Files
blender/extern/carve/include/carve/interpolator.hpp
Sergey Sharybin e81f2853c8 Carve booleans library integration
==================================

Merging Carve library integration project into the trunk.

This commit switches Boolean modifier to another library which handles
mesh boolean operations in much stable and faster way, resolving old
well-known limitations of intern boolop library.

Carve is integrating as alternative interface for boolop library and
which makes it totally transparent for blender sources to switch between
old-fashioned boolop and new Carve backends.

Detailed changes in this commit:

- Integrated needed subset of Carve library sources into extern/
  Added script for re-bundling it (currently works only if repo
  was cloned by git-svn).
- Added BOP_CarveInterface for boolop library which can be used by
  Boolean modifier.
- Carve backend is enabled by default, can be disabled by WITH_BF_CARVE
  SCons option and WITH_CARVE CMake option.
- If Boost library is found in build environment it'll be used for
  unordered collections. If Boost isn't found, it'll fallback to TR1
  implementation for GCC compilers. Boost is obligatory if MSVC is used.

Tested on Linux 64bit and Windows 7 64bit.

NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives
      plane with circle hole, not plane with semisphere. Don't think
      it's really issue because it's not actually defined behavior in
      such situations and both of ways might be useful. Since it's
      only known "regression" think it's OK to deal with it.

Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans

Special thanks to:

- Ken Hughes: author of original carve integration patch.
- Campbell Barton: help in project development, review tests.
- Tobias Sargeant: author of Carve library, help in resolving some
                   merge stoppers, bug fixing.
2012-01-16 16:46:00 +00:00

333 lines
10 KiB
C++

// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#pragma once
#include <carve/carve.hpp>
#include <carve/geom2d.hpp>
#include <carve/poly.hpp>
#include <carve/mesh.hpp>
#include <carve/csg.hpp>
namespace carve {
namespace interpolate {
static inline std::vector<double> polyInterpolate(const std::vector<carve::geom2d::P2> &s,
const carve::geom2d::P2 &v) {
// see hormann et al. 2006
const size_t SZ = s.size();
std::vector<double> r;
std::vector<double> A;
std::vector<double> D;
std::vector<double> result;
r.resize(SZ);
A.resize(SZ);
D.resize(SZ);
result.resize(SZ, 0.0);
for (size_t i = 0; i < SZ; ++i) {
size_t i2 = (i + 1) % SZ;
carve::geom2d::P2 si = s[i] - v;
carve::geom2d::P2 si2 = s[i2] - v;
r[i] = sqrt(dot(si, si));
A[i] = cross(si, si2) / 2.0;
D[i] = dot(si, si2);
if (fabs(r[i]) < 1e-16) {
result[i] = 1.0;
return result;
} else if (fabs(A[i]) < 1e-16 && D[i] < 0.0) {
double r2 = sqrt(dot(si2, si2));
result[i2] = r[i] / (r[i] + r2);
result[i] = r2 / (r[i] + r2);
return result;
}
}
double w_sum = 0.0;
for (size_t i = 0; i < SZ; ++i) {
size_t i_m = (i + SZ - 1) % SZ;
size_t i_p = (i + 1) % SZ;
double w = 0.0;
if (fabs(A[i_m]) > 1e-16)
w += (r[i_m] - D[i_m] / r[i]) / A[i_m];
if (fabs(A[i]) > 1e-16)
w += (r[i_p] - D[i] / r[i]) / A[i];
result[i] = w;
w_sum += w;
}
for (size_t i = 0; i < SZ; ++i) {
result[i] /= w_sum;
}
// carve::geom2d::P2 test;
// for (size_t i = 0; i < SZ; ++i) {
// test = test + result[i] * s[i];
// }
return result;
}
template<typename iter_t,
typename adapt_t,
typename val_t,
typename mod_t>
val_t interp(iter_t begin,
iter_t end,
adapt_t adapt,
const std::vector<val_t> &vals,
double x,
double y,
mod_t mod = mod_t()) {
std::vector<carve::geom2d::P2> s;
s.reserve(std::distance(begin, end));
std::transform(begin, end, std::back_inserter(s), adapt);
std::vector<double> weight = polyInterpolate(s, carve::geom::VECTOR(x, y));
val_t v;
for (size_t z = 0; z < weight.size(); z++) {
v += weight[z] * vals[z];
}
return mod(v);
}
template<typename iter_t,
typename adapt_t,
typename val_t>
val_t interp(iter_t begin,
iter_t end,
adapt_t adapt,
const std::vector<val_t> &vals,
double x,
double y) {
return interp(begin, end, adapt, vals, x, y, identity_t<val_t>());
}
template<typename vertex_t,
typename adapt_t,
typename val_t,
typename mod_t>
val_t interp(const std::vector<vertex_t> &poly,
adapt_t adapt,
const std::vector<val_t> &vals,
double x,
double y,
mod_t mod = mod_t()) {
return interp(poly.begin(), poly.end(), adapt, vals, x, y, mod);
}
template<typename vertex_t,
typename adapt_t,
typename val_t>
val_t interp(const std::vector<vertex_t> &poly,
adapt_t adapt,
const std::vector<val_t> &vals,
double x,
double y) {
return interp(poly.begin(), poly.end(), adapt, vals, x, y, identity_t<val_t>());
}
template<typename val_t,
typename mod_t>
val_t interp(const std::vector<carve::geom2d::P2> &poly,
const std::vector<val_t> &vals,
double x,
double y,
mod_t mod = mod_t()) {
std::vector<double> weight = polyInterpolate(poly, carve::geom::VECTOR(x, y));
val_t v;
for (size_t z = 0; z < weight.size(); z++) {
v += weight[z] * vals[z];
}
return mod(v);
}
template<typename val_t>
val_t interp(const std::vector<carve::geom2d::P2> &poly,
const std::vector<val_t> &vals,
double x,
double y) {
return interp(poly, vals, x, y, identity_t<val_t>());
}
class Interpolator {
public:
virtual void interpolate(const carve::mesh::MeshSet<3>::face_t *new_face,
const carve::mesh::MeshSet<3>::face_t *orig_face,
bool flipped) =0;
Interpolator() {
}
virtual ~Interpolator() {
}
class Hook : public carve::csg::CSG::Hook {
Interpolator *interpolator;
public:
virtual void resultFace(const carve::mesh::MeshSet<3>::face_t *new_face,
const carve::mesh::MeshSet<3>::face_t *orig_face,
bool flipped) {
interpolator->interpolate(new_face, orig_face, flipped);
}
Hook(Interpolator *_interpolator) : interpolator(_interpolator) {
}
virtual ~Hook() {
}
};
void installHooks(carve::csg::CSG &csg) {
csg.hooks.registerHook(new Hook(this), carve::csg::CSG::Hooks::RESULT_FACE_BIT);
}
};
template<typename attr_t>
class FaceVertexAttr : public Interpolator {
protected:
struct fv_hash {
size_t operator()(const std::pair<const carve::mesh::MeshSet<3>::face_t *, unsigned> &v) const {
return size_t(v.first) ^ size_t(v.second);
}
};
typedef std::unordered_map<const carve::mesh::MeshSet<3>::vertex_t *, attr_t> attrvmap_t;
typedef std::unordered_map<std::pair<const carve::mesh::MeshSet<3>::face_t *, unsigned>, attr_t, fv_hash> attrmap_t;
attrmap_t attrs;
public:
bool hasAttribute(const carve::mesh::MeshSet<3>::face_t *f, unsigned v) {
return attrs.find(std::make_pair(f, v)) != attrs.end();
}
attr_t getAttribute(const carve::mesh::MeshSet<3>::face_t *f, unsigned v, const attr_t &def = attr_t()) {
typename attrmap_t::const_iterator fv = attrs.find(std::make_pair(f, v));
if (fv != attrs.end()) {
return (*fv).second;
}
return def;
}
void setAttribute(const carve::mesh::MeshSet<3>::face_t *f, unsigned v, const attr_t &attr) {
attrs[std::make_pair(f, v)] = attr;
}
virtual void interpolate(const carve::mesh::MeshSet<3>::face_t *new_face,
const carve::mesh::MeshSet<3>::face_t *orig_face,
bool flipped) {
std::vector<attr_t> vertex_attrs;
attrvmap_t base_attrs;
vertex_attrs.reserve(orig_face->nVertices());
for (carve::mesh::MeshSet<3>::face_t::const_edge_iter_t e = orig_face->begin(); e != orig_face->end(); ++e) {
typename attrmap_t::const_iterator a = attrs.find(std::make_pair(orig_face, e.idx()));
if (a == attrs.end()) return;
vertex_attrs.push_back((*a).second);
base_attrs[e->vert] = vertex_attrs.back();
}
for (carve::mesh::MeshSet<3>::face_t::const_edge_iter_t e = new_face->begin(); e != new_face->end(); ++e) {
const carve::mesh::MeshSet<3>::vertex_t *vertex = e->vert;
typename attrvmap_t::const_iterator b = base_attrs.find(vertex);
if (b != base_attrs.end()) {
attrs[std::make_pair(new_face, e.idx())] = (*b).second;
} else {
carve::geom2d::P2 p = orig_face->project(e->vert->v);
attr_t attr = interp(orig_face->begin(),
orig_face->end(),
orig_face->projector(),
vertex_attrs,
p.x,
p.y);
attrs[std::make_pair(new_face, e.idx())] = attr;
}
}
}
FaceVertexAttr() : Interpolator() {
}
virtual ~FaceVertexAttr() {
}
};
template<typename attr_t>
class FaceAttr : public Interpolator {
protected:
struct f_hash {
size_t operator()(const carve::mesh::MeshSet<3>::face_t * const &f) const {
return size_t(f);
}
};
typedef std::unordered_map<const carve::mesh::MeshSet<3>::face_t *, attr_t, f_hash> attrmap_t;
attrmap_t attrs;
public:
bool hasAttribute(const carve::mesh::MeshSet<3>::face_t *f) {
return attrs.find(f) != attrs.end();
}
attr_t getAttribute(const carve::mesh::MeshSet<3>::face_t *f, const attr_t &def = attr_t()) {
typename attrmap_t::const_iterator i = attrs.find(f);
if (i != attrs.end()) {
return (*i).second;
}
return def;
}
void setAttribute(const carve::mesh::MeshSet<3>::face_t *f, const attr_t &attr) {
attrs[f] = attr;
}
virtual void interpolate(const carve::mesh::MeshSet<3>::face_t *new_face,
const carve::mesh::MeshSet<3>::face_t *orig_face,
bool flipped) {
typename attrmap_t::const_iterator i = attrs.find(orig_face);
if (i != attrs.end()) {
attrs[new_face] = (*i).second;
}
}
FaceAttr() : Interpolator() {
}
virtual ~FaceAttr() {
}
};
}
}