Files
blender/intern/cycles/kernel/svm/svm.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

581 lines
18 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and its associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced and cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "kernel/svm/types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline float3 stack_load_float3(ccl_private float *stack, uint a)
{
kernel_assert(a + 2 < SVM_STACK_SIZE);
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private float *stack_a = stack + a;
return make_float3(stack_a[0], stack_a[1], stack_a[2]);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void stack_store_float3(ccl_private float *stack, uint a, float3 f)
{
kernel_assert(a + 2 < SVM_STACK_SIZE);
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private float *stack_a = stack + a;
stack_a[0] = f.x;
stack_a[1] = f.y;
stack_a[2] = f.z;
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline float stack_load_float(ccl_private float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline float stack_load_float_default(ccl_private float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID) ? __uint_as_float(value) : stack_load_float(stack, a);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void stack_store_float(ccl_private float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline int stack_load_int(ccl_private float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return __float_as_int(stack[a]);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline int stack_load_int_default(ccl_private float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID) ? (int)value : stack_load_int(stack, a);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void stack_store_int(ccl_private float *stack, uint a, int i)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = __int_as_float(i);
}
ccl_device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
ccl_device_inline uint4 read_node(KernelGlobals kg, ccl_private int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
ccl_device_inline float4 read_node_float(KernelGlobals kg, ccl_private int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__uint_as_float(node.x),
__uint_as_float(node.y),
__uint_as_float(node.z),
__uint_as_float(node.w));
(*offset)++;
return f;
}
ccl_device_inline float4 fetch_node_float(KernelGlobals kg, int offset)
2012-03-26 12:45:14 +00:00
{
uint4 node = kernel_tex_fetch(__svm_nodes, offset);
return make_float4(__uint_as_float(node.x),
__uint_as_float(node.y),
__uint_as_float(node.z),
__uint_as_float(node.w));
2012-03-26 12:45:14 +00:00
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_forceinline void svm_unpack_node_uchar2(uint i,
ccl_private uint *x,
ccl_private uint *y)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_forceinline void svm_unpack_node_uchar3(uint i,
ccl_private uint *x,
ccl_private uint *y,
ccl_private uint *z)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
*z = ((i >> 16) & 0xFF);
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_forceinline void svm_unpack_node_uchar4(
uint i, ccl_private uint *x, ccl_private uint *y, ccl_private uint *z, ccl_private uint *w)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
*z = ((i >> 16) & 0xFF);
*w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "kernel/svm/aov.h"
#include "kernel/svm/attribute.h"
#include "kernel/svm/blackbody.h"
#include "kernel/svm/brick.h"
#include "kernel/svm/brightness.h"
#include "kernel/svm/bump.h"
#include "kernel/svm/camera.h"
#include "kernel/svm/checker.h"
#include "kernel/svm/clamp.h"
#include "kernel/svm/closure.h"
#include "kernel/svm/convert.h"
#include "kernel/svm/displace.h"
#include "kernel/svm/fresnel.h"
#include "kernel/svm/gamma.h"
#include "kernel/svm/geometry.h"
#include "kernel/svm/gradient.h"
#include "kernel/svm/hsv.h"
#include "kernel/svm/ies.h"
#include "kernel/svm/image.h"
#include "kernel/svm/invert.h"
#include "kernel/svm/light_path.h"
#include "kernel/svm/magic.h"
#include "kernel/svm/map_range.h"
#include "kernel/svm/mapping.h"
#include "kernel/svm/math.h"
#include "kernel/svm/mix.h"
#include "kernel/svm/musgrave.h"
#include "kernel/svm/noisetex.h"
#include "kernel/svm/normal.h"
#include "kernel/svm/ramp.h"
#include "kernel/svm/sepcomb_hsv.h"
#include "kernel/svm/sepcomb_vector.h"
#include "kernel/svm/sky.h"
#include "kernel/svm/tex_coord.h"
#include "kernel/svm/value.h"
#include "kernel/svm/vector_rotate.h"
#include "kernel/svm/vector_transform.h"
#include "kernel/svm/vertex_color.h"
#include "kernel/svm/voronoi.h"
#include "kernel/svm/voxel.h"
#include "kernel/svm/wave.h"
#include "kernel/svm/wavelength.h"
#include "kernel/svm/white_noise.h"
#include "kernel/svm/wireframe.h"
#ifdef __SHADER_RAYTRACE__
# include "kernel/svm/ao.h"
# include "kernel/svm/bevel.h"
#endif
CCL_NAMESPACE_BEGIN
/* Main Interpreter Loop */
template<uint node_feature_mask, ShaderType type, typename ConstIntegratorGenericState>
ccl_device void svm_eval_nodes(KernelGlobals kg,
ConstIntegratorGenericState state,
ccl_private ShaderData *sd,
ccl_global float *render_buffer,
uint32_t path_flag)
{
float stack[SVM_STACK_SIZE];
2017-02-16 06:24:13 -05:00
int offset = sd->shader & SHADER_MASK;
while (1) {
uint4 node = read_node(kg, &offset);
switch (node.x) {
case NODE_END:
return;
case NODE_SHADER_JUMP: {
if (type == SHADER_TYPE_SURFACE)
offset = node.y;
else if (type == SHADER_TYPE_VOLUME)
offset = node.z;
else if (type == SHADER_TYPE_DISPLACEMENT)
offset = node.w;
else
return;
break;
}
case NODE_CLOSURE_BSDF:
offset = svm_node_closure_bsdf<node_feature_mask, type>(
kg, sd, stack, node, path_flag, offset);
break;
case NODE_CLOSURE_EMISSION:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_closure_emission(sd, stack, node);
}
break;
case NODE_CLOSURE_BACKGROUND:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_closure_background(sd, stack, node);
}
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_emission_weight(kg, sd, stack, node);
}
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node);
break;
case NODE_JUMP_IF_ZERO:
if (stack_load_float(stack, node.z) == 0.0f)
offset += node.y;
break;
case NODE_JUMP_IF_ONE:
if (stack_load_float(stack, node.z) == 1.0f)
offset += node.y;
break;
case NODE_GEOMETRY:
svm_node_geometry(kg, sd, stack, node.y, node.z);
break;
case NODE_CONVERT:
svm_node_convert(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_TEX_COORD:
offset = svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
offset = svm_node_value_v(kg, sd, stack, node.y, offset);
break;
case NODE_ATTR:
svm_node_attr<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_VERTEX_COLOR:
svm_node_vertex_color(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_GEOMETRY_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_geometry_bump_dx(kg, sd, stack, node.y, node.z);
}
break;
case NODE_GEOMETRY_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_geometry_bump_dy(kg, sd, stack, node.y, node.z);
}
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement<node_feature_mask>(kg, sd, stack, node.y);
break;
case NODE_DISPLACEMENT:
svm_node_displacement<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_VECTOR_DISPLACEMENT:
offset = svm_node_vector_displacement<node_feature_mask>(kg, sd, stack, node, offset);
break;
case NODE_TEX_IMAGE:
offset = svm_node_tex_image(kg, sd, stack, node, offset);
break;
case NODE_TEX_IMAGE_BOX:
svm_node_tex_image_box(kg, sd, stack, node);
break;
case NODE_TEX_NOISE:
offset = svm_node_tex_noise(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_SET_BUMP:
svm_node_set_bump<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_attr_bump_dx(kg, sd, stack, node);
}
break;
case NODE_ATTR_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_attr_bump_dy(kg, sd, stack, node);
}
break;
case NODE_VERTEX_COLOR_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_vertex_color_bump_dx(kg, sd, stack, node.y, node.z, node.w);
}
break;
case NODE_VERTEX_COLOR_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_vertex_color_bump_dy(kg, sd, stack, node.y, node.z, node.w);
}
break;
case NODE_TEX_COORD_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
offset = svm_node_tex_coord_bump_dx(kg, sd, path_flag, stack, node, offset);
}
break;
case NODE_TEX_COORD_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
offset = svm_node_tex_coord_bump_dy(kg, sd, path_flag, stack, node, offset);
}
break;
case NODE_CLOSURE_SET_NORMAL:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_set_normal(kg, sd, stack, node.y, node.z);
}
break;
case NODE_ENTER_BUMP_EVAL:
IF_KERNEL_NODES_FEATURE(BUMP_STATE)
{
svm_node_enter_bump_eval(kg, sd, stack, node.y);
}
break;
case NODE_LEAVE_BUMP_EVAL:
IF_KERNEL_NODES_FEATURE(BUMP_STATE)
{
svm_node_leave_bump_eval(kg, sd, stack, node.y);
}
break;
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node);
break;
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
case NODE_CLOSURE_VOLUME:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
svm_node_closure_volume<type>(kg, sd, stack, node);
}
break;
case NODE_PRINCIPLED_VOLUME:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
offset = svm_node_principled_volume<type>(kg, sd, stack, node, path_flag, offset);
}
break;
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_VECTOR_MATH:
offset = svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_RGB_RAMP:
offset = svm_node_rgb_ramp(kg, sd, stack, node, offset);
break;
case NODE_GAMMA:
svm_node_gamma(sd, stack, node.y, node.z, node.w);
break;
case NODE_BRIGHTCONTRAST:
svm_node_brightness(sd, stack, node.y, node.z, node.w);
break;
case NODE_LIGHT_PATH:
svm_node_light_path<node_feature_mask>(kg, state, sd, stack, node.y, node.z, path_flag);
break;
case NODE_OBJECT_INFO:
svm_node_object_info(kg, sd, stack, node.y, node.z);
break;
case NODE_PARTICLE_INFO:
svm_node_particle_info(kg, sd, stack, node.y, node.z);
break;
#if defined(__HAIR__)
case NODE_HAIR_INFO:
svm_node_hair_info(kg, sd, stack, node.y, node.z);
break;
#endif
#if defined(__POINTCLOUD__)
case NODE_POINT_INFO:
svm_node_point_info(kg, sd, stack, node.y, node.z);
break;
#endif
case NODE_TEXTURE_MAPPING:
offset = svm_node_texture_mapping(kg, sd, stack, node.y, node.z, offset);
break;
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_MIN_MAX:
offset = svm_node_min_max(kg, sd, stack, node.y, node.z, offset);
break;
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
case NODE_TEX_SKY:
offset = svm_node_tex_sky(kg, sd, stack, node, offset);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_VORONOI:
offset = svm_node_tex_voronoi<node_feature_mask>(
kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_TEX_MUSGRAVE:
offset = svm_node_tex_musgrave(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_TEX_WAVE:
offset = svm_node_tex_wave(kg, sd, stack, node, offset);
break;
case NODE_TEX_MAGIC:
offset = svm_node_tex_magic(kg, sd, stack, node, offset);
break;
case NODE_TEX_CHECKER:
svm_node_tex_checker(kg, sd, stack, node);
break;
case NODE_TEX_BRICK:
offset = svm_node_tex_brick(kg, sd, stack, node, offset);
break;
case NODE_TEX_WHITE_NOISE:
svm_node_tex_white_noise(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_NORMAL:
offset = svm_node_normal(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_LIGHT_FALLOFF:
svm_node_light_falloff(sd, stack, node);
break;
Cycles: Add Support for IES files as textures for light strength This patch adds support for IES files, a file format that is commonly used to store the directional intensity distribution of light sources. The new IES node is supposed to be plugged into the Strength input of the Emission node of the lamp. Since people generating IES files do not really seem to care about the standard, the parser is flexible enough to accept all test files I have tried. Some common weirdnesses are distributing values over multiple lines that should go into one line, using commas instead of spaces as delimiters and adding various useless stuff at the end of the file. The user interface of the node is similar to the script node, the user can either select an internal Text or load a file. Internally, IES files are handled similar to Image textures: They are stored in slots by the LightManager and each unique IES is assigned to one slot. The local coordinate system of the lamp is used, so that the direction of the light can be changed. For UI reasons, it's usually best to add an area light, rotate it and then change its type, since especially the point light does not immediately show its local coordinate system in the viewport. Reviewers: #cycles, dingto, sergey, brecht Reviewed By: #cycles, dingto, brecht Subscribers: OgDEV, crazyrobinhood, secundar, cardboard, pisuke, intrah, swerner, micah_denn, harvester, gottfried, disnel, campbellbarton, duarteframos, Lapineige, brecht, juicyfruit, dingto, marek, rickyblender, bliblubli, lockal, sergey Differential Revision: https://developer.blender.org/D1543
2018-05-27 00:46:37 +02:00
case NODE_IES:
svm_node_ies(kg, sd, stack, node);
Cycles: Add Support for IES files as textures for light strength This patch adds support for IES files, a file format that is commonly used to store the directional intensity distribution of light sources. The new IES node is supposed to be plugged into the Strength input of the Emission node of the lamp. Since people generating IES files do not really seem to care about the standard, the parser is flexible enough to accept all test files I have tried. Some common weirdnesses are distributing values over multiple lines that should go into one line, using commas instead of spaces as delimiters and adding various useless stuff at the end of the file. The user interface of the node is similar to the script node, the user can either select an internal Text or load a file. Internally, IES files are handled similar to Image textures: They are stored in slots by the LightManager and each unique IES is assigned to one slot. The local coordinate system of the lamp is used, so that the direction of the light can be changed. For UI reasons, it's usually best to add an area light, rotate it and then change its type, since especially the point light does not immediately show its local coordinate system in the viewport. Reviewers: #cycles, dingto, sergey, brecht Reviewed By: #cycles, dingto, brecht Subscribers: OgDEV, crazyrobinhood, secundar, cardboard, pisuke, intrah, swerner, micah_denn, harvester, gottfried, disnel, campbellbarton, duarteframos, Lapineige, brecht, juicyfruit, dingto, marek, rickyblender, bliblubli, lockal, sergey Differential Revision: https://developer.blender.org/D1543
2018-05-27 00:46:37 +02:00
break;
case NODE_RGB_CURVES:
case NODE_VECTOR_CURVES:
offset = svm_node_curves(kg, sd, stack, node, offset);
break;
case NODE_FLOAT_CURVE:
offset = svm_node_curve(kg, sd, stack, node, offset);
break;
case NODE_TANGENT:
svm_node_tangent(kg, sd, stack, node);
break;
case NODE_NORMAL_MAP:
svm_node_normal_map(kg, sd, stack, node);
break;
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
offset = svm_node_mix(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_SEPARATE_VECTOR:
svm_node_separate_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_VECTOR:
svm_node_combine_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_SEPARATE_HSV:
offset = svm_node_separate_hsv(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_COMBINE_HSV:
offset = svm_node_combine_hsv(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_VECTOR_ROTATE:
svm_node_vector_rotate(sd, stack, node.y, node.z, node.w);
break;
case NODE_VECTOR_TRANSFORM:
svm_node_vector_transform(kg, sd, stack, node);
break;
case NODE_WIREFRAME:
svm_node_wireframe(kg, sd, stack, node);
break;
case NODE_WAVELENGTH:
svm_node_wavelength(kg, sd, stack, node.y, node.z);
break;
case NODE_BLACKBODY:
svm_node_blackbody(kg, sd, stack, node.y, node.z);
break;
case NODE_MAP_RANGE:
offset = svm_node_map_range(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_VECTOR_MAP_RANGE:
offset = svm_node_vector_map_range(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_CLAMP:
offset = svm_node_clamp(kg, sd, stack, node.y, node.z, node.w, offset);
break;
#ifdef __SHADER_RAYTRACE__
case NODE_BEVEL:
svm_node_bevel<node_feature_mask>(kg, state, sd, stack, node);
break;
case NODE_AMBIENT_OCCLUSION:
svm_node_ao<node_feature_mask>(kg, state, sd, stack, node);
break;
#endif
case NODE_TEX_VOXEL:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
offset = svm_node_tex_voxel(kg, sd, stack, node, offset);
}
break;
case NODE_AOV_START:
if (!svm_node_aov_check(path_flag, render_buffer)) {
return;
}
break;
case NODE_AOV_COLOR:
svm_node_aov_color<node_feature_mask>(kg, state, sd, stack, node, render_buffer);
break;
case NODE_AOV_VALUE:
svm_node_aov_value<node_feature_mask>(kg, state, sd, stack, node, render_buffer);
break;
default:
kernel_assert(!"Unknown node type was passed to the SVM machine");
return;
}
}
}
CCL_NAMESPACE_END