Files
blender/intern/cycles/kernel/svm/svm.h
Brecht Van Lommel 54f447ecde Fix T96718: Cycles invalid pixels when using bump normal for light emission
A shader node setup accidentally used the bump normal as emission. Bump
mapping nodes are excluded from light shader evaluation to reduce kernel size
and register pressure, but in that case should write zero instead of leaving
memory uninitialized.

Thanks to Lukas for helping identify the cause.
2022-05-04 20:01:04 +02:00

581 lines
18 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and its associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced and cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "kernel/svm/types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
ccl_device_inline float3 stack_load_float3(ccl_private float *stack, uint a)
{
kernel_assert(a + 2 < SVM_STACK_SIZE);
ccl_private float *stack_a = stack + a;
return make_float3(stack_a[0], stack_a[1], stack_a[2]);
}
ccl_device_inline void stack_store_float3(ccl_private float *stack, uint a, float3 f)
{
kernel_assert(a + 2 < SVM_STACK_SIZE);
ccl_private float *stack_a = stack + a;
stack_a[0] = f.x;
stack_a[1] = f.y;
stack_a[2] = f.z;
}
ccl_device_inline float stack_load_float(ccl_private float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
ccl_device_inline float stack_load_float_default(ccl_private float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID) ? __uint_as_float(value) : stack_load_float(stack, a);
}
ccl_device_inline void stack_store_float(ccl_private float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
ccl_device_inline int stack_load_int(ccl_private float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return __float_as_int(stack[a]);
}
ccl_device_inline int stack_load_int_default(ccl_private float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID) ? (int)value : stack_load_int(stack, a);
}
ccl_device_inline void stack_store_int(ccl_private float *stack, uint a, int i)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = __int_as_float(i);
}
ccl_device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
ccl_device_inline uint4 read_node(KernelGlobals kg, ccl_private int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
ccl_device_inline float4 read_node_float(KernelGlobals kg, ccl_private int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__uint_as_float(node.x),
__uint_as_float(node.y),
__uint_as_float(node.z),
__uint_as_float(node.w));
(*offset)++;
return f;
}
ccl_device_inline float4 fetch_node_float(KernelGlobals kg, int offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, offset);
return make_float4(__uint_as_float(node.x),
__uint_as_float(node.y),
__uint_as_float(node.z),
__uint_as_float(node.w));
}
ccl_device_forceinline void svm_unpack_node_uchar2(uint i,
ccl_private uint *x,
ccl_private uint *y)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
}
ccl_device_forceinline void svm_unpack_node_uchar3(uint i,
ccl_private uint *x,
ccl_private uint *y,
ccl_private uint *z)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
*z = ((i >> 16) & 0xFF);
}
ccl_device_forceinline void svm_unpack_node_uchar4(
uint i, ccl_private uint *x, ccl_private uint *y, ccl_private uint *z, ccl_private uint *w)
{
*x = (i & 0xFF);
*y = ((i >> 8) & 0xFF);
*z = ((i >> 16) & 0xFF);
*w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "kernel/svm/aov.h"
#include "kernel/svm/attribute.h"
#include "kernel/svm/blackbody.h"
#include "kernel/svm/brick.h"
#include "kernel/svm/brightness.h"
#include "kernel/svm/bump.h"
#include "kernel/svm/camera.h"
#include "kernel/svm/checker.h"
#include "kernel/svm/clamp.h"
#include "kernel/svm/closure.h"
#include "kernel/svm/convert.h"
#include "kernel/svm/displace.h"
#include "kernel/svm/fresnel.h"
#include "kernel/svm/gamma.h"
#include "kernel/svm/geometry.h"
#include "kernel/svm/gradient.h"
#include "kernel/svm/hsv.h"
#include "kernel/svm/ies.h"
#include "kernel/svm/image.h"
#include "kernel/svm/invert.h"
#include "kernel/svm/light_path.h"
#include "kernel/svm/magic.h"
#include "kernel/svm/map_range.h"
#include "kernel/svm/mapping.h"
#include "kernel/svm/math.h"
#include "kernel/svm/mix.h"
#include "kernel/svm/musgrave.h"
#include "kernel/svm/noisetex.h"
#include "kernel/svm/normal.h"
#include "kernel/svm/ramp.h"
#include "kernel/svm/sepcomb_hsv.h"
#include "kernel/svm/sepcomb_vector.h"
#include "kernel/svm/sky.h"
#include "kernel/svm/tex_coord.h"
#include "kernel/svm/value.h"
#include "kernel/svm/vector_rotate.h"
#include "kernel/svm/vector_transform.h"
#include "kernel/svm/vertex_color.h"
#include "kernel/svm/voronoi.h"
#include "kernel/svm/voxel.h"
#include "kernel/svm/wave.h"
#include "kernel/svm/wavelength.h"
#include "kernel/svm/white_noise.h"
#include "kernel/svm/wireframe.h"
#ifdef __SHADER_RAYTRACE__
# include "kernel/svm/ao.h"
# include "kernel/svm/bevel.h"
#endif
CCL_NAMESPACE_BEGIN
/* Main Interpreter Loop */
template<uint node_feature_mask, ShaderType type, typename ConstIntegratorGenericState>
ccl_device void svm_eval_nodes(KernelGlobals kg,
ConstIntegratorGenericState state,
ccl_private ShaderData *sd,
ccl_global float *render_buffer,
uint32_t path_flag)
{
float stack[SVM_STACK_SIZE];
int offset = sd->shader & SHADER_MASK;
while (1) {
uint4 node = read_node(kg, &offset);
switch (node.x) {
case NODE_END:
return;
case NODE_SHADER_JUMP: {
if (type == SHADER_TYPE_SURFACE)
offset = node.y;
else if (type == SHADER_TYPE_VOLUME)
offset = node.z;
else if (type == SHADER_TYPE_DISPLACEMENT)
offset = node.w;
else
return;
break;
}
case NODE_CLOSURE_BSDF:
offset = svm_node_closure_bsdf<node_feature_mask, type>(
kg, sd, stack, node, path_flag, offset);
break;
case NODE_CLOSURE_EMISSION:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_closure_emission(sd, stack, node);
}
break;
case NODE_CLOSURE_BACKGROUND:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_closure_background(sd, stack, node);
}
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
IF_KERNEL_NODES_FEATURE(EMISSION)
{
svm_node_emission_weight(kg, sd, stack, node);
}
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node);
break;
case NODE_JUMP_IF_ZERO:
if (stack_load_float(stack, node.z) == 0.0f)
offset += node.y;
break;
case NODE_JUMP_IF_ONE:
if (stack_load_float(stack, node.z) == 1.0f)
offset += node.y;
break;
case NODE_GEOMETRY:
svm_node_geometry(kg, sd, stack, node.y, node.z);
break;
case NODE_CONVERT:
svm_node_convert(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_TEX_COORD:
offset = svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
offset = svm_node_value_v(kg, sd, stack, node.y, offset);
break;
case NODE_ATTR:
svm_node_attr<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_VERTEX_COLOR:
svm_node_vertex_color(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_GEOMETRY_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_geometry_bump_dx(kg, sd, stack, node.y, node.z);
}
break;
case NODE_GEOMETRY_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_geometry_bump_dy(kg, sd, stack, node.y, node.z);
}
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement<node_feature_mask>(kg, sd, stack, node.y);
break;
case NODE_DISPLACEMENT:
svm_node_displacement<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_VECTOR_DISPLACEMENT:
offset = svm_node_vector_displacement<node_feature_mask>(kg, sd, stack, node, offset);
break;
case NODE_TEX_IMAGE:
offset = svm_node_tex_image(kg, sd, stack, node, offset);
break;
case NODE_TEX_IMAGE_BOX:
svm_node_tex_image_box(kg, sd, stack, node);
break;
case NODE_TEX_NOISE:
offset = svm_node_tex_noise(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_SET_BUMP:
svm_node_set_bump<node_feature_mask>(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_attr_bump_dx(kg, sd, stack, node);
}
break;
case NODE_ATTR_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_attr_bump_dy(kg, sd, stack, node);
}
break;
case NODE_VERTEX_COLOR_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_vertex_color_bump_dx(kg, sd, stack, node.y, node.z, node.w);
}
break;
case NODE_VERTEX_COLOR_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_vertex_color_bump_dy(kg, sd, stack, node.y, node.z, node.w);
}
break;
case NODE_TEX_COORD_BUMP_DX:
IF_KERNEL_NODES_FEATURE(BUMP)
{
offset = svm_node_tex_coord_bump_dx(kg, sd, path_flag, stack, node, offset);
}
break;
case NODE_TEX_COORD_BUMP_DY:
IF_KERNEL_NODES_FEATURE(BUMP)
{
offset = svm_node_tex_coord_bump_dy(kg, sd, path_flag, stack, node, offset);
}
break;
case NODE_CLOSURE_SET_NORMAL:
IF_KERNEL_NODES_FEATURE(BUMP)
{
svm_node_set_normal(kg, sd, stack, node.y, node.z);
}
break;
case NODE_ENTER_BUMP_EVAL:
IF_KERNEL_NODES_FEATURE(BUMP_STATE)
{
svm_node_enter_bump_eval(kg, sd, stack, node.y);
}
break;
case NODE_LEAVE_BUMP_EVAL:
IF_KERNEL_NODES_FEATURE(BUMP_STATE)
{
svm_node_leave_bump_eval(kg, sd, stack, node.y);
}
break;
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node);
break;
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
case NODE_CLOSURE_VOLUME:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
svm_node_closure_volume<type>(kg, sd, stack, node);
}
break;
case NODE_PRINCIPLED_VOLUME:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
offset = svm_node_principled_volume<type>(kg, sd, stack, node, path_flag, offset);
}
break;
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_VECTOR_MATH:
offset = svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_RGB_RAMP:
offset = svm_node_rgb_ramp(kg, sd, stack, node, offset);
break;
case NODE_GAMMA:
svm_node_gamma(sd, stack, node.y, node.z, node.w);
break;
case NODE_BRIGHTCONTRAST:
svm_node_brightness(sd, stack, node.y, node.z, node.w);
break;
case NODE_LIGHT_PATH:
svm_node_light_path<node_feature_mask>(kg, state, sd, stack, node.y, node.z, path_flag);
break;
case NODE_OBJECT_INFO:
svm_node_object_info(kg, sd, stack, node.y, node.z);
break;
case NODE_PARTICLE_INFO:
svm_node_particle_info(kg, sd, stack, node.y, node.z);
break;
#if defined(__HAIR__)
case NODE_HAIR_INFO:
svm_node_hair_info(kg, sd, stack, node.y, node.z);
break;
#endif
#if defined(__POINTCLOUD__)
case NODE_POINT_INFO:
svm_node_point_info(kg, sd, stack, node.y, node.z);
break;
#endif
case NODE_TEXTURE_MAPPING:
offset = svm_node_texture_mapping(kg, sd, stack, node.y, node.z, offset);
break;
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_MIN_MAX:
offset = svm_node_min_max(kg, sd, stack, node.y, node.z, offset);
break;
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
case NODE_TEX_SKY:
offset = svm_node_tex_sky(kg, sd, stack, node, offset);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_VORONOI:
offset = svm_node_tex_voronoi<node_feature_mask>(
kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_TEX_MUSGRAVE:
offset = svm_node_tex_musgrave(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_TEX_WAVE:
offset = svm_node_tex_wave(kg, sd, stack, node, offset);
break;
case NODE_TEX_MAGIC:
offset = svm_node_tex_magic(kg, sd, stack, node, offset);
break;
case NODE_TEX_CHECKER:
svm_node_tex_checker(kg, sd, stack, node);
break;
case NODE_TEX_BRICK:
offset = svm_node_tex_brick(kg, sd, stack, node, offset);
break;
case NODE_TEX_WHITE_NOISE:
svm_node_tex_white_noise(kg, sd, stack, node.y, node.z, node.w);
break;
case NODE_NORMAL:
offset = svm_node_normal(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_LIGHT_FALLOFF:
svm_node_light_falloff(sd, stack, node);
break;
case NODE_IES:
svm_node_ies(kg, sd, stack, node);
break;
case NODE_RGB_CURVES:
case NODE_VECTOR_CURVES:
offset = svm_node_curves(kg, sd, stack, node, offset);
break;
case NODE_FLOAT_CURVE:
offset = svm_node_curve(kg, sd, stack, node, offset);
break;
case NODE_TANGENT:
svm_node_tangent(kg, sd, stack, node);
break;
case NODE_NORMAL_MAP:
svm_node_normal_map(kg, sd, stack, node);
break;
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
offset = svm_node_mix(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_SEPARATE_VECTOR:
svm_node_separate_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_VECTOR:
svm_node_combine_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_SEPARATE_HSV:
offset = svm_node_separate_hsv(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_COMBINE_HSV:
offset = svm_node_combine_hsv(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_VECTOR_ROTATE:
svm_node_vector_rotate(sd, stack, node.y, node.z, node.w);
break;
case NODE_VECTOR_TRANSFORM:
svm_node_vector_transform(kg, sd, stack, node);
break;
case NODE_WIREFRAME:
svm_node_wireframe(kg, sd, stack, node);
break;
case NODE_WAVELENGTH:
svm_node_wavelength(kg, sd, stack, node.y, node.z);
break;
case NODE_BLACKBODY:
svm_node_blackbody(kg, sd, stack, node.y, node.z);
break;
case NODE_MAP_RANGE:
offset = svm_node_map_range(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_VECTOR_MAP_RANGE:
offset = svm_node_vector_map_range(kg, sd, stack, node.y, node.z, node.w, offset);
break;
case NODE_CLAMP:
offset = svm_node_clamp(kg, sd, stack, node.y, node.z, node.w, offset);
break;
#ifdef __SHADER_RAYTRACE__
case NODE_BEVEL:
svm_node_bevel<node_feature_mask>(kg, state, sd, stack, node);
break;
case NODE_AMBIENT_OCCLUSION:
svm_node_ao<node_feature_mask>(kg, state, sd, stack, node);
break;
#endif
case NODE_TEX_VOXEL:
IF_KERNEL_NODES_FEATURE(VOLUME)
{
offset = svm_node_tex_voxel(kg, sd, stack, node, offset);
}
break;
case NODE_AOV_START:
if (!svm_node_aov_check(path_flag, render_buffer)) {
return;
}
break;
case NODE_AOV_COLOR:
svm_node_aov_color<node_feature_mask>(kg, state, sd, stack, node, render_buffer);
break;
case NODE_AOV_VALUE:
svm_node_aov_value<node_feature_mask>(kg, state, sd, stack, node, render_buffer);
break;
default:
kernel_assert(!"Unknown node type was passed to the SVM machine");
return;
}
}
}
CCL_NAMESPACE_END