Files
blender/source/blender/blenkernel/intern/collision.c

1473 lines
44 KiB
C
Raw Normal View History

2011-02-23 18:03:40 +00:00
/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:40:57 +00:00
/** \file blender/blenkernel/intern/collision.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "DNA_cloth_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_scene_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
2013-04-05 17:56:54 +00:00
#include "BKE_cloth.h"
#include "BKE_effect.h"
#include "BKE_modifier.h"
2013-04-05 17:56:54 +00:00
#include "BKE_scene.h"
2013-01-23 07:26:39 +00:00
#ifdef WITH_BULLET
#include "Bullet-C-Api.h"
2009-09-30 21:31:08 +00:00
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef WITH_ELTOPO
#include "eltopo-capi.h"
#endif
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
{
float tv[3] = {0, 0, 0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ ) {
sub_v3_v3v3(tv, collmd->xnew[i].co, collmd->x[i].co);
VECADDS(collmd->current_x[i].co, collmd->x[i].co, tv, prevstep);
VECADDS(collmd->current_xnew[i].co, collmd->x[i].co, tv, step);
sub_v3_v3v3(collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co);
}
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int UNUSED(numverts), float epsilon )
{
BVHTree *tree;
float co[12];
unsigned int i;
MFace *tface = mfaces;
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ ) {
copy_v3_v3 ( &co[0*3], x[tface->v1].co );
copy_v3_v3 ( &co[1*3], x[tface->v2].co );
copy_v3_v3 ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
copy_v3_v3 ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// balance tree
BLI_bvhtree_balance ( tree );
return tree;
}
2013-03-08 04:00:06 +00:00
void bvhtree_update_from_mvert(BVHTree *bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int UNUSED(numverts), int moving )
{
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
2014-09-16 09:14:33 +10:00
bool ret = false;
if ( !bvhtree )
return;
if ( x ) {
for ( i = 0; i < numfaces; i++, mfaces++ ) {
copy_v3_v3 ( &co[0*3], x[mfaces->v1].co );
copy_v3_v3 ( &co[1*3], x[mfaces->v2].co );
copy_v3_v3 ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
copy_v3_v3 ( &co[3*3], x[mfaces->v4].co );
// copy new locations into array
if ( moving && xnew ) {
// update moving positions
copy_v3_v3 ( &co_moving[0*3], xnew[mfaces->v1].co );
copy_v3_v3 ( &co_moving[1*3], xnew[mfaces->v2].co );
copy_v3_v3 ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
copy_v3_v3 ( &co_moving[3*3], xnew[mfaces->v4].co );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else {
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
Collision modifier code end
***********************************/
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
/* dot_v3v3 */
#define INPR(v1, v2) ( (v1)[0] * (v2)[0] + (v1)[1] * (v2)[1] + (v1)[2] * (v2)[2])
double tempV1[3], tempV2[3], tempV4[3];
2012-04-29 15:47:02 +00:00
double a, b, c, d, e, f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < (double)ALMOST_ZERO ) {
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
#undef INPR
}
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
2012-03-23 20:18:09 +00:00
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ ) {
float i1[3], i2[3], i3[3];
zero_v3(i1);
zero_v3(i2);
zero_v3(i3);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative "velocity". */
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
/* Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal'). */
magrelVel = dot_v3v3(relativeVelocity, collpair->normal);
/* printf("magrelVel: %f\n", magrelVel); */
/* Calculate masses of points.
* TODO */
/* If v_n_mag < 0 the edges are approaching each other. */
if ( magrelVel > ALMOST_ZERO ) {
/* Calculate Impulse magnitude to stop all motion in normal direction. */
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
/* calculate tangential velocity */
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl(temp, magrelVel);
sub_v3_v3v3(vrel_t_pre, relativeVelocity, temp);
/* Decrease in magnitude of relative tangential velocity due to coulomb friction
* in original formula "magrelVel" should be the "change of relative velocity in normal direction" */
magtangent = min_ff(clmd->coll_parms->friction * 0.01f * magrelVel, len_v3(vrel_t_pre));
/* Apply friction impulse. */
if ( magtangent > ALMOST_ZERO ) {
normalize_v3(vrel_t_pre);
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* 2.0 * */
VECADDMUL ( i1, vrel_t_pre, w1 * impulse );
VECADDMUL ( i2, vrel_t_pre, w2 * impulse );
VECADDMUL ( i3, vrel_t_pre, w3 * impulse );
}
/* Apply velocity stopping impulse
* I_c = m * v_N / 2.0
* no 2.0 * magrelVel normally, but looks nicer DG */
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( i1, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( i2, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( i3, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, m(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!!
* DG TODO: Fix usage of dt here! */
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) ) {
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
/* stay on the safe side and clamp repulse */
if ( impulse > ALMOST_ZERO )
repulse = min_ff( repulse, 5.0*impulse );
repulse = max_ff(impulse, repulse);
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
}
result = 1;
}
2012-06-27 18:29:47 +00:00
else {
/* Apply repulse impulse if distance too short
* I_r = -min(dt*kd, max(0, 1d/dt - v_n))
* DG: this formula ineeds to be changed for this code since we apply impulses/repulses like this:
* v += impulse; x_new = x + v;
* We don't use dt!! */
2012-06-02 22:47:33 +00:00
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
float d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - (float)collpair->distance;
if ( d > ALMOST_ZERO) {
/* stay on the safe side and clamp repulse */
2012-06-02 22:01:04 +00:00
float repulse = d*1.0f/spf;
float impulse = repulse / ( 3.0f * ( 1.0f + w1*w1 + w2*w2 + w3*w3 )); /* original 2.0 / 0.25 */
VECADDMUL ( i1, collpair->normal, impulse );
VECADDMUL ( i2, collpair->normal, impulse );
VECADDMUL ( i3, collpair->normal, impulse );
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
2012-05-22 22:03:41 +00:00
if (result) {
int i = 0;
2012-05-22 22:03:41 +00:00
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && ABS(cloth1->verts[collpair->ap1].impulse[i]) < ABS(i1[i]))
cloth1->verts[collpair->ap1].impulse[i] = i1[i];
2012-05-22 22:03:41 +00:00
if (cloth1->verts[collpair->ap2].impulse_count > 0 && ABS(cloth1->verts[collpair->ap2].impulse[i]) < ABS(i2[i]))
cloth1->verts[collpair->ap2].impulse[i] = i2[i];
2012-05-22 22:03:41 +00:00
if (cloth1->verts[collpair->ap3].impulse_count > 0 && ABS(cloth1->verts[collpair->ap3].impulse[i]) < ABS(i3[i]))
cloth1->verts[collpair->ap3].impulse[i] = i3[i];
}
}
}
return result;
}
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
2012-05-15 18:45:20 +00:00
static CollPair* cloth_collision(ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
2012-05-15 18:45:20 +00:00
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
MFace *face1=NULL, *face2 = NULL;
2013-01-23 07:26:39 +00:00
#ifdef WITH_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ ) {
if ( i == 0 ) {
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else if ( i == 1 ) {
if ( face1->v4 ) {
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v3;
collpair->ap3 = face1->v4;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
2012-07-21 22:58:08 +00:00
else {
i++;
2012-07-21 22:58:08 +00:00
}
}
if ( i == 2 ) {
if ( face2->v4 ) {
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
2012-07-21 22:58:08 +00:00
else {
break;
2012-07-21 22:58:08 +00:00
}
}
else if ( i == 3 ) {
if ( face1->v4 && face2->v4 ) {
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v3;
collpair->ap3 = face1->v4;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v3;
collpair->bp3 = face2->v4;
}
2012-07-21 22:58:08 +00:00
else {
break;
2012-07-21 22:58:08 +00:00
}
}
2013-01-23 07:26:39 +00:00
#ifdef WITH_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa, collpair->pb, collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
// distance -1 means no collision result
if (distance != -1.0 && (distance <= (double)(epsilon1 + epsilon2 + ALMOST_ZERO))) {
normalize_v3_v3(collpair->normal, collpair->vector);
collpair->distance = distance;
collpair->flag = 0;
collpair++;
}/*
2012-07-21 22:58:08 +00:00
else {
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3(relativeVelocity, v2, v1);
if (sqrt(dot_v3v3(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
collpair++;
}
}*/
}
return collpair;
}
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level, unsigned int modifier_type)
{
CollisionModifierData *cmd= NULL;
if (ob == self)
return;
/* only get objects with collision modifier */
if (((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) || (modifier_type != eModifierType_Collision))
cmd= (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
if (cmd) {
/* extend array */
if (*numobj >= *maxobj) {
*maxobj *= 2;
2012-12-28 14:19:05 +00:00
*objs= MEM_reallocN(*objs, sizeof(Object *)*(*maxobj));
}
(*objs)[*numobj] = ob;
(*numobj)++;
}
/* objects in dupli groups, one level only for now */
if (ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for (go= group->gobject.first; go; go= go->next)
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1, modifier_type);
}
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj, unsigned int modifier_type)
{
Base *base;
Object **objs;
GroupObject *go;
unsigned int numobj= 0, maxobj= 100;
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
/* gather all collision objects */
if (group) {
/* use specified group */
for (go= group->gobject.first; go; go= go->next)
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0, modifier_type);
}
else {
Scene *sce_iter;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
/* Need to check for active layers, too.
Otherwise this check fails if the objects are not on the same layer - DG */
if ((base->lay & self->lay) || (base->lay & scene->lay))
add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0, modifier_type);
}
}
*numcollobj= numobj;
return objs;
}
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
{
CollisionModifierData *cmd= NULL;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
ColliderCache *col;
if (ob == self)
return;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
if (ob->pd && ob->pd->deflect)
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if (cmd && cmd->bvhtree) {
if (*objs == NULL)
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(*objs, col);
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
/* objects in dupli groups, one level only for now */
if (ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
/* add objects */
for (go= group->gobject.first; go; go= go->next)
add_collider_cache_object(objs, go->ob, self, level+1);
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
}
}
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
{
GroupObject *go;
ListBase *objs= NULL;
/* add object in same layer in scene */
if (group) {
for (go= group->gobject.first; go; go= go->next)
add_collider_cache_object(&objs, go->ob, self, 0);
}
else {
Scene *sce_iter;
Base *base;
/* add objects in same layer in scene */
for (SETLOOPER(scene, sce_iter, base)) {
if (!self || (base->lay & self->lay))
add_collider_cache_object(&objs, base->object, self, 0);
}
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
return objs;
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
void free_collider_cache(ListBase **colliders)
{
if (*colliders) {
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
{
int i;
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 4, "collision array" ); // * 4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, *collisions_index, dt);
}
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
2012-04-29 15:47:02 +00:00
int i=0, j = 0, /*numfaces = 0, */ numverts = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 2; j++ ) { /* 5 is just a value that ensures convergence */
result = 0;
if ( collmd->bvhtree ) {
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if (result) {
for (i = 0; i < numverts; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
2012-05-22 22:03:41 +00:00
if (!result) {
break;
2012-05-22 22:03:41 +00:00
}
}
return ret;
}
// cloth - object collisions
2013-03-08 04:00:06 +00:00
int cloth_bvh_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt )
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh= cloth->bvhtree;
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ numverts = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
/* numfaces = cloth->numfaces; */ /* UNUSED */
numverts = cloth->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
2012-12-28 14:19:05 +00:00
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
2012-04-29 15:47:02 +00:00
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
2012-12-28 14:19:05 +00:00
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
2010-10-21 22:45:54 +00:00
unsigned int result = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
// go to next object if no overlap is there
if ( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
}
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ ) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF ) {
for (l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++) {
/* TODO: add coll quality rounds again */
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
/* numfaces = cloth->numfaces; */ /* UNUSED */
numverts = cloth->numverts;
verts = cloth->verts;
if ( cloth->bvhselftree ) {
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
// #pragma omp parallel for private(k, i, j) schedule(static)
for ( k = 0; k < result; k++ ) {
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) &&
( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
2012-06-23 23:22:19 +00:00
if ((cloth->verts[i].flags & CLOTH_VERT_FLAG_NOSELFCOLL) ||
(cloth->verts[j].flags & CLOTH_VERT_FLAG_NOSELFCOLL))
{
continue;
2012-06-23 23:22:19 +00:00
}
sub_v3_v3v3(temp, verts[i].tx, verts[j].tx);
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
2014-04-04 14:15:57 +11:00
if (BLI_edgeset_haskey(cloth->edgeset, i, j)) {
continue;
}
length = normalize_v3(temp );
if ( length < mindistance ) {
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, -correction);
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) {
mul_v3_fl(temp, correction);
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else {
mul_v3_fl(temp, correction * -0.5f);
VECADD ( verts[j].tx, verts[j].tx, temp );
sub_v3_v3v3(verts[i].tx, verts[i].tx, temp);
}
ret = 1;
ret2 += ret;
}
else {
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret2 ) {
for ( i = 0; i < cloth->numverts; i++ ) {
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) ) {
sub_v3_v3v3(verts[i].tv, verts[i].tx, verts[i].txold);
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
return 1|MIN2 ( ret, 1 );
}
BLI_INLINE void max_v3_v3v3(float r[3], const float a[3], const float b[3])
{
r[0] = max_ff(a[0], b[0]);
r[1] = max_ff(a[1], b[1]);
r[2] = max_ff(a[2], b[2]);
}
void collision_get_collider_velocity(float vel_old[3], float vel_new[3], CollisionModifierData *collmd, CollPair *collpair)
{
float u1, u2, u3;
/* compute barycentric coordinates */
collision_compute_barycentric(collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3);
collision_interpolateOnTriangle(vel_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3);
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(vel_old, vel_new);
}
static bool cloth_points_collision_response_static(ClothModifierData *clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collpair, CollPair *collision_end, float dt)
{
bool result = false;
float restitution = (1.0f - clmd->coll_parms->damping) * (1.0f - pd->pdef_sbdamp);
float inv_dt = 1.0f / dt;
Cloth *cloth1 = clmd->clothObject;
2015-03-06 17:30:05 +11:00
// float w1, w2;
float u1, u2, u3;
float v1[3], v2_old[3], v2_new[3], v_rel_old[3], v_rel_new[3];
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
for ( ; collpair != collision_end; collpair++ ) {
float margin_distance = collpair->distance - epsilon2;
float impulse[3];
float mag_v_rel;
if (margin_distance > 0.0f)
continue;
zero_v3(impulse);
/* only handle static collisions here */
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
/* compute barycentric coordinates for both collision points */
2015-03-06 17:30:05 +11:00
// w1 = 1.0f - collpair->time;
// w2 = collpair->time;
/* was: txold */
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
/* Calculate relative velocity */
copy_v3_v3(v1, cloth1->verts[collpair->ap1].tv);
collision_interpolateOnTriangle ( v2_new, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
/* XXX assume constant velocity of the collider for now */
copy_v3_v3(v2_old, v2_new);
sub_v3_v3v3(v_rel_old, v1, v2_old);
sub_v3_v3v3(v_rel_new, v1, v2_new);
/* normal component of the relative velocity */
mag_v_rel = dot_v3v3(v_rel_old, collpair->normal);
/**** DEBUG ****/
BKE_sim_debug_data_add_dot(collpair->pa, 0.9, 0.2, 0.2, "collision", 833, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_dot(collpair->pb, 0.2, 0.9, 0.2, "collision", 834, collpair->face1, collpair->face2);
BKE_sim_debug_data_add_line(collpair->pa, collpair->pb, 0.8, 0.8, 0.8, "collision", 835, collpair->face1, collpair->face2);
/********/
if (mag_v_rel < -ALMOST_ZERO) {
float v_nor_old, v_nor_new;
float v_tan_old[3], v_tan_new[3];
2014-09-02 15:03:15 +02:00
float bounce, repulse;
/* Collision response based on
* "Simulating Complex Hair with Robust Collision Handling" (Choe, Choi, Ko, ACM SIGGRAPH 2005)
* http://graphics.snu.ac.kr/publications/2005-choe-HairSim/Choe_2005_SCA.pdf
*/
v_nor_old = mag_v_rel;
v_nor_new = dot_v3v3(v_rel_new, collpair->normal);
madd_v3_v3v3fl(v_tan_old, v_rel_old, collpair->normal, -v_nor_old);
madd_v3_v3v3fl(v_tan_new, v_rel_new, collpair->normal, -v_nor_new);
2014-09-02 15:03:15 +02:00
repulse = -margin_distance * inv_dt + dot_v3v3(v1, collpair->normal);
if (margin_distance < -epsilon2) {
2014-09-02 15:03:15 +02:00
bounce = -v_nor_new + v_nor_old * restitution;
mul_v3_v3fl(impulse, collpair->normal, max_ff(repulse, bounce));
}
else {
2014-09-02 15:03:15 +02:00
bounce = 0.0f;
mul_v3_v3fl(impulse, collpair->normal, repulse);
}
cloth1->verts[collpair->ap1].impulse_count++;
result = true;
}
if (result) {
int i = 0;
for (i = 0; i < 3; i++) {
if (cloth1->verts[collpair->ap1].impulse_count > 0 && fabsf(cloth1->verts[collpair->ap1].impulse[i]) < fabsf(impulse[i]))
cloth1->verts[collpair->ap1].impulse[i] = impulse[i];
}
}
}
return result;
}
BLI_INLINE bool cloth_point_face_collision_params(const float p1[3], const float p2[3], const float v0[3], const float v1[3], const float v2[3],
float r_nor[3], float *r_lambda, float r_w[4])
{
float edge1[3], edge2[3], p2face[3], p1p2[3], v0p2[3];
float nor_v0p2, nor_p1p2;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
nor_v0p2 = dot_v3v3(v0p2, r_nor);
madd_v3_v3v3fl(p2face, p2, r_nor, -nor_v0p2);
interp_weights_face_v3(r_w, v0, v1, v2, NULL, p2face);
sub_v3_v3v3(p1p2, p2, p1);
sub_v3_v3v3(v0p2, p2, v0);
nor_p1p2 = dot_v3v3(p1p2, r_nor);
*r_lambda = (nor_p1p2 != 0.0f ? nor_v0p2 / nor_p1p2 : 0.0f);
return r_w[1] >= 0.0f && r_w[2] >= 0.0f && r_w[1] + r_w[2] <= 1.0f;
#if 0 /* XXX this method uses the intersection point, but is broken and doesn't work well in general */
float p[3], vec1[3], line[3], edge1[3], edge2[3], q[3];
float a, f, u, v;
sub_v3_v3v3(edge1, v1, v0);
sub_v3_v3v3(edge2, v2, v0);
sub_v3_v3v3(line, p2, p1);
cross_v3_v3v3(p, line, edge2);
a = dot_v3v3(edge1, p);
if (a == 0.0f) return 0;
f = 1.0f / a;
sub_v3_v3v3(vec1, p1, v0);
u = f * dot_v3v3(vec1, p);
if ((u < 0.0f) || (u > 1.0f))
return false;
cross_v3_v3v3(q, vec1, edge1);
v = f * dot_v3v3(line, q);
if ((v < 0.0f) || ((u + v) > 1.0f))
return false;
*r_lambda = f * dot_v3v3(edge2, q);
/* don't care about 0..1 lambda range here */
/*if ((*r_lambda < 0.0f) || (*r_lambda > 1.0f))
* return 0;
*/
r_w[0] = 1.0f - u - v;
r_w[1] = u;
r_w[2] = v;
r_w[3] = 0.0f;
cross_v3_v3v3(r_nor, edge1, edge2);
normalize_v3(r_nor);
return true;
#endif
}
static CollPair *cloth_point_collpair(float p1[3], float p2[3], MVert *mverts, int bp1, int bp2, int bp3,
int index_cloth, int index_coll, float epsilon, CollPair *collpair)
{
float *co1 = mverts[bp1].co, *co2 = mverts[bp2].co, *co3 = mverts[bp3].co;
2015-03-06 17:30:05 +11:00
float lambda /*, distance1 */, distance2;
float facenor[3], v1p1[3], v1p2[3];
float w[4];
if (!cloth_point_face_collision_params(p1, p2, co1, co2, co3, facenor, &lambda, w))
return collpair;
sub_v3_v3v3(v1p1, p1, co1);
2015-03-06 17:30:05 +11:00
// distance1 = dot_v3v3(v1p1, facenor);
sub_v3_v3v3(v1p2, p2, co1);
distance2 = dot_v3v3(v1p2, facenor);
// if (distance2 > epsilon || (distance1 < 0.0f && distance2 < 0.0f))
if (distance2 > epsilon)
return collpair;
collpair->face1 = index_cloth; /* XXX actually not a face, but equivalent index for point */
collpair->face2 = index_coll;
collpair->ap1 = index_cloth;
collpair->ap2 = collpair->ap3 = -1; /* unused */
collpair->bp1 = bp1;
collpair->bp2 = bp2;
collpair->bp3 = bp3;
/* note: using the second point here, which is
* the current updated position that needs to be corrected
*/
copy_v3_v3(collpair->pa, p2);
collpair->distance = distance2;
mul_v3_v3fl(collpair->vector, facenor, -distance2);
interp_v3_v3v3v3(collpair->pb, co1, co2, co3, w);
copy_v3_v3(collpair->normal, facenor);
collpair->time = lambda;
collpair->flag = 0;
collpair++;
return collpair;
}
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_point_collision(ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, float epsilon, CollPair *collpair, float UNUSED(dt))
{
ClothModifierData *clmd = (ClothModifierData *)md1;
CollisionModifierData *collmd = (CollisionModifierData *) md2;
/* Cloth *cloth = clmd->clothObject; */ /* UNUSED */
ClothVertex *vert = NULL;
MFace *face = NULL;
MVert *mverts = collmd->current_x;
vert = &clmd->clothObject->verts[overlap->indexA];
face = &collmd->mfaces[overlap->indexB];
collpair = cloth_point_collpair(vert->tx, vert->x, mverts, face->v1, face->v2, face->v3, overlap->indexA, overlap->indexB, epsilon, collpair);
if (face->v4)
collpair = cloth_point_collpair(vert->tx, vert->x, mverts, face->v3, face->v4, face->v1, overlap->indexA, overlap->indexB, epsilon, collpair);
return collpair;
}
static void cloth_points_objcollisions_nearcheck(ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index,
int numresult, BVHTreeOverlap *overlap, float epsilon, double dt)
{
int i;
/* can return 2 collisions in total */
*collisions = (CollPair *) MEM_mallocN(sizeof(CollPair) * numresult * 2, "collision array" );
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ ) {
*collisions_index = cloth_point_collision((ModifierData *)clmd, (ModifierData *)collmd,
overlap+i, epsilon, *collisions_index, dt);
}
}
static int cloth_points_objcollisions_resolve(ClothModifierData * clmd, CollisionModifierData *collmd, PartDeflect *pd,
CollPair *collisions, CollPair *collisions_index, float dt)
{
Cloth *cloth = clmd->clothObject;
int i=0, numverts = clmd->clothObject->numverts;
ClothVertex *verts = cloth->verts;
int ret = 0;
// process all collisions
if ( collmd->bvhtree ) {
bool result = cloth_points_collision_response_static(clmd, collmd, pd, collisions, collisions_index, dt);
// apply impulses in parallel
if (result) {
for (i = 0; i < numverts; i++) {
// calculate "velocities" (just xnew = xold + v; no dt in v)
if (verts[i].impulse_count) {
// VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECADD ( verts[i].tv, verts[i].tv, verts[i].impulse);
zero_v3(verts[i].impulse);
verts[i].impulse_count = 0;
ret++;
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_points_objcollision(Object *ob, ClothModifierData *clmd, float step, float dt)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
int rounds = 0; // result counts applied collisions; ic is for debug output;
float round_dt = dt / (float)clmd->coll_parms->loop_count;
unsigned int i=0, numverts = 0;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
numverts = cloth->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(numverts, MAX2(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < numverts; i++) {
float co[6];
copy_v3_v3(&co[0*3], verts[i].x);
copy_v3_v3(&co[1*3], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co, 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs)
return 0;
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
do {
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
float epsilon;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
epsilon = BLI_bvhtree_getepsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &collisions[i], &collisions_index[i],
result, overlap, epsilon, round_dt);
// resolve nearby collisions
ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], round_dt);
ret2 += ret;
}
if (overlap)
MEM_freeN ( overlap );
}
rounds++;
for (i = 0; i < numcollobj; i++) {
if (collisions[i])
MEM_freeN(collisions[i]);
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ ) {
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL ) {
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) {
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
return 1|MIN2 ( ret, 1 );
}
void cloth_find_point_contacts(Object *ob, ClothModifierData *clmd, float step, float dt,
ColliderContacts **r_collider_contacts, int *r_totcolliders)
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh;
unsigned int i=0, numverts = 0;
ClothVertex *verts = NULL;
ColliderContacts *collider_contacts;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
verts = cloth->verts;
numverts = cloth->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// create temporary cloth points bvh
cloth_bvh = BLI_bvhtree_new(numverts, MAX2(clmd->coll_parms->epsilon, clmd->coll_parms->distance_repel), 4, 6);
/* fill tree */
for (i = 0; i < numverts; i++) {
float co[6];
copy_v3_v3(&co[0*3], verts[i].x);
copy_v3_v3(&co[1*3], verts[i].tx);
BLI_bvhtree_insert(cloth_bvh, i, co, 2);
}
/* balance tree */
BLI_bvhtree_balance(cloth_bvh);
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if (!collobjs) {
*r_collider_contacts = NULL;
*r_totcolliders = 0;
return;
}
/* move object to position (step) in time */
for (i = 0; i < numcollobj; i++) {
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
if (!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
}
collider_contacts = MEM_callocN(sizeof(ColliderContacts) * numcollobj, "CollPair");
// check all collision objects
for (i = 0; i < numcollobj; i++) {
ColliderContacts *ct = collider_contacts + i;
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData *)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap;
unsigned int result = 0;
float epsilon;
ct->ob = collob;
ct->collmd = collmd;
ct->collisions = NULL;
ct->totcollisions = 0;
if (!collmd->bvhtree)
continue;
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap(cloth_bvh, collmd->bvhtree, &result);
epsilon = BLI_bvhtree_getepsilon(collmd->bvhtree);
// go to next object if no overlap is there
if (result && overlap) {
CollPair *collisions_index;
/* check if collisions really happen (costly near check) */
cloth_points_objcollisions_nearcheck(clmd, collmd, &ct->collisions, &collisions_index,
result, overlap, epsilon, dt);
ct->totcollisions = (int)(collisions_index - ct->collisions);
// resolve nearby collisions
// ret += cloth_points_objcollisions_resolve(clmd, collmd, collob->pd, collisions[i], collisions_index[i], dt);
}
if (overlap)
MEM_freeN(overlap);
}
if (collobjs)
MEM_freeN(collobjs);
BLI_bvhtree_free(cloth_bvh);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for (i = 0; i < numverts; i++) {
if (clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) {
if (verts [i].flags & CLOTH_VERT_FLAG_PINNED) {
continue;
}
}
VECADD(verts[i].tx, verts[i].txold, verts[i].tv);
}
////////////////////////////////////////////////////////////
*r_collider_contacts = collider_contacts;
*r_totcolliders = numcollobj;
}
void cloth_free_contacts(ColliderContacts *collider_contacts, int totcolliders)
{
if (collider_contacts) {
int i;
for (i = 0; i < totcolliders; ++i) {
ColliderContacts *ct = collider_contacts + i;
if (ct->collisions) {
MEM_freeN(ct->collisions);
}
}
MEM_freeN(collider_contacts);
}
}