVertices);
} else {
if( state != 0 ) {
cout << "Boolean code using new merge technique." << endl;
state = 0;
}
BOP_Merge2::getInstance().mergeFaces(meshC,numVertices);
}
#endif
#endif
#ifdef DEBUG
c = chrono.stamp(); t += c;
cout << "Merge faces " << c << endl;
cout << "Total " << t << endl;
// Test integrity
meshC->testMesh();
#endif
return BOP_OK;
}
/**
* Preprocess to filter no collisioned faces.
* @param meshC Input & Output mesh data
* @param faces Faces list to test
* @param bsp BSP tree used to filter
*/
void BOP_meshFilter(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp)
{
BOP_IT_Faces it;
BOP_TAG tag;
it = faces->begin();
while (it!=faces->end()) {
BOP_Face *face = *it;
MT_Point3 p1 = meshC->getVertex(face->getVertex(0))->getPoint();
MT_Point3 p2 = meshC->getVertex(face->getVertex(1))->getPoint();
MT_Point3 p3 = meshC->getVertex(face->getVertex(2))->getPoint();
if ((tag = bsp->classifyFace(p1,p2,p3,face->getPlane()))==OUT||tag==OUTON) {
face->setTAG(BROKEN);
it = faces->erase(it);
}
else if (tag == IN) {
it = faces->erase(it);
}else{
it++;
}
}
}
/**
* Pre-process to filter no collisioned faces.
* @param meshC Input & Output mesh data
* @param faces Faces list to test
* @param bsp BSP tree used to filter
* @param inverted determines if the object is inverted
*/
void BOP_simplifiedMeshFilter(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp, bool inverted)
{
BOP_IT_Faces it;
it = faces->begin();
while (it!=faces->end()) {
BOP_Face *face = *it;
MT_Point3 p1 = meshC->getVertex(face->getVertex(0))->getPoint();
MT_Point3 p2 = meshC->getVertex(face->getVertex(1))->getPoint();
MT_Point3 p3 = meshC->getVertex(face->getVertex(2))->getPoint();
if (bsp->filterFace(p1,p2,p3,face)==OUT) {
if (!inverted) face->setTAG(BROKEN);
it = faces->erase(it);
}
else {
it++;
}
}
}
/**
* Process to classify the mesh faces using a bsp tree.
* @param meshC Input & Output mesh data
* @param faces Faces list to classify
* @param bsp BSP tree used to face classify
*/
void BOP_meshClassify(BOP_Mesh* meshC, BOP_Faces* faces, BOP_BSPTree* bsp)
{
for(BOP_IT_Faces face=faces->begin();face!=faces->end();face++) {
if ((*face)->getTAG()!=BROKEN) {
MT_Point3 p1 = meshC->getVertex((*face)->getVertex(0))->getPoint();
MT_Point3 p2 = meshC->getVertex((*face)->getVertex(1))->getPoint();
MT_Point3 p3 = meshC->getVertex((*face)->getVertex(2))->getPoint();
if (bsp->simplifiedClassifyFace(p1,p2,p3,(*face)->getPlane())!=IN) {
(*face)->setTAG(BROKEN);
}
}
}
}
/**
* Returns a new mesh triangle.
* @param meshC Input & Output mesh data
* @param vertex1 first vertex of the new face
* @param vertex2 second vertex of the new face
* @param vertex3 third vertex of the new face
* @param origFace identifier of the new face
* @return new the new face
*/
BOP_Face3 *BOP_createFace3(BOP_Mesh* mesh,
BOP_Index vertex1,
BOP_Index vertex2,
BOP_Index vertex3,
BOP_Index origFace)
{
MT_Point3 p1 = mesh->getVertex(vertex1)->getPoint();
MT_Point3 p2 = mesh->getVertex(vertex2)->getPoint();
MT_Point3 p3 = mesh->getVertex(vertex3)->getPoint();
MT_Plane3 plane(p1,p2,p3);
return new BOP_Face3(vertex1, vertex2, vertex3, plane, origFace);
}
/**
* Adds mesh information into destination mesh.
* @param mesh input/output mesh, destination for the new mesh data
* @param meshFacesId output mesh faces, contains an added faces list
* @param face_it faces iterator
* @param vertex_it vertices iterator
* @param inverted if TRUE adding inverted faces, non-inverted otherwise
*/
void BOP_addMesh(BOP_Mesh* mesh,
BOP_Faces* meshFacesId,
CSG_FaceIteratorDescriptor& face_it,
CSG_VertexIteratorDescriptor& vertex_it,
bool invert)
{
unsigned int vtxIndexOffset = mesh->getNumVertexs();
// The size of the vertex data array will be at least the number of faces.
CSG_IVertex vertex;
while (!vertex_it.Done(vertex_it.it)) {
vertex_it.Fill(vertex_it.it,&vertex);
MT_Point3 pos(vertex.position);
mesh->addVertex(pos);
vertex_it.Step(vertex_it.it);
}
CSG_IFace face;
// now for the polygons.
// we may need to decalare some memory for user defined face properties.
BOP_Face3 *newface;
while (!face_it.Done(face_it.it)) {
face_it.Fill(face_it.it,&face);
// Let's not rely on quads being coplanar - especially if they
// are coming out of that soup of code from blender...
if (face.vertex_number == 4){
// QUAD
if (invert) {
newface = BOP_createFace3(mesh,
face.vertex_index[2] + vtxIndexOffset,
face.vertex_index[0] + vtxIndexOffset,
face.vertex_index[3] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
newface = BOP_createFace3(mesh,
face.vertex_index[2] + vtxIndexOffset,
face.vertex_index[1] + vtxIndexOffset,
face.vertex_index[0] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
}
else {
newface = BOP_createFace3(mesh,
face.vertex_index[0] + vtxIndexOffset,
face.vertex_index[2] + vtxIndexOffset,
face.vertex_index[3] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
newface = BOP_createFace3(mesh,
face.vertex_index[0] + vtxIndexOffset,
face.vertex_index[1] + vtxIndexOffset,
face.vertex_index[2] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
}
}
else {
// TRIANGLES
if (invert) {
newface = BOP_createFace3(mesh,
face.vertex_index[2] + vtxIndexOffset,
face.vertex_index[1] + vtxIndexOffset,
face.vertex_index[0] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
}
else {
newface = BOP_createFace3(mesh,
face.vertex_index[0] + vtxIndexOffset,
face.vertex_index[1] + vtxIndexOffset,
face.vertex_index[2] + vtxIndexOffset,
face.orig_face);
meshFacesId->push_back(newface);
mesh->addFace(newface);
}
}
face_it.Step(face_it.it);
}
}
/**
* Returns an empty mesh with the specified properties.
* @return a new empty mesh
*/
BSP_CSGMesh* BOP_newEmptyMesh()
{
BSP_CSGMesh* mesh = BSP_CSGMesh::New();
if (mesh == NULL) return mesh;
vector<BSP_MVertex>* vertices = new vector<BSP_MVertex>;
mesh->SetVertices(vertices);
return mesh;
}
/**
* Exports a BOP_Mesh to a BSP_CSGMesh.
* @param mesh Input mesh
* @param invert if TRUE export with inverted faces, no inverted otherwise
* @return the corresponding new BSP_CSGMesh
*/
BSP_CSGMesh* BOP_exportMesh(BOP_Mesh* mesh,
bool invert)
{
BSP_CSGMesh* outputMesh = BOP_newEmptyMesh();
if (outputMesh == NULL) return NULL;
// vtx index dictionary, to translate indeces from input to output.
map<int,unsigned int> dic;
map<int,unsigned int>::iterator itDic;
unsigned int count = 0;
// Add a new face for each face in the input list
BOP_Faces faces = mesh->getFaces();
BOP_Vertexs vertexs = mesh->getVertexs();
for (BOP_IT_Faces face = faces.begin(); face != faces.end(); face++) {
if ((*face)->getTAG()!=BROKEN){
// Add output face
outputMesh->FaceSet().push_back(BSP_MFace());
BSP_MFace& outFace = outputMesh->FaceSet().back();
// Copy face
outFace.m_verts.clear();
outFace.m_plane = (*face)->getPlane();
outFace.m_orig_face = (*face)->getOriginalFace();
// invert face if is required
if (invert) (*face)->invert();
// Add the face vertex if not added yet
for (unsigned int pos=0;pos<(*face)->size();pos++) {
BSP_VertexInd outVtxId;
BOP_Index idVertex = (*face)->getVertex(pos);
itDic = dic.find(idVertex);
if (itDic == dic.end()) {
// The vertex isn't added yet
outVtxId = BSP_VertexInd(outputMesh->VertexSet().size());
BSP_MVertex outVtx((mesh->getVertex(idVertex))->getPoint());
outVtx.m_edges.clear();
outputMesh->VertexSet().push_back(outVtx);
dic[idVertex] = outVtxId;
count++;
}
else {
// The vertex is added
outVtxId = BSP_VertexInd(itDic->second);
}
outFace.m_verts.push_back(outVtxId);
}
}
}
// Build the mesh edges using topological informtion
outputMesh->BuildEdges();
return outputMesh;
}