Files
blender/intern/cycles/kernel/light/sample.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

316 lines
10 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/integrator/path_state.h"
#include "kernel/integrator/shader_eval.h"
#include "kernel/light/light.h"
#include "kernel/sample/mapping.h"
#include "kernel/sample/mis.h"
CCL_NAMESPACE_BEGIN
/* Evaluate shader on light. */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_noinline_cpu float3
light_sample_shader_eval(KernelGlobals kg,
IntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *ccl_restrict emission_sd,
ccl_private LightSample *ccl_restrict ls,
float time)
{
/* setup shading at emitter */
float3 eval = zero_float3();
if (shader_constant_emission_eval(kg, ls->shader, &eval)) {
if ((ls->prim != PRIM_NONE) && dot(ls->Ng, ls->D) > 0.0f) {
ls->Ng = -ls->Ng;
}
}
else {
/* Setup shader data and call shader_eval_surface once, better
* for GPU coherence and compile times. */
PROFILING_INIT_FOR_SHADER(kg, PROFILING_SHADE_LIGHT_SETUP);
#ifdef __BACKGROUND_MIS__
if (ls->type == LIGHT_BACKGROUND) {
shader_setup_from_background(kg, emission_sd, ls->P, ls->D, time);
}
else
#endif
{
shader_setup_from_sample(kg,
emission_sd,
ls->P,
ls->Ng,
-ls->D,
ls->shader,
ls->object,
ls->prim,
ls->u,
ls->v,
ls->t,
time,
false,
ls->lamp);
ls->Ng = emission_sd->Ng;
}
PROFILING_SHADER(emission_sd->object, emission_sd->shader);
PROFILING_EVENT(PROFILING_SHADE_LIGHT_EVAL);
/* No proper path flag, we're evaluating this for all closures. that's
* weak but we'd have to do multiple evaluations otherwise. */
shader_eval_surface<KERNEL_FEATURE_NODE_MASK_SURFACE_LIGHT>(
kg, state, emission_sd, NULL, PATH_RAY_EMISSION);
/* Evaluate closures. */
#ifdef __BACKGROUND_MIS__
if (ls->type == LIGHT_BACKGROUND) {
eval = shader_background_eval(emission_sd);
}
else
#endif
{
eval = shader_emissive_eval(emission_sd);
}
}
eval *= ls->eval_fac;
if (ls->lamp != LAMP_NONE) {
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_global const KernelLight *klight = &kernel_tex_fetch(__lights, ls->lamp);
eval *= make_float3(klight->strength[0], klight->strength[1], klight->strength[2]);
}
return eval;
}
/* Test if light sample is from a light or emission from geometry. */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline bool light_sample_is_light(ccl_private const LightSample *ccl_restrict ls)
{
/* return if it's a lamp for shadow pass */
return (ls->prim == PRIM_NONE && ls->type != LIGHT_BACKGROUND);
}
/* Early path termination of shadow rays. */
ccl_device_inline bool light_sample_terminate(KernelGlobals kg,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const LightSample *ccl_restrict ls,
ccl_private BsdfEval *ccl_restrict eval,
const float rand_terminate)
{
if (bsdf_eval_is_zero(eval)) {
return true;
}
2015-05-09 19:34:30 +05:00
if (kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
float probability = max3(fabs(bsdf_eval_sum(eval))) *
kernel_data.integrator.light_inv_rr_threshold;
if (probability < 1.0f) {
if (rand_terminate >= probability) {
return true;
}
bsdf_eval_mul(eval, 1.0f / probability);
}
}
return false;
}
/* This function should be used to compute a modified ray start position for
* rays leaving from a surface. The algorithm slightly distorts flat surface
* of a triangle. Surface is lifted by amount h along normal n in the incident
* point. */
ccl_device_inline float3 shadow_ray_smooth_surface_offset(
KernelGlobals kg, ccl_private const ShaderData *ccl_restrict sd, float3 Ng)
{
float3 V[3], N[3];
if (sd->type == PRIMITIVE_MOTION_TRIANGLE) {
motion_triangle_vertices_and_normals(kg, sd->object, sd->prim, sd->time, V, N);
}
else {
kernel_assert(sd->type == PRIMITIVE_TRIANGLE);
triangle_vertices_and_normals(kg, sd->prim, V, N);
}
const float u = sd->u, v = sd->v;
const float w = 1 - u - v;
float3 P = V[0] * u + V[1] * v + V[2] * w; /* Local space */
float3 n = N[0] * u + N[1] * v + N[2] * w; /* We get away without normalization */
if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_dir_transform(kg, sd, &n); /* Normal x scale, to world space */
}
/* Parabolic approximation */
float a = dot(N[2] - N[0], V[0] - V[2]);
float b = dot(N[2] - N[1], V[1] - V[2]);
float c = dot(N[1] - N[0], V[1] - V[0]);
float h = a * u * (u - 1) + (a + b + c) * u * v + b * v * (v - 1);
/* Check flipped normals */
if (dot(n, Ng) > 0) {
/* Local linear envelope */
float h0 = max(max(dot(V[1] - V[0], N[0]), dot(V[2] - V[0], N[0])), 0.0f);
float h1 = max(max(dot(V[0] - V[1], N[1]), dot(V[2] - V[1], N[1])), 0.0f);
float h2 = max(max(dot(V[0] - V[2], N[2]), dot(V[1] - V[2], N[2])), 0.0f);
h0 = max(dot(V[0] - P, N[0]) + h0, 0.0f);
h1 = max(dot(V[1] - P, N[1]) + h1, 0.0f);
h2 = max(dot(V[2] - P, N[2]) + h2, 0.0f);
h = max(min(min(h0, h1), h2), h * 0.5f);
}
else {
float h0 = max(max(dot(V[0] - V[1], N[0]), dot(V[0] - V[2], N[0])), 0.0f);
float h1 = max(max(dot(V[1] - V[0], N[1]), dot(V[1] - V[2], N[1])), 0.0f);
float h2 = max(max(dot(V[2] - V[0], N[2]), dot(V[2] - V[1], N[2])), 0.0f);
h0 = max(dot(P - V[0], N[0]) + h0, 0.0f);
h1 = max(dot(P - V[1], N[1]) + h1, 0.0f);
h2 = max(dot(P - V[2], N[2]) + h2, 0.0f);
h = min(-min(min(h0, h1), h2), h * 0.5f);
}
return n * h;
}
/* Ray offset to avoid shadow terminator artifact. */
ccl_device_inline float3 shadow_ray_offset(KernelGlobals kg,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const ShaderData *ccl_restrict sd,
float3 L,
ccl_private bool *r_skip_self)
{
float3 P = sd->P;
if ((sd->type & PRIMITIVE_TRIANGLE) && (sd->shader & SHADER_SMOOTH_NORMAL)) {
const float offset_cutoff =
kernel_tex_fetch(__objects, sd->object).shadow_terminator_geometry_offset;
/* Do ray offset (heavy stuff) only for close to be terminated triangles:
* offset_cutoff = 0.1f means that 10-20% of rays will be affected. Also
* make a smooth transition near the threshold. */
if (offset_cutoff > 0.0f) {
float NL = dot(sd->N, L);
const bool transmit = (NL < 0.0f);
if (NL < 0) {
NL = -NL;
}
const float3 Ng = (transmit ? -sd->Ng : sd->Ng);
const float NgL = dot(Ng, L);
const float offset_amount = (NL < offset_cutoff) ?
clamp(2.0f - (NgL + NL) / offset_cutoff, 0.0f, 1.0f) :
clamp(1.0f - NgL / offset_cutoff, 0.0f, 1.0f);
if (offset_amount > 0.0f) {
P += shadow_ray_smooth_surface_offset(kg, sd, Ng) * offset_amount;
/* Only skip self intersections if light direction and geometric normal point in the same
* direction, otherwise we're meant to hit this surface. */
*r_skip_self = (NgL > 0.0f);
}
}
}
return P;
}
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void shadow_ray_setup(ccl_private const ShaderData *ccl_restrict sd,
ccl_private const LightSample *ccl_restrict ls,
const float3 P,
ccl_private Ray *ray,
const bool skip_self)
{
if (ls->shader & SHADER_CAST_SHADOW) {
/* setup ray */
ray->P = P;
if (ls->t == FLT_MAX) {
/* distant light */
ray->D = ls->D;
ray->t = ls->t;
}
else {
/* other lights, avoid self-intersection */
ray->D = ls->P - P;
ray->D = normalize_len(ray->D, &ray->t);
}
}
else {
/* signal to not cast shadow ray */
ray->P = zero_float3();
ray->D = zero_float3();
ray->t = 0.0f;
}
ray->dP = differential_make_compact(sd->dP);
ray->dD = differential_zero_compact();
ray->time = sd->time;
/* Fill in intersection surface and light details. */
ray->self.object = (skip_self) ? sd->object : OBJECT_NONE;
ray->self.prim = (skip_self) ? sd->prim : PRIM_NONE;
ray->self.light_object = ls->object;
ray->self.light_prim = ls->prim;
}
/* Create shadow ray towards light sample. */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void light_sample_to_surface_shadow_ray(
KernelGlobals kg,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const ShaderData *ccl_restrict sd,
ccl_private const LightSample *ccl_restrict ls,
ccl_private Ray *ray)
{
bool skip_self = true;
const float3 P = shadow_ray_offset(kg, sd, ls->D, &skip_self);
shadow_ray_setup(sd, ls, P, ray, skip_self);
}
/* Create shadow ray towards light sample. */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_inline void light_sample_to_volume_shadow_ray(
KernelGlobals kg,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const ShaderData *ccl_restrict sd,
ccl_private const LightSample *ccl_restrict ls,
const float3 P,
ccl_private Ray *ray)
{
shadow_ray_setup(sd, ls, P, ray, false);
}
ccl_device_inline float light_sample_mis_weight_forward(KernelGlobals kg,
const float forward_pdf,
const float nee_pdf)
{
#ifdef WITH_CYCLES_DEBUG
if (kernel_data.integrator.direct_light_sampling_type == DIRECT_LIGHT_SAMPLING_FORWARD) {
return 1.0f;
}
else if (kernel_data.integrator.direct_light_sampling_type == DIRECT_LIGHT_SAMPLING_NEE) {
return 0.0f;
}
else
#endif
return power_heuristic(forward_pdf, nee_pdf);
}
ccl_device_inline float light_sample_mis_weight_nee(KernelGlobals kg,
const float nee_pdf,
const float forward_pdf)
{
#ifdef WITH_CYCLES_DEBUG
if (kernel_data.integrator.direct_light_sampling_type == DIRECT_LIGHT_SAMPLING_FORWARD) {
return 0.0f;
}
else if (kernel_data.integrator.direct_light_sampling_type == DIRECT_LIGHT_SAMPLING_NEE) {
return 1.0f;
}
else
#endif
return power_heuristic(nee_pdf, forward_pdf);
}
CCL_NAMESPACE_END