
Currently, the `eval` and `pdf` are not explicitly set to zero when a BSDF sample is invalid (e.g., below the upper hemisphere), when calling `bsdf_sample` or `bsdf_eval`. It is assumed that `eval` and `pdf` are set to zero before these functions are called, which can cause problems if not. This patch fixes this potential problem by explicitly setting `eval` and `pdf` to zero when the sampled direction is invalid. I also added a sanity check if `eval` and `pdf` are valid (i.e., >= 0.f). The check is activated when build in debug mode and with the `WITH_CYCLES_DEBUG` set to `ON`. Reviewed By: brecht, sergey Differential Revision: https://developer.blender.org/D14776
150 lines
5.1 KiB
C
150 lines
5.1 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Adapted from Open Shading Language
|
|
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
|
|
* All Rights Reserved.
|
|
*
|
|
* Modifications Copyright 2011-2022 Blender Foundation. */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/sample/mapping.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
typedef struct DiffuseBsdf {
|
|
SHADER_CLOSURE_BASE;
|
|
} DiffuseBsdf;
|
|
|
|
static_assert(sizeof(ShaderClosure) >= sizeof(DiffuseBsdf), "DiffuseBsdf is too large!");
|
|
|
|
/* DIFFUSE */
|
|
|
|
ccl_device int bsdf_diffuse_setup(ccl_private DiffuseBsdf *bsdf)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_DIFFUSE_ID;
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device float3 bsdf_diffuse_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
|
|
float cos_pi = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
|
|
*pdf = cos_pi;
|
|
return make_float3(cos_pi, cos_pi, cos_pi);
|
|
}
|
|
|
|
ccl_device float3 bsdf_diffuse_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
ccl_device int bsdf_diffuse_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private float3 *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
|
|
// distribution over the hemisphere
|
|
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
|
|
|
|
if (dot(Ng, *omega_in) > 0.0f) {
|
|
*eval = make_float3(*pdf, *pdf, *pdf);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the diffuse bounce
|
|
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
|
|
#endif
|
|
}
|
|
else {
|
|
*pdf = 0.0f;
|
|
*eval = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
return LABEL_REFLECT | LABEL_DIFFUSE;
|
|
}
|
|
|
|
/* TRANSLUCENT */
|
|
|
|
ccl_device int bsdf_translucent_setup(ccl_private DiffuseBsdf *bsdf)
|
|
{
|
|
bsdf->type = CLOSURE_BSDF_TRANSLUCENT_ID;
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device float3 bsdf_translucent_eval_reflect(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
*pdf = 0.0f;
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
ccl_device float3 bsdf_translucent_eval_transmit(ccl_private const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
|
|
float cos_pi = fmaxf(-dot(N, omega_in), 0.0f) * M_1_PI_F;
|
|
*pdf = cos_pi;
|
|
return make_float3(cos_pi, cos_pi, cos_pi);
|
|
}
|
|
|
|
ccl_device int bsdf_translucent_sample(ccl_private const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
ccl_private float3 *eval,
|
|
ccl_private float3 *omega_in,
|
|
ccl_private float3 *domega_in_dx,
|
|
ccl_private float3 *domega_in_dy,
|
|
ccl_private float *pdf)
|
|
{
|
|
ccl_private const DiffuseBsdf *bsdf = (ccl_private const DiffuseBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
|
|
// we are viewing the surface from the right side - send a ray out with cosine
|
|
// distribution over the hemisphere
|
|
sample_cos_hemisphere(-N, randu, randv, omega_in, pdf);
|
|
if (dot(Ng, *omega_in) < 0) {
|
|
*eval = make_float3(*pdf, *pdf, *pdf);
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
// TODO: find a better approximation for the diffuse bounce
|
|
*domega_in_dx = -((2 * dot(N, dIdx)) * N - dIdx);
|
|
*domega_in_dy = -((2 * dot(N, dIdy)) * N - dIdy);
|
|
#endif
|
|
}
|
|
else {
|
|
*pdf = 0;
|
|
*eval = make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
return LABEL_TRANSMIT | LABEL_DIFFUSE;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|