Files
blender/intern/cycles/blender/blender_mesh.cpp
Stuart Broadfoot e9ba345c46 New feature
Patch [#33445] - Experimental Cycles Hair Rendering (CPU only)

This patch allows hair data to be exported to cycles and introduces a new line segment primitive to render with.

The UI appears under the particle tab and there is a new hair info node available.

It is only available under the experimental feature set and for cpu rendering.
2012-12-28 14:21:30 +00:00

529 lines
16 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "blender_sync.h"
#include "blender_util.h"
#include "subd_mesh.h"
#include "subd_patch.h"
#include "subd_split.h"
#include "util_foreach.h"
#include "mikktspace.h"
CCL_NAMESPACE_BEGIN
/* Tangent Space */
struct MikkUserData {
MikkUserData(const BL::Mesh mesh_, const BL::MeshTextureFaceLayer layer_, int num_faces_)
: mesh(mesh_), layer(layer_), num_faces(num_faces_)
{
tangent.resize(num_faces*4);
}
BL::Mesh mesh;
BL::MeshTextureFaceLayer layer;
int num_faces;
vector<float4> tangent;
};
static int mikk_get_num_faces(const SMikkTSpaceContext *context)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
return userdata->num_faces;
}
static int mikk_get_num_verts_of_face(const SMikkTSpaceContext *context, const int face_num)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
BL::MeshTessFace f = userdata->mesh.tessfaces[face_num];
int4 vi = get_int4(f.vertices_raw());
return (vi[3] == 0)? 3: 4;
}
static void mikk_get_position(const SMikkTSpaceContext *context, float P[3], const int face_num, const int vert_num)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
BL::MeshTessFace f = userdata->mesh.tessfaces[face_num];
int4 vi = get_int4(f.vertices_raw());
BL::MeshVertex v = userdata->mesh.vertices[vi[vert_num]];
float3 vP = get_float3(v.co());
P[0] = vP.x;
P[1] = vP.y;
P[2] = vP.z;
}
static void mikk_get_texture_coordinate(const SMikkTSpaceContext *context, float uv[2], const int face_num, const int vert_num)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
BL::MeshTextureFace tf = userdata->layer.data[face_num];
float3 tfuv;
if(vert_num == 0)
tfuv = get_float3(tf.uv1());
else if(vert_num == 1)
tfuv = get_float3(tf.uv2());
else if(vert_num == 2)
tfuv = get_float3(tf.uv3());
else
tfuv = get_float3(tf.uv4());
uv[0] = tfuv.x;
uv[1] = tfuv.y;
}
static void mikk_get_normal(const SMikkTSpaceContext *context, float N[3], const int face_num, const int vert_num)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
BL::MeshTessFace f = userdata->mesh.tessfaces[face_num];
int4 vi = get_int4(f.vertices_raw());
BL::MeshVertex v = userdata->mesh.vertices[vi[vert_num]];
float3 vN = get_float3(v.normal());
N[0] = vN.x;
N[1] = vN.y;
N[2] = vN.z;
}
static void mikk_set_tangent_space(const SMikkTSpaceContext *context, const float T[], const float sign, const int face, const int vert)
{
MikkUserData *userdata = (MikkUserData*)context->m_pUserData;
userdata->tangent[face*4 + vert] = make_float4(T[0], T[1], T[2], sign);
}
static void mikk_compute_tangents(BL::Mesh b_mesh, BL::MeshTextureFaceLayer b_layer, Mesh *mesh, vector<int>& nverts, bool need_sign, bool active_render)
{
/* setup userdata */
MikkUserData userdata(b_mesh, b_layer, nverts.size());
/* setup interface */
SMikkTSpaceInterface sm_interface;
memset(&sm_interface, 0, sizeof(sm_interface));
sm_interface.m_getNumFaces = mikk_get_num_faces;
sm_interface.m_getNumVerticesOfFace = mikk_get_num_verts_of_face;
sm_interface.m_getPosition = mikk_get_position;
sm_interface.m_getTexCoord = mikk_get_texture_coordinate;
sm_interface.m_getNormal = mikk_get_normal;
sm_interface.m_setTSpaceBasic = mikk_set_tangent_space;
/* setup context */
SMikkTSpaceContext context;
memset(&context, 0, sizeof(context));
context.m_pUserData = &userdata;
context.m_pInterface = &sm_interface;
/* compute tangents */
genTangSpaceDefault(&context);
/* create tangent attributes */
Attribute *attr;
ustring name = ustring((string(b_layer.name().c_str()) + ".tangent").c_str());
if(active_render)
attr = mesh->attributes.add(ATTR_STD_UV_TANGENT, name);
else
attr = mesh->attributes.add(name, TypeDesc::TypeVector, Attribute::CORNER);
float3 *tangent = attr->data_float3();
/* create bitangent sign attribute */
float *tangent_sign = NULL;
if(need_sign) {
Attribute *attr_sign;
ustring name_sign = ustring((string(b_layer.name().c_str()) + ".tangent_sign").c_str());
if(active_render)
attr_sign = mesh->attributes.add(ATTR_STD_UV_TANGENT_SIGN, name_sign);
else
attr_sign = mesh->attributes.add(name_sign, TypeDesc::TypeFloat, Attribute::CORNER);
tangent_sign = attr_sign->data_float();
}
for(int i = 0; i < nverts.size(); i++) {
tangent[0] = float4_to_float3(userdata.tangent[i*4 + 0]);
tangent[1] = float4_to_float3(userdata.tangent[i*4 + 1]);
tangent[2] = float4_to_float3(userdata.tangent[i*4 + 2]);
tangent += 3;
if(tangent_sign) {
tangent_sign[0] = userdata.tangent[i*4 + 0].w;
tangent_sign[1] = userdata.tangent[i*4 + 1].w;
tangent_sign[2] = userdata.tangent[i*4 + 2].w;
tangent_sign += 3;
}
if(nverts[i] == 4) {
tangent[0] = float4_to_float3(userdata.tangent[i*4 + 0]);
tangent[1] = float4_to_float3(userdata.tangent[i*4 + 2]);
tangent[2] = float4_to_float3(userdata.tangent[i*4 + 3]);
tangent += 3;
if(tangent_sign) {
tangent_sign[0] = userdata.tangent[i*4 + 0].w;
tangent_sign[1] = userdata.tangent[i*4 + 2].w;
tangent_sign[2] = userdata.tangent[i*4 + 3].w;
tangent_sign += 3;
}
}
}
}
/* Create Mesh */
static void create_mesh(Scene *scene, Mesh *mesh, BL::Mesh b_mesh, const vector<uint>& used_shaders)
{
/* create vertices */
BL::Mesh::vertices_iterator v;
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v)
mesh->verts.push_back(get_float3(v->co()));
/* create vertex normals */
Attribute *attr_N = mesh->attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *N = attr_N->data_float3();
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v, ++N)
*N = get_float3(v->normal());
/* create faces */
BL::Mesh::tessfaces_iterator f;
vector<int> nverts;
for(b_mesh.tessfaces.begin(f); f != b_mesh.tessfaces.end(); ++f) {
int4 vi = get_int4(f->vertices_raw());
int n = (vi[3] == 0)? 3: 4;
int mi = clamp(f->material_index(), 0, used_shaders.size()-1);
int shader = used_shaders[mi];
bool smooth = f->use_smooth();
mesh->add_triangle(vi[0], vi[1], vi[2], shader, smooth);
if(n == 4)
mesh->add_triangle(vi[0], vi[2], vi[3], shader, smooth);
nverts.push_back(n);
}
/* create vertex color attributes */
{
BL::Mesh::tessface_vertex_colors_iterator l;
for(b_mesh.tessface_vertex_colors.begin(l); l != b_mesh.tessface_vertex_colors.end(); ++l) {
if(!mesh->need_attribute(scene, ustring(l->name().c_str())))
continue;
Attribute *attr = mesh->attributes.add(
ustring(l->name().c_str()), TypeDesc::TypeColor, Attribute::CORNER);
BL::MeshColorLayer::data_iterator c;
float3 *fdata = attr->data_float3();
size_t i = 0;
for(l->data.begin(c); c != l->data.end(); ++c, ++i) {
fdata[0] = color_srgb_to_scene_linear(get_float3(c->color1()));
fdata[1] = color_srgb_to_scene_linear(get_float3(c->color2()));
fdata[2] = color_srgb_to_scene_linear(get_float3(c->color3()));
if(nverts[i] == 4) {
fdata[3] = fdata[0];
fdata[4] = fdata[2];
fdata[5] = color_srgb_to_scene_linear(get_float3(c->color4()));
fdata += 6;
}
else
fdata += 3;
}
}
}
/* create uv map attributes */
{
BL::Mesh::tessface_uv_textures_iterator l;
for(b_mesh.tessface_uv_textures.begin(l); l != b_mesh.tessface_uv_textures.end(); ++l) {
bool active_render = l->active_render();
AttributeStandard std = (active_render)? ATTR_STD_UV: ATTR_STD_NONE;
ustring name = ustring(l->name().c_str());
/* UV map */
if(mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std)) {
Attribute *attr;
if(active_render)
attr = mesh->attributes.add(std, name);
else
attr = mesh->attributes.add(name, TypeDesc::TypePoint, Attribute::CORNER);
BL::MeshTextureFaceLayer::data_iterator t;
float3 *fdata = attr->data_float3();
size_t i = 0;
for(l->data.begin(t); t != l->data.end(); ++t, ++i) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv2());
fdata[2] = get_float3(t->uv3());
fdata += 3;
if(nverts[i] == 4) {
fdata[0] = get_float3(t->uv1());
fdata[1] = get_float3(t->uv3());
fdata[2] = get_float3(t->uv4());
fdata += 3;
}
}
}
/* UV tangent */
std = (active_render)? ATTR_STD_UV_TANGENT: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent").c_str());
if(mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std)) {
std = (active_render)? ATTR_STD_UV_TANGENT_SIGN: ATTR_STD_NONE;
name = ustring((string(l->name().c_str()) + ".tangent_sign").c_str());
bool need_sign = (mesh->need_attribute(scene, name) || mesh->need_attribute(scene, std));
mikk_compute_tangents(b_mesh, *l, mesh, nverts, need_sign, active_render);
}
}
}
/* create generated coordinates. todo: we should actually get the orco
* coordinates from modifiers, for now we use texspace loc/size which
* is available in the api. */
if(mesh->need_attribute(scene, ATTR_STD_GENERATED)) {
Attribute *attr = mesh->attributes.add(ATTR_STD_GENERATED);
float3 loc = get_float3(b_mesh.texspace_location());
float3 size = get_float3(b_mesh.texspace_size());
if(size.x != 0.0f) size.x = 0.5f/size.x;
if(size.y != 0.0f) size.y = 0.5f/size.y;
if(size.z != 0.0f) size.z = 0.5f/size.z;
loc = loc*size - make_float3(0.5f, 0.5f, 0.5f);
float3 *generated = attr->data_float3();
size_t i = 0;
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v)
generated[i++] = get_float3(v->co())*size - loc;
}
}
static void create_subd_mesh(Mesh *mesh, BL::Mesh b_mesh, PointerRNA *cmesh, const vector<uint>& used_shaders)
{
/* create subd mesh */
SubdMesh sdmesh;
/* create vertices */
BL::Mesh::vertices_iterator v;
for(b_mesh.vertices.begin(v); v != b_mesh.vertices.end(); ++v)
sdmesh.add_vert(get_float3(v->co()));
/* create faces */
BL::Mesh::tessfaces_iterator f;
for(b_mesh.tessfaces.begin(f); f != b_mesh.tessfaces.end(); ++f) {
int4 vi = get_int4(f->vertices_raw());
int n = (vi[3] == 0) ? 3: 4;
//int shader = used_shaders[f->material_index()];
if(n == 4)
sdmesh.add_face(vi[0], vi[1], vi[2], vi[3]);
#if 0
else
sdmesh.add_face(vi[0], vi[1], vi[2]);
#endif
}
/* finalize subd mesh */
sdmesh.link_boundary();
/* subdivide */
DiagSplit dsplit;
dsplit.camera = NULL;
dsplit.dicing_rate = RNA_float_get(cmesh, "dicing_rate");
sdmesh.tessellate(&dsplit, false, mesh, used_shaders[0], true);
}
/* Sync */
Mesh *BlenderSync::sync_mesh(BL::Object b_ob, bool object_updated, bool hide_tris)
{
/* test if we can instance or if the object is modified */
BL::ID b_ob_data = b_ob.data();
BL::ID key = (BKE_object_is_modified(b_ob))? b_ob: b_ob_data;
BL::Material material_override = render_layer.material_override;
/* find shader indices */
vector<uint> used_shaders;
BL::Object::material_slots_iterator slot;
for(b_ob.material_slots.begin(slot); slot != b_ob.material_slots.end(); ++slot) {
if(material_override)
find_shader(material_override, used_shaders, scene->default_surface);
else
find_shader(slot->material(), used_shaders, scene->default_surface);
}
if(used_shaders.size() == 0) {
if(material_override)
find_shader(material_override, used_shaders, scene->default_surface);
else
used_shaders.push_back(scene->default_surface);
}
/* test if we need to sync */
Mesh *mesh;
if(!mesh_map.sync(&mesh, key)) {
/* if transform was applied to mesh, need full update */
if(object_updated && mesh->transform_applied);
/* test if shaders changed, these can be object level so mesh
* does not get tagged for recalc */
else if(mesh->used_shaders != used_shaders);
else {
/* even if not tagged for recalc, we may need to sync anyway
* because the shader needs different mesh attributes */
bool attribute_recalc = false;
foreach(uint shader, mesh->used_shaders)
if(scene->shaders[shader]->need_update_attributes)
attribute_recalc = true;
if(!attribute_recalc)
return mesh;
}
}
/* ensure we only sync instanced meshes once */
if(mesh_synced.find(mesh) != mesh_synced.end())
return mesh;
mesh_synced.insert(mesh);
/* create derived mesh */
BL::Mesh b_mesh = object_to_mesh(b_ob, b_scene, true, !preview);
PointerRNA cmesh = RNA_pointer_get(&b_ob_data.ptr, "cycles");
vector<Mesh::Triangle> oldtriangle = mesh->triangles;
/* compares curve_keys rather than strands in order to handle quick hair adjustsments in dynamic BVH - other methods could probably do this better*/
vector<Mesh::CurveKey> oldcurve_keys = mesh->curve_keys;
mesh->clear();
mesh->used_shaders = used_shaders;
mesh->name = ustring(b_ob_data.name().c_str());
if(b_mesh) {
if(!(hide_tris && experimental && is_cpu)) {
if(cmesh.data && experimental && RNA_boolean_get(&cmesh, "use_subdivision"))
create_subd_mesh(mesh, b_mesh, &cmesh, used_shaders);
else
create_mesh(scene, mesh, b_mesh, used_shaders);
}
if(experimental && is_cpu)
sync_curves(mesh, b_mesh, b_ob, object_updated);
/* free derived mesh */
b_data.meshes.remove(b_mesh);
}
/* displacement method */
if(cmesh.data) {
int method = RNA_enum_get(&cmesh, "displacement_method");
if(method == 0 || !experimental)
mesh->displacement_method = Mesh::DISPLACE_BUMP;
else if(method == 1)
mesh->displacement_method = Mesh::DISPLACE_TRUE;
else
mesh->displacement_method = Mesh::DISPLACE_BOTH;
}
/* tag update */
bool rebuild = false;
if(oldtriangle.size() != mesh->triangles.size())
rebuild = true;
else if(oldtriangle.size()) {
if(memcmp(&oldtriangle[0], &mesh->triangles[0], sizeof(Mesh::Triangle)*oldtriangle.size()) != 0)
rebuild = true;
}
if(oldcurve_keys.size() != mesh->curve_keys.size())
rebuild = true;
else if(oldcurve_keys.size()) {
if(memcmp(&oldcurve_keys[0], &mesh->curve_keys[0], sizeof(Mesh::CurveKey)*oldcurve_keys.size()) != 0)
rebuild = true;
}
mesh->tag_update(scene, rebuild);
return mesh;
}
void BlenderSync::sync_mesh_motion(BL::Object b_ob, Mesh *mesh, int motion)
{
/* todo: displacement, subdivision */
size_t size = mesh->verts.size();
/* skip objects without deforming modifiers. this is not a totally reliable,
* would need a more extensive check to see which objects are animated */
if(!size || !ccl::BKE_object_is_deform_modified(b_ob, b_scene, preview))
return;
/* get derived mesh */
BL::Mesh b_mesh = object_to_mesh(b_ob, b_scene, true, !preview);
if(b_mesh) {
BL::Mesh::vertices_iterator v;
AttributeStandard std = (motion == -1)? ATTR_STD_MOTION_PRE: ATTR_STD_MOTION_POST;
Attribute *attr_M = mesh->attributes.add(std);
float3 *M = attr_M->data_float3(), *cur_M;
size_t i = 0;
for(b_mesh.vertices.begin(v), cur_M = M; v != b_mesh.vertices.end() && i < size; ++v, cur_M++, i++)
*cur_M = get_float3(v->co());
/* if number of vertices changed, or if coordinates stayed the same, drop it */
if(i != size || memcmp(M, &mesh->verts[0], sizeof(float3)*size) == 0)
mesh->attributes.remove(std);
/* free derived mesh */
b_data.meshes.remove(b_mesh);
}
}
CCL_NAMESPACE_END