Files
blender/intern/cycles/kernel/closure/bsdf.h
Mikhail Matrosov 9c6a382f95 Cycles: reduce shadow terminator artifacts
Offset rays from the flat surface to match where they would be for a smooth
surface as specified by the normals. In the shading panel there is now a
Shading Offset (existing option) and Geometry Offset (new).

The Geometry Offset works as follows:
* 0: disabled
* 0.001: only terminated triangles (normal points to the light, geometry
  doesn't) are affected
* 0.1 (default): triangles at grazing angles are affected, and the effect
  fades out
* 1: all triangles are affected

Limitations:
* The artifact is still visible in some cases, it could be that some quads
  require to be treated specifically as quads.
* Inconsistent normals cause artifacts.
* If small objects cast shadows to a big low poly surface, the shadows can
  appear to be in a wrong place - because the surface moved slightly above
  the geometry. This can be noticed only at grazing angles to light.
* Approximated surfaces of two non-intersecting low-poly objects can overlap
  that causes off-the-wall shadows.

Generally, using one or a few levels of subdivision can get rid of artifacts
faster than before.

Differential Revision: https://developer.blender.org/D11065
2021-06-28 14:05:22 +02:00

770 lines
30 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// clang-format off
#include "kernel/closure/bsdf_ashikhmin_velvet.h"
#include "kernel/closure/bsdf_diffuse.h"
#include "kernel/closure/bsdf_oren_nayar.h"
#include "kernel/closure/bsdf_phong_ramp.h"
#include "kernel/closure/bsdf_diffuse_ramp.h"
#include "kernel/closure/bsdf_microfacet.h"
#include "kernel/closure/bsdf_microfacet_multi.h"
#include "kernel/closure/bsdf_reflection.h"
#include "kernel/closure/bsdf_refraction.h"
#include "kernel/closure/bsdf_transparent.h"
#include "kernel/closure/bsdf_ashikhmin_shirley.h"
#include "kernel/closure/bsdf_toon.h"
#include "kernel/closure/bsdf_hair.h"
#include "kernel/closure/bsdf_hair_principled.h"
#include "kernel/closure/bsdf_principled_diffuse.h"
#include "kernel/closure/bsdf_principled_sheen.h"
#include "kernel/closure/bssrdf.h"
#include "kernel/closure/volume.h"
// clang-format on
CCL_NAMESPACE_BEGIN
/* Returns the square of the roughness of the closure if it has roughness,
* 0 for singular closures and 1 otherwise. */
ccl_device_inline float bsdf_get_specular_roughness_squared(const ShaderClosure *sc)
{
if (CLOSURE_IS_BSDF_SINGULAR(sc->type)) {
return 0.0f;
}
if (CLOSURE_IS_BSDF_MICROFACET(sc->type)) {
MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
return bsdf->alpha_x * bsdf->alpha_y;
}
return 1.0f;
}
ccl_device_inline float bsdf_get_roughness_squared(const ShaderClosure *sc)
{
/* This version includes diffuse, mainly for baking Principled BSDF
* where specular and metallic zero otherwise does not bake the
* specified roughness parameter. */
if (sc->type == CLOSURE_BSDF_OREN_NAYAR_ID) {
OrenNayarBsdf *bsdf = (OrenNayarBsdf *)sc;
return sqr(sqr(bsdf->roughness));
}
if (sc->type == CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID) {
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)sc;
return sqr(sqr(bsdf->roughness));
}
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
return 0.0f;
}
return bsdf_get_specular_roughness_squared(sc);
}
/* An additional term to smooth illumination on grazing angles when using bump mapping.
* Based on "Taming the Shadow Terminator" by Matt Jen-Yuan Chiang,
* Yining Karl Li and Brent Burley. */
ccl_device_inline float bump_shadowing_term(float3 Ng, float3 N, float3 I)
{
float g = safe_divide(dot(Ng, I), dot(N, I) * dot(Ng, N));
/* If the incoming light is on the unshadowed side, return full brightness. */
if (g >= 1.0f) {
return 1.0f;
}
/* If the incoming light points away from the surface, return black. */
if (g < 0.0f) {
return 0.0f;
}
/* Return smoothed value to avoid discontinuity at perpendicular angle. */
float g2 = sqr(g);
return -g2 * g + g2 + g;
}
/* Shadow terminator workaround, taken from Appleseed.
* Original code is under the MIT License
* Copyright (c) 2019 Francois Beaune, The appleseedhq Organization */
ccl_device_inline float shift_cos_in(float cos_in, const float frequency_multiplier)
{
cos_in = min(cos_in, 1.0f);
const float angle = fast_acosf(cos_in);
const float val = max(cosf(angle * frequency_multiplier), 0.0f) / cos_in;
return val;
}
ccl_device_inline int bsdf_sample(KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
float randu,
float randv,
float3 *eval,
float3 *omega_in,
differential3 *domega_in,
float *pdf)
{
/* For curves use the smooth normal, particularly for ribbons the geometric
* normal gives too much darkening otherwise. */
int label;
const float3 Ng = (sd->type & PRIMITIVE_ALL_CURVE) ? sc->N : sd->Ng;
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
label = bsdf_diffuse_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
label = bsdf_oren_nayar_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
# ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
label = bsdf_phong_ramp_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
label = bsdf_diffuse_ramp_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
# endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
label = bsdf_translucent_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
label = bsdf_reflection_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
label = bsdf_refraction_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
label = bsdf_transparent_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
label = bsdf_microfacet_ggx_sample(kg,
sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
label = bsdf_microfacet_multi_ggx_sample(kg,
sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf,
&sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
label = bsdf_microfacet_multi_ggx_glass_sample(kg,
sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf,
&sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
label = bsdf_microfacet_beckmann_sample(kg,
sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
label = bsdf_ashikhmin_shirley_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
label = bsdf_ashikhmin_velvet_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
label = bsdf_diffuse_toon_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
label = bsdf_glossy_toon_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
label = bsdf_hair_reflection_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
label = bsdf_hair_transmission_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_HAIR_PRINCIPLED_ID:
label = bsdf_principled_hair_sample(
kg, sc, sd, randu, randv, eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
label = bsdf_principled_diffuse_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
label = bsdf_principled_sheen_sample(sc,
Ng,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
# endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
label = volume_henyey_greenstein_sample(sc,
sd->I,
sd->dI.dx,
sd->dI.dy,
randu,
randv,
eval,
omega_in,
&domega_in->dx,
&domega_in->dy,
pdf);
break;
#endif
default:
label = LABEL_NONE;
break;
}
/* Test if BSDF sample should be treated as transparent for background. */
if (label & LABEL_TRANSMIT) {
float threshold_squared = kernel_data.background.transparent_roughness_squared_threshold;
if (threshold_squared >= 0.0f) {
if (bsdf_get_specular_roughness_squared(sc) <= threshold_squared) {
label |= LABEL_TRANSMIT_TRANSPARENT;
}
}
}
else {
/* Shadow terminator offset. */
const float frequency_multiplier =
kernel_tex_fetch(__objects, sd->object).shadow_terminator_shading_offset;
if (frequency_multiplier > 1.0f) {
*eval *= shift_cos_in(dot(*omega_in, sc->N), frequency_multiplier);
}
if (label & LABEL_DIFFUSE) {
if (!isequal_float3(sc->N, sd->N)) {
*eval *= bump_shadowing_term((label & LABEL_TRANSMIT) ? -sd->N : sd->N, sc->N, *omega_in);
}
}
}
return label;
}
#ifndef __KERNEL_CUDA__
ccl_device
#else
ccl_device_inline
#endif
float3
bsdf_eval(KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
const float3 omega_in,
float *pdf)
{
float3 eval;
if (dot(sd->N, omega_in) >= 0.0f) {
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_reflect(sc, sd->I, omega_in, pdf);
break;
# ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
eval = bsdf_phong_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
eval = bsdf_diffuse_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
# endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(
sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
eval = bsdf_ashikhmin_shirley_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
eval = bsdf_diffuse_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
eval = bsdf_glossy_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_PRINCIPLED_ID:
eval = bsdf_principled_hair_eval(kg, sd, sc, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
eval = bsdf_hair_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
eval = bsdf_hair_transmission_eval_reflect(sc, sd->I, omega_in, pdf);
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
eval = bsdf_principled_sheen_eval_reflect(sc, sd->I, omega_in, pdf);
break;
# endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
if (!isequal_float3(sc->N, sd->N)) {
eval *= bump_shadowing_term(sd->N, sc->N, omega_in);
}
}
/* Shadow terminator offset. */
const float frequency_multiplier =
kernel_tex_fetch(__objects, sd->object).shadow_terminator_shading_offset;
if (frequency_multiplier > 1.0f) {
eval *= shift_cos_in(dot(omega_in, sc->N), frequency_multiplier);
}
}
else {
switch (sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
eval = bsdf_oren_nayar_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSLUCENT_ID:
eval = bsdf_translucent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
eval = bsdf_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
eval = bsdf_refraction_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
eval = bsdf_transparent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
eval = bsdf_microfacet_ggx_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(
sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
eval = bsdf_microfacet_beckmann_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
eval = bsdf_ashikhmin_shirley_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
eval = bsdf_ashikhmin_velvet_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
eval = bsdf_diffuse_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
eval = bsdf_glossy_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_PRINCIPLED_ID:
eval = bsdf_principled_hair_eval(kg, sd, sc, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
eval = bsdf_hair_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
eval = bsdf_hair_transmission_eval_transmit(sc, sd->I, omega_in, pdf);
break;
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
eval = bsdf_principled_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
eval = bsdf_principled_sheen_eval_transmit(sc, sd->I, omega_in, pdf);
break;
# endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
eval = make_float3(0.0f, 0.0f, 0.0f);
break;
}
if (CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
if (!isequal_float3(sc->N, sd->N)) {
eval *= bump_shadowing_term(-sd->N, sc->N, omega_in);
}
}
}
return eval;
}
ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
{
/* ToDo: do we want to blur volume closures? */
#ifdef __SVM__
switch (sc->type) {
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
bsdf_microfacet_multi_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
bsdf_microfacet_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
bsdf_microfacet_beckmann_blur(sc, roughness);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
bsdf_ashikhmin_shirley_blur(sc, roughness);
break;
case CLOSURE_BSDF_HAIR_PRINCIPLED_ID:
bsdf_principled_hair_blur(sc, roughness);
break;
default:
break;
}
#endif
}
ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
{
#ifdef __SVM__
switch (a->type) {
case CLOSURE_BSDF_TRANSPARENT_ID:
return true;
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
case CLOSURE_BSDF_TRANSLUCENT_ID:
return bsdf_diffuse_merge(a, b);
case CLOSURE_BSDF_OREN_NAYAR_ID:
return bsdf_oren_nayar_merge(a, b);
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
return bsdf_microfacet_merge(a, b);
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
return bsdf_ashikhmin_velvet_merge(a, b);
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
case CLOSURE_BSDF_GLOSSY_TOON_ID:
return bsdf_toon_merge(a, b);
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
return bsdf_hair_merge(a, b);
# ifdef __PRINCIPLED__
case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
return bsdf_principled_diffuse_merge(a, b);
# endif
# ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
return volume_henyey_greenstein_merge(a, b);
# endif
default:
return false;
}
#else
return false;
#endif
}
CCL_NAMESPACE_END