
================================== Merging Carve library integration project into the trunk. This commit switches Boolean modifier to another library which handles mesh boolean operations in much stable and faster way, resolving old well-known limitations of intern boolop library. Carve is integrating as alternative interface for boolop library and which makes it totally transparent for blender sources to switch between old-fashioned boolop and new Carve backends. Detailed changes in this commit: - Integrated needed subset of Carve library sources into extern/ Added script for re-bundling it (currently works only if repo was cloned by git-svn). - Added BOP_CarveInterface for boolop library which can be used by Boolean modifier. - Carve backend is enabled by default, can be disabled by WITH_BF_CARVE SCons option and WITH_CARVE CMake option. - If Boost library is found in build environment it'll be used for unordered collections. If Boost isn't found, it'll fallback to TR1 implementation for GCC compilers. Boost is obligatory if MSVC is used. Tested on Linux 64bit and Windows 7 64bit. NOTE: behavior of flat objects was changed. E.g. Plane-Sphere now gives plane with circle hole, not plane with semisphere. Don't think it's really issue because it's not actually defined behavior in such situations and both of ways might be useful. Since it's only known "regression" think it's OK to deal with it. Details are there http://wiki.blender.org/index.php/User:Nazg-gul/CarveBooleans Special thanks to: - Ken Hughes: author of original carve integration patch. - Campbell Barton: help in project development, review tests. - Tobias Sargeant: author of Carve library, help in resolving some merge stoppers, bug fixing.
288 lines
7.7 KiB
C++
288 lines
7.7 KiB
C++
// Begin License:
|
|
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of the Carve CSG Library (http://carve-csg.com/)
|
|
//
|
|
// This file may be used under the terms of the GNU General Public
|
|
// License version 2.0 as published by the Free Software Foundation
|
|
// and appearing in the file LICENSE.GPL2 included in the packaging of
|
|
// this file.
|
|
//
|
|
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
|
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE.
|
|
// End:
|
|
|
|
|
|
#pragma once
|
|
|
|
#include <carve/timing.hpp>
|
|
|
|
#include <assert.h>
|
|
#include <list>
|
|
|
|
namespace carve {
|
|
namespace poly {
|
|
|
|
|
|
|
|
template<typename order_t>
|
|
struct VPtrSort {
|
|
order_t order;
|
|
|
|
VPtrSort(const order_t &_order) : order(_order) {}
|
|
bool operator()(carve::poly::Polyhedron::vertex_t const *a,
|
|
carve::poly::Polyhedron::vertex_t const *b) const {
|
|
return order(a->v, b->v);
|
|
}
|
|
};
|
|
|
|
template<typename order_t>
|
|
bool Geometry<3>::orderVertices(order_t order) {
|
|
static carve::TimingName FUNC_NAME("Geometry<3>::orderVertices()");
|
|
carve::TimingBlock block(FUNC_NAME);
|
|
|
|
std::vector<vertex_t *> vptr;
|
|
std::vector<vertex_t *> vmap;
|
|
std::vector<vertex_t> vout;
|
|
const size_t N = vertices.size();
|
|
|
|
vptr.reserve(N);
|
|
vout.reserve(N);
|
|
vmap.resize(N);
|
|
|
|
for (size_t i = 0; i != N; ++i) {
|
|
vptr.push_back(&vertices[i]);
|
|
}
|
|
std::sort(vptr.begin(), vptr.end(), VPtrSort<order_t>(order));
|
|
|
|
for (size_t i = 0; i != N; ++i) {
|
|
vout.push_back(*vptr[i]);
|
|
vmap[vertexToIndex_fast(vptr[i])] = &vout[i];
|
|
}
|
|
|
|
for (size_t i = 0; i < faces.size(); ++i) {
|
|
face_t &f = faces[i];
|
|
for (size_t j = 0; j < f.nVertices(); ++j) {
|
|
f.vertex(j) = vmap[vertexToIndex_fast(f.vertex(j))];
|
|
}
|
|
}
|
|
for (size_t i = 0; i < edges.size(); ++i) {
|
|
edges[i].v1 = vmap[vertexToIndex_fast(edges[i].v1)];
|
|
edges[i].v2 = vmap[vertexToIndex_fast(edges[i].v2)];
|
|
}
|
|
|
|
vout.swap(vertices);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::_faceNeighbourhood(const face_t *f, int depth, T *result) const {
|
|
if (depth < 0 || f->is_tagged()) return 0;
|
|
|
|
f->tag();
|
|
*(*result)++ = f;
|
|
|
|
int r = 1;
|
|
for (size_t i = 0; i < f->edges.size(); ++i) {
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(f->edges[i])];
|
|
const face_t *f2 = connectedFace(f, f->edges[i]);
|
|
if (f2) {
|
|
r += _faceNeighbourhood(f2, depth - 1, (*result));
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::faceNeighbourhood(const face_t *f, int depth, T result) const {
|
|
tagable::tag_begin();
|
|
|
|
return _faceNeighbourhood(f, depth, &result);
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::faceNeighbourhood(const edge_t *e, int m_id, int depth, T result) const {
|
|
tagable::tag_begin();
|
|
|
|
int r = 0;
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(e)];
|
|
for (size_t i = 0; i < edge_faces.size(); ++i) {
|
|
face_t *f = edge_faces[i];
|
|
if (f && f->manifold_id == m_id) { r += _faceNeighbourhood(f, depth, &result); }
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::faceNeighbourhood(const vertex_t *v, int m_id, int depth, T result) const {
|
|
tagable::tag_begin();
|
|
|
|
int r = 0;
|
|
const std::vector<const face_t *> &vertex_faces = connectivity.vertex_to_face[vertexToIndex_fast(v)];
|
|
for (size_t i = 0; i < vertex_faces.size(); ++i) {
|
|
face_t *f = vertex_faces[i];
|
|
if (f && f->manifold_id == m_id) { r += _faceNeighbourhood(f, depth, &result); }
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
// accessing connectivity information.
|
|
template<typename T>
|
|
int Geometry<3>::vertexToEdges(const vertex_t *v, T result) const {
|
|
std::vector<const edge_t *> &e = connectivity.vertex_to_edge[vertexToIndex_fast(v)];
|
|
std::copy(e.begin(), e.end(), result);
|
|
return e.size();
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::vertexToFaces(const vertex_t *v, T result) const {
|
|
const std::vector<const face_t *> &vertex_faces = connectivity.vertex_to_face[vertexToIndex_fast(v)];
|
|
int c = 0;
|
|
for (size_t i = 0; i < vertex_faces.size(); ++i) {
|
|
*result++ = vertex_faces[i]; ++c;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Geometry<3>::edgeToFaces(const edge_t *e, T result) const {
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(e)];
|
|
int c = 0;
|
|
for (size_t i = 0; i < edge_faces.size(); ++i) {
|
|
if (edge_faces[i] != NULL) { *result++ = edge_faces[i]; ++c; }
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
inline const Geometry<3>::face_t *Geometry<3>::connectedFace(const face_t *f, const edge_t *e) const {
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(e)];
|
|
for (size_t i = 0; i < (edge_faces.size() & ~1U); i++) {
|
|
if (edge_faces[i] == f) return edge_faces[i^1];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
|
|
inline void Polyhedron::invert(int m_id) {
|
|
std::vector<bool> selected_manifolds(manifold_is_closed.size(), false);
|
|
if (m_id >=0 && (unsigned)m_id < selected_manifolds.size()) selected_manifolds[m_id] = true;
|
|
invert(selected_manifolds);
|
|
}
|
|
|
|
|
|
|
|
inline void Polyhedron::invert() {
|
|
invertAll();
|
|
}
|
|
|
|
|
|
|
|
inline bool Polyhedron::edgeOnManifold(const edge_t *e, int m_id) const {
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(e)];
|
|
|
|
for (size_t i = 0; i < edge_faces.size(); ++i) {
|
|
if (edge_faces[i] && edge_faces[i]->manifold_id == m_id) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool Polyhedron::vertexOnManifold(const vertex_t *v, int m_id) const {
|
|
const std::vector<const face_t *> &f = connectivity.vertex_to_face[vertexToIndex_fast(v)];
|
|
|
|
for (size_t i = 0; i < f.size(); ++i) {
|
|
if (f[i]->manifold_id == m_id) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Polyhedron::edgeManifolds(const edge_t *e, T result) const {
|
|
const std::vector<const face_t *> &edge_faces = connectivity.edge_to_face[edgeToIndex_fast(e)];
|
|
|
|
for (size_t i = 0; i < (edge_faces.size() & ~1U); i += 2) {
|
|
const face_t *f1 = edge_faces[i];
|
|
const face_t *f2 = edge_faces[i+1];
|
|
assert (f1 || f2);
|
|
if (f1)
|
|
*result++ = f1->manifold_id;
|
|
else if (f2)
|
|
*result++ = f2->manifold_id;
|
|
}
|
|
return edge_faces.size() >> 1;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
int Polyhedron::vertexManifolds(const vertex_t *v, T result) const {
|
|
const std::vector<const face_t *> &f = connectivity.vertex_to_face[vertexToIndex_fast(v)];
|
|
std::set<int> em;
|
|
|
|
for (size_t i = 0; i < f.size(); ++i) {
|
|
em.insert(f[i]->manifold_id);
|
|
}
|
|
|
|
std::copy(em.begin(), em.end(), result);
|
|
return em.size();
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
void Polyhedron::transform(const T &xform) {
|
|
for (size_t i = 0; i < vertices.size(); i++) {
|
|
vertices[i].v = xform(vertices[i].v);
|
|
}
|
|
faceRecalc();
|
|
init();
|
|
}
|
|
|
|
|
|
|
|
inline size_t Polyhedron::manifoldCount() const {
|
|
return manifold_is_closed.size();
|
|
}
|
|
|
|
|
|
|
|
inline bool Polyhedron::hasOpenManifolds() const {
|
|
for (size_t i = 0; i < manifold_is_closed.size(); ++i) {
|
|
if (!manifold_is_closed[i]) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
inline std::ostream &operator<<(std::ostream &o, const Polyhedron &p) {
|
|
p.print(o);
|
|
return o;
|
|
}
|
|
|
|
|
|
|
|
}
|
|
}
|