Files
blender/source/blender/python/mathutils/mathutils_Quaternion.c
2019-11-16 02:39:51 +11:00

1645 lines
49 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "../generic/python_utildefines.h"
#include "../generic/py_capi_utils.h"
#ifndef MATH_STANDALONE
# include "BLI_dynstr.h"
#endif
#define QUAT_SIZE 4
static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self);
static void quat__axis_angle_sanitize(float axis[3], float *angle);
static PyObject *Quaternion_copy(QuaternionObject *self);
static PyObject *Quaternion_deepcopy(QuaternionObject *self, PyObject *args);
/* -----------------------------METHODS------------------------------ */
/* note: BaseMath_ReadCallback must be called beforehand */
static PyObject *Quaternion_to_tuple_ext(QuaternionObject *self, int ndigits)
{
PyObject *ret;
int i;
ret = PyTuple_New(QUAT_SIZE);
if (ndigits >= 0) {
for (i = 0; i < QUAT_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
}
}
else {
for (i = 0; i < QUAT_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
}
}
return ret;
}
PyDoc_STRVAR(Quaternion_to_euler_doc,
".. method:: to_euler(order, euler_compat)\n"
"\n"
" Return Euler representation of the quaternion.\n"
"\n"
" :arg order: Optional rotation order argument in\n"
" ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
" :type order: string\n"
" :arg euler_compat: Optional euler argument the new euler will be made\n"
" compatible with (no axis flipping between them).\n"
" Useful for converting a series of matrices to animation curves.\n"
" :type euler_compat: :class:`Euler`\n"
" :return: Euler representation of the quaternion.\n"
" :rtype: :class:`Euler`\n");
static PyObject *Quaternion_to_euler(QuaternionObject *self, PyObject *args)
{
float tquat[4];
float eul[3];
const char *order_str = NULL;
short order = EULER_ORDER_XYZ;
EulerObject *eul_compat = NULL;
if (!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat)) {
return NULL;
}
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
if (order_str) {
order = euler_order_from_string(order_str, "Matrix.to_euler()");
if (order == -1) {
return NULL;
}
}
normalize_qt_qt(tquat, self->quat);
if (eul_compat) {
if (BaseMath_ReadCallback(eul_compat) == -1) {
return NULL;
}
if (order == EULER_ORDER_XYZ) {
quat_to_compatible_eul(eul, eul_compat->eul, tquat);
}
else {
quat_to_compatible_eulO(eul, eul_compat->eul, order, tquat);
}
}
else {
if (order == EULER_ORDER_XYZ) {
quat_to_eul(eul, tquat);
}
else {
quat_to_eulO(eul, order, tquat);
}
}
return Euler_CreatePyObject(eul, order, NULL);
}
PyDoc_STRVAR(Quaternion_to_matrix_doc,
".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the quaternion.\n"
"\n"
" :return: A 3x3 rotation matrix representation of the quaternion.\n"
" :rtype: :class:`Matrix`\n");
static PyObject *Quaternion_to_matrix(QuaternionObject *self)
{
float mat[9]; /* all values are set */
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
quat_to_mat3((float(*)[3])mat, self->quat);
return Matrix_CreatePyObject(mat, 3, 3, NULL);
}
PyDoc_STRVAR(Quaternion_to_axis_angle_doc,
".. method:: to_axis_angle()\n"
"\n"
" Return the axis, angle representation of the quaternion.\n"
"\n"
" :return: axis, angle.\n"
" :rtype: (:class:`Vector`, float) pair\n");
static PyObject *Quaternion_to_axis_angle(QuaternionObject *self)
{
PyObject *ret;
float tquat[4];
float axis[3];
float angle;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle, tquat);
quat__axis_angle_sanitize(axis, &angle);
ret = PyTuple_New(2);
PyTuple_SET_ITEMS(ret, Vector_CreatePyObject(axis, 3, NULL), PyFloat_FromDouble(angle));
return ret;
}
PyDoc_STRVAR(Quaternion_to_swing_twist_doc,
".. method:: to_swing_twist(axis)\n"
"\n"
" Split the rotation into a swing quaternion with the specified\n"
" axis fixed at zero, and the remaining twist rotation angle.\n"
"\n"
" :arg axis: twist axis as a string in ['X', 'Y', 'Z']\n"
" :return: swing, twist angle.\n"
" :rtype: (:class:`Quaternion`, float) pair\n");
static PyObject *Quaternion_to_swing_twist(QuaternionObject *self, PyObject *axis_arg)
{
PyObject *ret;
const char *axis_str = NULL;
float swing[4], twist;
int axis;
if (axis_arg && PyUnicode_Check(axis_arg)) {
axis_str = _PyUnicode_AsString(axis_arg);
}
if (axis_str && axis_str[0] >= 'X' && axis_str[0] <= 'Z' && axis_str[1] == 0) {
axis = axis_str[0] - 'X';
}
else {
PyErr_SetString(PyExc_ValueError,
"Quaternion.to_swing_twist(): "
"the axis argument must be "
"a string in 'X', 'Y', 'Z'");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
twist = quat_split_swing_and_twist(self->quat, axis, swing, NULL);
ret = PyTuple_New(2);
PyTuple_SET_ITEMS(
ret, Quaternion_CreatePyObject(swing, Py_TYPE(self)), PyFloat_FromDouble(twist));
return ret;
}
PyDoc_STRVAR(
Quaternion_to_exponential_map_doc,
".. method:: to_exponential_map()\n"
"\n"
" Return the exponential map representation of the quaternion.\n"
"\n"
" This representation consist of the rotation axis multiplied by the rotation angle.\n"
" Such a representation is useful for interpolation between multiple orientations.\n"
"\n"
" :return: exponential map.\n"
" :rtype: :class:`Vector` of size 3\n"
"\n"
" To convert back to a quaternion, pass it to the :class:`Quaternion` constructor.\n");
static PyObject *Quaternion_to_exponential_map(QuaternionObject *self)
{
float expmap[3];
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
quat_to_expmap(expmap, self->quat);
return Vector_CreatePyObject(expmap, 3, NULL);
}
PyDoc_STRVAR(Quaternion_cross_doc,
".. method:: cross(other)\n"
"\n"
" Return the cross product of this quaternion and another.\n"
"\n"
" :arg other: The other quaternion to perform the cross product with.\n"
" :type other: :class:`Quaternion`\n"
" :return: The cross product.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_cross(QuaternionObject *self, PyObject *value)
{
float quat[QUAT_SIZE], tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
if (mathutils_array_parse(
tquat, QUAT_SIZE, QUAT_SIZE, value, "Quaternion.cross(other), invalid 'other' arg") ==
-1) {
return NULL;
}
mul_qt_qtqt(quat, self->quat, tquat);
return Quaternion_CreatePyObject(quat, Py_TYPE(self));
}
PyDoc_STRVAR(Quaternion_dot_doc,
".. method:: dot(other)\n"
"\n"
" Return the dot product of this quaternion and another.\n"
"\n"
" :arg other: The other quaternion to perform the dot product with.\n"
" :type other: :class:`Quaternion`\n"
" :return: The dot product.\n"
" :rtype: float\n");
static PyObject *Quaternion_dot(QuaternionObject *self, PyObject *value)
{
float tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
if (mathutils_array_parse(
tquat, QUAT_SIZE, QUAT_SIZE, value, "Quaternion.dot(other), invalid 'other' arg") ==
-1) {
return NULL;
}
return PyFloat_FromDouble(dot_qtqt(self->quat, tquat));
}
PyDoc_STRVAR(Quaternion_rotation_difference_doc,
".. function:: rotation_difference(other)\n"
"\n"
" Returns a quaternion representing the rotational difference.\n"
"\n"
" :arg other: second quaternion.\n"
" :type other: :class:`Quaternion`\n"
" :return: the rotational difference between the two quat rotations.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_rotation_difference(QuaternionObject *self, PyObject *value)
{
float tquat[QUAT_SIZE], quat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
if (mathutils_array_parse(tquat,
QUAT_SIZE,
QUAT_SIZE,
value,
"Quaternion.difference(other), invalid 'other' arg") == -1) {
return NULL;
}
rotation_between_quats_to_quat(quat, self->quat, tquat);
return Quaternion_CreatePyObject(quat, Py_TYPE(self));
}
PyDoc_STRVAR(Quaternion_slerp_doc,
".. function:: slerp(other, factor)\n"
"\n"
" Returns the interpolation of two quaternions.\n"
"\n"
" :arg other: value to interpolate with.\n"
" :type other: :class:`Quaternion`\n"
" :arg factor: The interpolation value in [0.0, 1.0].\n"
" :type factor: float\n"
" :return: The interpolated rotation.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_slerp(QuaternionObject *self, PyObject *args)
{
PyObject *value;
float tquat[QUAT_SIZE], quat[QUAT_SIZE], fac;
if (!PyArg_ParseTuple(args, "Of:slerp", &value, &fac)) {
PyErr_SetString(PyExc_TypeError,
"quat.slerp(): "
"expected Quaternion types and float");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
if (mathutils_array_parse(
tquat, QUAT_SIZE, QUAT_SIZE, value, "Quaternion.slerp(other), invalid 'other' arg") ==
-1) {
return NULL;
}
if (fac > 1.0f || fac < 0.0f) {
PyErr_SetString(PyExc_ValueError,
"quat.slerp(): "
"interpolation factor must be between 0.0 and 1.0");
return NULL;
}
interp_qt_qtqt(quat, self->quat, tquat, fac);
return Quaternion_CreatePyObject(quat, Py_TYPE(self));
}
PyDoc_STRVAR(Quaternion_rotate_doc,
".. method:: rotate(other)\n"
"\n"
" Rotates the quaternion by another mathutils value.\n"
"\n"
" :arg other: rotation component of mathutils value\n"
" :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n");
static PyObject *Quaternion_rotate(QuaternionObject *self, PyObject *value)
{
float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
float tquat[4], length;
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
if (mathutils_any_to_rotmat(other_rmat, value, "Quaternion.rotate(value)") == -1) {
return NULL;
}
length = normalize_qt_qt(tquat, self->quat);
quat_to_mat3(self_rmat, tquat);
mul_m3_m3m3(rmat, other_rmat, self_rmat);
mat3_to_quat(self->quat, rmat);
mul_qt_fl(self->quat, length); /* maintain length after rotating */
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
/* ----------------------------Quaternion.normalize()---------------- */
/* Normalize the quaternion. This may change the angle as well as the
* rotation axis, as all of (w, x, y, z) are scaled. */
PyDoc_STRVAR(Quaternion_normalize_doc,
".. function:: normalize()\n"
"\n"
" Normalize the quaternion.\n");
static PyObject *Quaternion_normalize(QuaternionObject *self)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
normalize_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_normalized_doc,
".. function:: normalized()\n"
"\n"
" Return a new normalized quaternion.\n"
"\n"
" :return: a normalized copy.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_normalized(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_normalize, self);
}
PyDoc_STRVAR(Quaternion_invert_doc,
".. function:: invert()\n"
"\n"
" Set the quaternion to its inverse.\n");
static PyObject *Quaternion_invert(QuaternionObject *self)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
invert_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_inverted_doc,
".. function:: inverted()\n"
"\n"
" Return a new, inverted quaternion.\n"
"\n"
" :return: the inverted value.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_inverted(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_invert, self);
}
PyDoc_STRVAR(Quaternion_identity_doc,
".. function:: identity()\n"
"\n"
" Set the quaternion to an identity quaternion.\n"
"\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_identity(QuaternionObject *self)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
unit_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_negate_doc,
".. function:: negate()\n"
"\n"
" Set the quaternion to its negative.\n"
"\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_negate(QuaternionObject *self)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
mul_qt_fl(self->quat, -1.0f);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_conjugate_doc,
".. function:: conjugate()\n"
"\n"
" Set the quaternion to its conjugate (negate x, y, z).\n");
static PyObject *Quaternion_conjugate(QuaternionObject *self)
{
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return NULL;
}
conjugate_qt(self->quat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Quaternion_conjugated_doc,
".. function:: conjugated()\n"
"\n"
" Return a new conjugated quaternion.\n"
"\n"
" :return: a new quaternion.\n"
" :rtype: :class:`Quaternion`\n");
static PyObject *Quaternion_conjugated(QuaternionObject *self)
{
return quat__apply_to_copy((PyNoArgsFunction)Quaternion_conjugate, self);
}
PyDoc_STRVAR(Quaternion_copy_doc,
".. function:: copy()\n"
"\n"
" Returns a copy of this quaternion.\n"
"\n"
" :return: A copy of the quaternion.\n"
" :rtype: :class:`Quaternion`\n"
"\n"
" .. note:: use this to get a copy of a wrapped quaternion with\n"
" no reference to the original data.\n");
static PyObject *Quaternion_copy(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
return Quaternion_CreatePyObject(self->quat, Py_TYPE(self));
}
static PyObject *Quaternion_deepcopy(QuaternionObject *self, PyObject *args)
{
if (!PyC_CheckArgs_DeepCopy(args)) {
return NULL;
}
return Quaternion_copy(self);
}
/* print the object to screen */
static PyObject *Quaternion_repr(QuaternionObject *self)
{
PyObject *ret, *tuple;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
tuple = Quaternion_to_tuple_ext(self, -1);
ret = PyUnicode_FromFormat("Quaternion(%R)", tuple);
Py_DECREF(tuple);
return ret;
}
#ifndef MATH_STANDALONE
static PyObject *Quaternion_str(QuaternionObject *self)
{
DynStr *ds;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
ds = BLI_dynstr_new();
BLI_dynstr_appendf(ds,
"<Quaternion (w=%.4f, x=%.4f, y=%.4f, z=%.4f)>",
self->quat[0],
self->quat[1],
self->quat[2],
self->quat[3]);
return mathutils_dynstr_to_py(ds); /* frees ds */
}
#endif
static PyObject *Quaternion_richcmpr(PyObject *a, PyObject *b, int op)
{
PyObject *res;
int ok = -1; /* zero is true */
if (QuaternionObject_Check(a) && QuaternionObject_Check(b)) {
QuaternionObject *quatA = (QuaternionObject *)a;
QuaternionObject *quatB = (QuaternionObject *)b;
if (BaseMath_ReadCallback(quatA) == -1 || BaseMath_ReadCallback(quatB) == -1) {
return NULL;
}
ok = (EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1)) ? 0 : -1;
}
switch (op) {
case Py_NE:
ok = !ok;
ATTR_FALLTHROUGH;
case Py_EQ:
res = ok ? Py_False : Py_True;
break;
case Py_LT:
case Py_LE:
case Py_GT:
case Py_GE:
res = Py_NotImplemented;
break;
default:
PyErr_BadArgument();
return NULL;
}
return Py_INCREF_RET(res);
}
static Py_hash_t Quaternion_hash(QuaternionObject *self)
{
if (BaseMath_ReadCallback(self) == -1) {
return -1;
}
if (BaseMathObject_Prepare_ForHash(self) == -1) {
return -1;
}
return mathutils_array_hash(self->quat, QUAT_SIZE);
}
/* ---------------------SEQUENCE PROTOCOLS------------------------ */
/* ----------------------------len(object)------------------------ */
/* sequence length */
static int Quaternion_len(QuaternionObject *UNUSED(self))
{
return QUAT_SIZE;
}
/* ----------------------------object[]--------------------------- */
/* sequence accessor (get) */
static PyObject *Quaternion_item(QuaternionObject *self, int i)
{
if (i < 0) {
i = QUAT_SIZE - i;
}
if (i < 0 || i >= QUAT_SIZE) {
PyErr_SetString(PyExc_IndexError,
"quaternion[attribute]: "
"array index out of range");
return NULL;
}
if (BaseMath_ReadIndexCallback(self, i) == -1) {
return NULL;
}
return PyFloat_FromDouble(self->quat[i]);
}
/* ----------------------------object[]------------------------- */
/* sequence accessor (set) */
static int Quaternion_ass_item(QuaternionObject *self, int i, PyObject *ob)
{
float f;
if (BaseMath_Prepare_ForWrite(self) == -1) {
return -1;
}
f = (float)PyFloat_AsDouble(ob);
if (f == -1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"quaternion[index] = x: "
"assigned value not a number");
return -1;
}
if (i < 0) {
i = QUAT_SIZE - i;
}
if (i < 0 || i >= QUAT_SIZE) {
PyErr_SetString(PyExc_IndexError,
"quaternion[attribute] = x: "
"array assignment index out of range");
return -1;
}
self->quat[i] = f;
if (BaseMath_WriteIndexCallback(self, i) == -1) {
return -1;
}
return 0;
}
/* ----------------------------object[z:y]------------------------ */
/* sequence slice (get) */
static PyObject *Quaternion_slice(QuaternionObject *self, int begin, int end)
{
PyObject *tuple;
int count;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
CLAMP(begin, 0, QUAT_SIZE);
if (end < 0) {
end = (QUAT_SIZE + 1) + end;
}
CLAMP(end, 0, QUAT_SIZE);
begin = MIN2(begin, end);
tuple = PyTuple_New(end - begin);
for (count = begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->quat[count]));
}
return tuple;
}
/* ----------------------------object[z:y]------------------------ */
/* sequence slice (set) */
static int Quaternion_ass_slice(QuaternionObject *self, int begin, int end, PyObject *seq)
{
int i, size;
float quat[QUAT_SIZE];
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
CLAMP(begin, 0, QUAT_SIZE);
if (end < 0) {
end = (QUAT_SIZE + 1) + end;
}
CLAMP(end, 0, QUAT_SIZE);
begin = MIN2(begin, end);
if ((size = mathutils_array_parse(
quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1) {
return -1;
}
if (size != (end - begin)) {
PyErr_SetString(PyExc_ValueError,
"quaternion[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
/* parsed well - now set in vector */
for (i = 0; i < size; i++) {
self->quat[begin + i] = quat[i];
}
(void)BaseMath_WriteCallback(self);
return 0;
}
static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred()) {
return NULL;
}
if (i < 0) {
i += QUAT_SIZE;
}
return Quaternion_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0) {
return NULL;
}
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
return Quaternion_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError, "slice steps not supported with quaternions");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"quaternion indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
if (i < 0) {
i += QUAT_SIZE;
}
return Quaternion_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0) {
return -1;
}
if (step == 1) {
return Quaternion_ass_slice(self, start, stop, value);
}
else {
PyErr_SetString(PyExc_IndexError, "slice steps not supported with quaternion");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"quaternion indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return -1;
}
}
/* ------------------------NUMERIC PROTOCOLS---------------------- */
/* ------------------------obj + obj------------------------------ */
/* addition */
static PyObject *Quaternion_add(PyObject *q1, PyObject *q2)
{
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
PyErr_Format(PyExc_TypeError,
"Quaternion addition: (%s + %s) "
"invalid type for this operation",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
quat1 = (QuaternionObject *)q1;
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
return Quaternion_CreatePyObject(quat, Py_TYPE(q1));
}
/* ------------------------obj - obj------------------------------ */
/* subtraction */
static PyObject *Quaternion_sub(PyObject *q1, PyObject *q2)
{
int x;
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
PyErr_Format(PyExc_TypeError,
"Quaternion subtraction: (%s - %s) "
"invalid type for this operation",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
quat1 = (QuaternionObject *)q1;
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat1) == -1 || BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
for (x = 0; x < QUAT_SIZE; x++) {
quat[x] = quat1->quat[x] - quat2->quat[x];
}
return Quaternion_CreatePyObject(quat, Py_TYPE(q1));
}
static PyObject *quat_mul_float(QuaternionObject *quat, const float scalar)
{
float tquat[4];
copy_qt_qt(tquat, quat->quat);
mul_qt_fl(tquat, scalar);
return Quaternion_CreatePyObject(tquat, Py_TYPE(quat));
}
/*------------------------obj * obj------------------------------
* multiplication */
static PyObject *Quaternion_mul(PyObject *q1, PyObject *q2)
{
float scalar;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (QuaternionObject_Check(q1)) {
quat1 = (QuaternionObject *)q1;
if (BaseMath_ReadCallback(quat1) == -1) {
return NULL;
}
}
if (QuaternionObject_Check(q2)) {
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
}
if (quat1 && quat2) { /* QUAT * QUAT (element-wise product) */
#ifdef USE_MATHUTILS_ELEM_MUL
float quat[QUAT_SIZE];
mul_vn_vnvn(quat, quat1->quat, quat2->quat, QUAT_SIZE);
return Quaternion_CreatePyObject(quat, Py_TYPE(q1));
#endif
}
/* the only case this can happen (for a supported type is "FLOAT * QUAT") */
else if (quat2) { /* FLOAT * QUAT */
if (((scalar = PyFloat_AsDouble(q1)) == -1.0f && PyErr_Occurred()) == 0) {
return quat_mul_float(quat2, scalar);
}
}
else if (quat1) { /* QUAT * FLOAT */
if ((((scalar = PyFloat_AsDouble(q2)) == -1.0f && PyErr_Occurred()) == 0)) {
return quat_mul_float(quat1, scalar);
}
}
PyErr_Format(PyExc_TypeError,
"Element-wise multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
/*------------------------obj *= obj------------------------------
* in-place multiplication */
static PyObject *Quaternion_imul(PyObject *q1, PyObject *q2)
{
float scalar;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (QuaternionObject_Check(q1)) {
quat1 = (QuaternionObject *)q1;
if (BaseMath_ReadCallback(quat1) == -1) {
return NULL;
}
}
if (QuaternionObject_Check(q2)) {
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
}
if (quat1 && quat2) { /* QUAT *= QUAT (inplace element-wise product) */
#ifdef USE_MATHUTILS_ELEM_MUL
mul_vn_vn(quat1->quat, quat2->quat, QUAT_SIZE);
#else
PyErr_Format(PyExc_TypeError,
"In place element-wise multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
#endif
}
else if (quat1 && (((scalar = PyFloat_AsDouble(q2)) == -1.0f && PyErr_Occurred()) == 0)) {
/* QUAT *= FLOAT */
mul_qt_fl(quat1->quat, scalar);
}
else {
PyErr_Format(PyExc_TypeError,
"Element-wise multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
(void)BaseMath_WriteCallback(quat1);
Py_INCREF(q1);
return q1;
}
/*------------------------obj @ obj------------------------------
* quaternion multiplication */
static PyObject *Quaternion_matmul(PyObject *q1, PyObject *q2)
{
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (QuaternionObject_Check(q1)) {
quat1 = (QuaternionObject *)q1;
if (BaseMath_ReadCallback(quat1) == -1) {
return NULL;
}
}
if (QuaternionObject_Check(q2)) {
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
}
if (quat1 && quat2) { /* QUAT @ QUAT (cross product) */
mul_qt_qtqt(quat, quat1->quat, quat2->quat);
return Quaternion_CreatePyObject(quat, Py_TYPE(q1));
}
else if (quat1) {
/* QUAT @ VEC */
if (VectorObject_Check(q2)) {
VectorObject *vec2 = (VectorObject *)q2;
float tvec[3];
if (vec2->size != 3) {
PyErr_SetString(PyExc_ValueError,
"Vector multiplication: "
"only 3D vector rotations (with quats) "
"currently supported");
return NULL;
}
if (BaseMath_ReadCallback(vec2) == -1) {
return NULL;
}
copy_v3_v3(tvec, vec2->vec);
mul_qt_v3(quat1->quat, tvec);
return Vector_CreatePyObject(tvec, 3, Py_TYPE(vec2));
}
}
PyErr_Format(PyExc_TypeError,
"Quaternion multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
/*------------------------obj @= obj------------------------------
* in-place quaternion multiplication */
static PyObject *Quaternion_imatmul(PyObject *q1, PyObject *q2)
{
float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if (QuaternionObject_Check(q1)) {
quat1 = (QuaternionObject *)q1;
if (BaseMath_ReadCallback(quat1) == -1) {
return NULL;
}
}
if (QuaternionObject_Check(q2)) {
quat2 = (QuaternionObject *)q2;
if (BaseMath_ReadCallback(quat2) == -1) {
return NULL;
}
}
if (quat1 && quat2) { /* QUAT @ QUAT (cross product) */
mul_qt_qtqt(quat, quat1->quat, quat2->quat);
copy_qt_qt(quat1->quat, quat);
}
else {
PyErr_Format(PyExc_TypeError,
"In place quaternion multiplication: "
"not supported between '%.200s' and '%.200s' types",
Py_TYPE(q1)->tp_name,
Py_TYPE(q2)->tp_name);
return NULL;
}
(void)BaseMath_WriteCallback(quat1);
Py_INCREF(q1);
return q1;
}
/* -obj
* returns the negative of this object*/
static PyObject *Quaternion_neg(QuaternionObject *self)
{
float tquat[QUAT_SIZE];
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
negate_v4_v4(tquat, self->quat);
return Quaternion_CreatePyObject(tquat, Py_TYPE(self));
}
/* -----------------PROTOCOL DECLARATIONS-------------------------- */
static PySequenceMethods Quaternion_SeqMethods = {
(lenfunc)Quaternion_len, /* sq_length */
(binaryfunc)NULL, /* sq_concat */
(ssizeargfunc)NULL, /* sq_repeat */
(ssizeargfunc)Quaternion_item, /* sq_item */
(ssizessizeargfunc)NULL, /* sq_slice, deprecated */
(ssizeobjargproc)Quaternion_ass_item, /* sq_ass_item */
(ssizessizeobjargproc)NULL, /* sq_ass_slice, deprecated */
(objobjproc)NULL, /* sq_contains */
(binaryfunc)NULL, /* sq_inplace_concat */
(ssizeargfunc)NULL, /* sq_inplace_repeat */
};
static PyMappingMethods Quaternion_AsMapping = {
(lenfunc)Quaternion_len,
(binaryfunc)Quaternion_subscript,
(objobjargproc)Quaternion_ass_subscript,
};
static PyNumberMethods Quaternion_NumMethods = {
(binaryfunc)Quaternion_add, /*nb_add*/
(binaryfunc)Quaternion_sub, /*nb_subtract*/
(binaryfunc)Quaternion_mul, /*nb_multiply*/
NULL, /*nb_remainder*/
NULL, /*nb_divmod*/
NULL, /*nb_power*/
(unaryfunc)Quaternion_neg, /*nb_negative*/
(unaryfunc)Quaternion_copy, /*tp_positive*/
(unaryfunc)0, /*tp_absolute*/
(inquiry)0, /*tp_bool*/
(unaryfunc)0, /*nb_invert*/
NULL, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
NULL, /*nb_and*/
NULL, /*nb_xor*/
NULL, /*nb_or*/
NULL, /*nb_int*/
NULL, /*nb_reserved*/
NULL, /*nb_float*/
NULL, /* nb_inplace_add */
NULL, /* nb_inplace_subtract */
(binaryfunc)Quaternion_imul, /* nb_inplace_multiply */
NULL, /* nb_inplace_remainder */
NULL, /* nb_inplace_power */
NULL, /* nb_inplace_lshift */
NULL, /* nb_inplace_rshift */
NULL, /* nb_inplace_and */
NULL, /* nb_inplace_xor */
NULL, /* nb_inplace_or */
NULL, /* nb_floor_divide */
NULL, /* nb_true_divide */
NULL, /* nb_inplace_floor_divide */
NULL, /* nb_inplace_true_divide */
NULL, /* nb_index */
(binaryfunc)Quaternion_matmul, /* nb_matrix_multiply */
(binaryfunc)Quaternion_imatmul, /* nb_inplace_matrix_multiply */
};
PyDoc_STRVAR(Quaternion_axis_doc, "Quaternion axis value.\n\n:type: float");
static PyObject *Quaternion_axis_get(QuaternionObject *self, void *type)
{
return Quaternion_item(self, POINTER_AS_INT(type));
}
static int Quaternion_axis_set(QuaternionObject *self, PyObject *value, void *type)
{
return Quaternion_ass_item(self, POINTER_AS_INT(type), value);
}
PyDoc_STRVAR(Quaternion_magnitude_doc, "Size of the quaternion (read-only).\n\n:type: float");
static PyObject *Quaternion_magnitude_get(QuaternionObject *self, void *UNUSED(closure))
{
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
return PyFloat_FromDouble(sqrtf(dot_qtqt(self->quat, self->quat)));
}
PyDoc_STRVAR(Quaternion_angle_doc, "Angle of the quaternion.\n\n:type: float");
static PyObject *Quaternion_angle_get(QuaternionObject *self, void *UNUSED(closure))
{
float tquat[4];
float angle;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
normalize_qt_qt(tquat, self->quat);
angle = 2.0f * saacos(tquat[0]);
quat__axis_angle_sanitize(NULL, &angle);
return PyFloat_FromDouble(angle);
}
static int Quaternion_angle_set(QuaternionObject *self, PyObject *value, void *UNUSED(closure))
{
float tquat[4];
float len;
float axis[3], angle_dummy;
float angle;
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
len = normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle_dummy, tquat);
angle = PyFloat_AsDouble(value);
if (angle == -1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError, "Quaternion.angle = value: float expected");
return -1;
}
angle = angle_wrap_rad(angle);
quat__axis_angle_sanitize(axis, &angle);
axis_angle_to_quat(self->quat, axis, angle);
mul_qt_fl(self->quat, len);
if (BaseMath_WriteCallback(self) == -1) {
return -1;
}
return 0;
}
PyDoc_STRVAR(Quaternion_axis_vector_doc, "Quaternion axis as a vector.\n\n:type: :class:`Vector`");
static PyObject *Quaternion_axis_vector_get(QuaternionObject *self, void *UNUSED(closure))
{
float tquat[4];
float axis[3];
float angle_dummy;
if (BaseMath_ReadCallback(self) == -1) {
return NULL;
}
normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle_dummy, tquat);
quat__axis_angle_sanitize(axis, NULL);
return Vector_CreatePyObject(axis, 3, NULL);
}
static int Quaternion_axis_vector_set(QuaternionObject *self,
PyObject *value,
void *UNUSED(closure))
{
float tquat[4];
float len;
float axis[3];
float angle;
if (BaseMath_ReadCallback_ForWrite(self) == -1) {
return -1;
}
len = normalize_qt_qt(tquat, self->quat);
quat_to_axis_angle(axis, &angle, tquat); /* axis value is unused */
if (mathutils_array_parse(axis, 3, 3, value, "quat.axis = other") == -1) {
return -1;
}
quat__axis_angle_sanitize(axis, &angle);
axis_angle_to_quat(self->quat, axis, angle);
mul_qt_fl(self->quat, len);
if (BaseMath_WriteCallback(self) == -1) {
return -1;
}
return 0;
}
/* ----------------------------------mathutils.Quaternion() -------------- */
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *seq = NULL;
double angle = 0.0f;
float quat[QUAT_SIZE];
unit_qt(quat);
if (kwds && PyDict_Size(kwds)) {
PyErr_SetString(PyExc_TypeError,
"mathutils.Quaternion(): "
"takes no keyword args");
return NULL;
}
if (!PyArg_ParseTuple(args, "|Od:mathutils.Quaternion", &seq, &angle)) {
return NULL;
}
switch (PyTuple_GET_SIZE(args)) {
case 0:
break;
case 1: {
int size;
if ((size = mathutils_array_parse(quat, 3, QUAT_SIZE, seq, "mathutils.Quaternion()")) ==
-1) {
return NULL;
}
if (size == 4) {
/* 4d: Quaternion (common case) */
}
else {
/* 3d: Interpret as exponential map */
BLI_assert(size == 3);
expmap_to_quat(quat, quat);
}
break;
}
case 2: {
float axis[3];
if (mathutils_array_parse(axis, 3, 3, seq, "mathutils.Quaternion()") == -1) {
return NULL;
}
angle = angle_wrap_rad(angle); /* clamp because of precision issues */
axis_angle_to_quat(quat, axis, angle);
break;
/* PyArg_ParseTuple assures no more than 2 */
}
}
return Quaternion_CreatePyObject(quat, type);
}
static PyObject *quat__apply_to_copy(PyNoArgsFunction quat_func, QuaternionObject *self)
{
PyObject *ret = Quaternion_copy(self);
PyObject *ret_dummy = quat_func(ret);
if (ret_dummy) {
Py_DECREF(ret_dummy);
return ret;
}
else { /* error */
Py_DECREF(ret);
return NULL;
}
}
/* axis vector suffers from precision errors, use this function to ensure */
static void quat__axis_angle_sanitize(float axis[3], float *angle)
{
if (axis) {
if (is_zero_v3(axis) || !isfinite(axis[0]) || !isfinite(axis[1]) || !isfinite(axis[2])) {
axis[0] = 1.0f;
axis[1] = 0.0f;
axis[2] = 0.0f;
}
else if (EXPP_FloatsAreEqual(axis[0], 0.0f, 10) && EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
EXPP_FloatsAreEqual(axis[2], 0.0f, 10)) {
axis[0] = 1.0f;
}
}
if (angle) {
if (!isfinite(*angle)) {
*angle = 0.0f;
}
}
}
/* -----------------------METHOD DEFINITIONS ---------------------- */
static struct PyMethodDef Quaternion_methods[] = {
/* in place only */
{"identity", (PyCFunction)Quaternion_identity, METH_NOARGS, Quaternion_identity_doc},
{"negate", (PyCFunction)Quaternion_negate, METH_NOARGS, Quaternion_negate_doc},
/* operate on original or copy */
{"conjugate", (PyCFunction)Quaternion_conjugate, METH_NOARGS, Quaternion_conjugate_doc},
{"conjugated", (PyCFunction)Quaternion_conjugated, METH_NOARGS, Quaternion_conjugated_doc},
{"invert", (PyCFunction)Quaternion_invert, METH_NOARGS, Quaternion_invert_doc},
{"inverted", (PyCFunction)Quaternion_inverted, METH_NOARGS, Quaternion_inverted_doc},
{"normalize", (PyCFunction)Quaternion_normalize, METH_NOARGS, Quaternion_normalize_doc},
{"normalized", (PyCFunction)Quaternion_normalized, METH_NOARGS, Quaternion_normalized_doc},
/* return converted representation */
{"to_euler", (PyCFunction)Quaternion_to_euler, METH_VARARGS, Quaternion_to_euler_doc},
{"to_matrix", (PyCFunction)Quaternion_to_matrix, METH_NOARGS, Quaternion_to_matrix_doc},
{"to_axis_angle",
(PyCFunction)Quaternion_to_axis_angle,
METH_NOARGS,
Quaternion_to_axis_angle_doc},
{"to_swing_twist",
(PyCFunction)Quaternion_to_swing_twist,
METH_O,
Quaternion_to_swing_twist_doc},
{"to_exponential_map",
(PyCFunction)Quaternion_to_exponential_map,
METH_NOARGS,
Quaternion_to_exponential_map_doc},
/* operation between 2 or more types */
{"cross", (PyCFunction)Quaternion_cross, METH_O, Quaternion_cross_doc},
{"dot", (PyCFunction)Quaternion_dot, METH_O, Quaternion_dot_doc},
{"rotation_difference",
(PyCFunction)Quaternion_rotation_difference,
METH_O,
Quaternion_rotation_difference_doc},
{"slerp", (PyCFunction)Quaternion_slerp, METH_VARARGS, Quaternion_slerp_doc},
{"rotate", (PyCFunction)Quaternion_rotate, METH_O, Quaternion_rotate_doc},
/* base-math methods */
{"freeze", (PyCFunction)BaseMathObject_freeze, METH_NOARGS, BaseMathObject_freeze_doc},
{"copy", (PyCFunction)Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
{"__copy__", (PyCFunction)Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
{"__deepcopy__", (PyCFunction)Quaternion_deepcopy, METH_VARARGS, Quaternion_copy_doc},
{NULL, NULL, 0, NULL},
};
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Quaternion_getseters[] = {
{(char *)"w",
(getter)Quaternion_axis_get,
(setter)Quaternion_axis_set,
Quaternion_axis_doc,
(void *)0},
{(char *)"x",
(getter)Quaternion_axis_get,
(setter)Quaternion_axis_set,
Quaternion_axis_doc,
(void *)1},
{(char *)"y",
(getter)Quaternion_axis_get,
(setter)Quaternion_axis_set,
Quaternion_axis_doc,
(void *)2},
{(char *)"z",
(getter)Quaternion_axis_get,
(setter)Quaternion_axis_set,
Quaternion_axis_doc,
(void *)3},
{(char *)"magnitude",
(getter)Quaternion_magnitude_get,
(setter)NULL,
Quaternion_magnitude_doc,
NULL},
{(char *)"angle",
(getter)Quaternion_angle_get,
(setter)Quaternion_angle_set,
Quaternion_angle_doc,
NULL},
{(char *)"axis",
(getter)Quaternion_axis_vector_get,
(setter)Quaternion_axis_vector_set,
Quaternion_axis_vector_doc,
NULL},
{(char *)"is_wrapped",
(getter)BaseMathObject_is_wrapped_get,
(setter)NULL,
BaseMathObject_is_wrapped_doc,
NULL},
{(char *)"is_frozen",
(getter)BaseMathObject_is_frozen_get,
(setter)NULL,
BaseMathObject_is_frozen_doc,
NULL},
{(char *)"owner",
(getter)BaseMathObject_owner_get,
(setter)NULL,
BaseMathObject_owner_doc,
NULL},
{NULL, NULL, NULL, NULL, NULL} /* Sentinel */
};
/* ------------------PY_OBECT DEFINITION-------------------------- */
PyDoc_STRVAR(quaternion_doc,
".. class:: Quaternion([seq, [angle]])\n"
"\n"
" This object gives access to Quaternions in Blender.\n"
"\n"
" :param seq: size 3 or 4\n"
" :type seq: :class:`Vector`\n"
" :param angle: rotation angle, in radians\n"
" :type angle: float\n"
"\n"
" The constructor takes arguments in various forms:\n"
"\n"
" (), *no args*\n"
" Create an identity quaternion\n"
" (*wxyz*)\n"
" Create a quaternion from a ``(w, x, y, z)`` vector.\n"
" (*exponential_map*)\n"
" Create a quaternion from a 3d exponential map vector.\n"
"\n"
" .. seealso:: :meth:`to_exponential_map`\n"
" (*axis, angle*)\n"
" Create a quaternion representing a rotation of *angle* radians over *axis*.\n"
"\n"
" .. seealso:: :meth:`to_axis_angle`\n");
PyTypeObject quaternion_Type = {
PyVarObject_HEAD_INIT(NULL, 0) "Quaternion", /* tp_name */
sizeof(QuaternionObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)BaseMathObject_dealloc, /* tp_dealloc */
(printfunc)NULL, /* tp_print */
NULL, /* tp_getattr */
NULL, /* tp_setattr */
NULL, /* tp_compare */
(reprfunc)Quaternion_repr, /* tp_repr */
&Quaternion_NumMethods, /* tp_as_number */
&Quaternion_SeqMethods, /* tp_as_sequence */
&Quaternion_AsMapping, /* tp_as_mapping */
(hashfunc)Quaternion_hash, /* tp_hash */
NULL, /* tp_call */
#ifndef MATH_STANDALONE
(reprfunc)Quaternion_str, /* tp_str */
#else
NULL, /* tp_str */
#endif
NULL, /* tp_getattro */
NULL, /* tp_setattro */
NULL, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
quaternion_doc, /* tp_doc */
(traverseproc)BaseMathObject_traverse, /* tp_traverse */
(inquiry)BaseMathObject_clear, /* tp_clear */
(richcmpfunc)Quaternion_richcmpr, /* tp_richcompare */
0, /* tp_weaklistoffset */
NULL, /* tp_iter */
NULL, /* tp_iternext */
Quaternion_methods, /* tp_methods */
NULL, /* tp_members */
Quaternion_getseters, /* tp_getset */
NULL, /* tp_base */
NULL, /* tp_dict */
NULL, /* tp_descr_get */
NULL, /* tp_descr_set */
0, /* tp_dictoffset */
NULL, /* tp_init */
NULL, /* tp_alloc */
Quaternion_new, /* tp_new */
NULL, /* tp_free */
NULL, /* tp_is_gc */
NULL, /* tp_bases */
NULL, /* tp_mro */
NULL, /* tp_cache */
NULL, /* tp_subclasses */
NULL, /* tp_weaklist */
NULL, /* tp_del */
};
PyObject *Quaternion_CreatePyObject(const float quat[4], PyTypeObject *base_type)
{
QuaternionObject *self;
float *quat_alloc;
quat_alloc = PyMem_Malloc(QUAT_SIZE * sizeof(float));
if (UNLIKELY(quat_alloc == NULL)) {
PyErr_SetString(PyExc_MemoryError,
"Quaternion(): "
"problem allocating data");
return NULL;
}
self = BASE_MATH_NEW(QuaternionObject, quaternion_Type, base_type);
if (self) {
self->quat = quat_alloc;
/* init callbacks as NULL */
self->cb_user = NULL;
self->cb_type = self->cb_subtype = 0;
/* NEW */
if (!quat) { /* new empty */
unit_qt(self->quat);
}
else {
copy_qt_qt(self->quat, quat);
}
self->flag = BASE_MATH_FLAG_DEFAULT;
}
else {
PyMem_Free(quat_alloc);
}
return (PyObject *)self;
}
PyObject *Quaternion_CreatePyObject_wrap(float quat[4], PyTypeObject *base_type)
{
QuaternionObject *self;
self = BASE_MATH_NEW(QuaternionObject, quaternion_Type, base_type);
if (self) {
/* init callbacks as NULL */
self->cb_user = NULL;
self->cb_type = self->cb_subtype = 0;
/* WRAP */
self->quat = quat;
self->flag = BASE_MATH_FLAG_DEFAULT | BASE_MATH_FLAG_IS_WRAP;
}
return (PyObject *)self;
}
PyObject *Quaternion_CreatePyObject_cb(PyObject *cb_user,
unsigned char cb_type,
unsigned char cb_subtype)
{
QuaternionObject *self = (QuaternionObject *)Quaternion_CreatePyObject(NULL, NULL);
if (self) {
Py_INCREF(cb_user);
self->cb_user = cb_user;
self->cb_type = cb_type;
self->cb_subtype = cb_subtype;
PyObject_GC_Track(self);
}
return (PyObject *)self;
}