Cycles: Move intersection math to own header file

There are following benefits:

- Modifying intersection algorithm will not cause so much re-compilation.
- It works around header dependency hell and allows us to use vectorization
  types much easier in there.
This commit is contained in:
Sergey Sharybin
2017-03-23 12:47:27 +01:00
parent e8ff06186e
commit 1c5cceb7af
5 changed files with 161 additions and 135 deletions

View File

@@ -196,6 +196,7 @@ set(SRC_UTIL_HEADERS
../util/util_hash.h
../util/util_math.h
../util/util_math_fast.h
../util/util_math_intersect.h
../util/util_static_assert.h
../util/util_transform.h
../util/util_texture.h

View File

@@ -20,6 +20,7 @@
#include "util_color.h"
#include "util_math.h"
#include "util_math_fast.h"
#include "util_math_intersect.h"
#include "util_texture.h"
#include "util_transform.h"

View File

@@ -52,6 +52,7 @@ set(SRC_HEADERS
util_math.h
util_math_cdf.h
util_math_fast.h
util_math_intersect.h
util_md5.h
util_opengl.h
util_optimization.h

View File

@@ -1451,140 +1451,6 @@ ccl_device_inline float beta(float x, float y)
#endif
}
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 sphere_P, float sphere_radius,
float3 *isect_P, float *isect_t)
{
float3 d = sphere_P - ray_P;
float radiussq = sphere_radius*sphere_radius;
float tsq = dot(d, d);
if(tsq > radiussq) { /* ray origin outside sphere */
float tp = dot(d, ray_D);
if(tp < 0.0f) /* dir points away from sphere */
return false;
float dsq = tsq - tp*tp; /* pythagoras */
if(dsq > radiussq) /* closest point on ray outside sphere */
return false;
float t = tp - sqrtf(radiussq - dsq); /* pythagoras */
if(t < ray_t) {
*isect_t = t;
*isect_P = ray_P + ray_D*t;
return true;
}
}
return false;
}
ccl_device bool ray_aligned_disk_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 disk_P, float disk_radius,
float3 *isect_P, float *isect_t)
{
/* aligned disk normal */
float disk_t;
float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
float div = dot(ray_D, disk_N);
if(UNLIKELY(div == 0.0f))
return false;
/* compute t to intersection point */
float t = -disk_t/div;
if(t < 0.0f || t > ray_t)
return false;
/* test if within radius */
float3 P = ray_P + ray_D*t;
if(len_squared(P - disk_P) > disk_radius*disk_radius)
return false;
*isect_P = P;
*isect_t = t;
return true;
}
ccl_device_inline bool ray_triangle_intersect_uv(
float3 ray_P, float3 ray_D, float ray_t,
float3 v0, float3 v1, float3 v2,
float *isect_u, float *isect_v, float *isect_t)
{
/* Calculate intersection */
float3 e1 = v1 - v0;
float3 e2 = v2 - v0;
float3 s1 = cross(ray_D, e2);
const float divisor = dot(s1, e1);
if(UNLIKELY(divisor == 0.0f))
return false;
const float invdivisor = 1.0f/divisor;
/* compute first barycentric coordinate */
const float3 d = ray_P - v0;
const float u = dot(d, s1)*invdivisor;
if(u < 0.0f)
return false;
/* Compute second barycentric coordinate */
const float3 s2 = cross(d, e1);
const float v = dot(ray_D, s2)*invdivisor;
if(v < 0.0f)
return false;
const float b0 = 1.0f - u - v;
if(b0 < 0.0f)
return false;
/* compute t to intersection point */
const float t = dot(e2, s2)*invdivisor;
if(t < 0.0f || t > ray_t)
return false;
*isect_u = u;
*isect_v = v;
*isect_t = t;
return true;
}
ccl_device bool ray_quad_intersect(float3 ray_P, float3 ray_D, float ray_mint, float ray_maxt,
float3 quad_P, float3 quad_u, float3 quad_v, float3 quad_n,
float3 *isect_P, float *isect_t, float *isect_u, float *isect_v)
{
float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
if(t < ray_mint || t > ray_maxt)
return false;
float3 hit = ray_P + t*ray_D;
float3 inplane = hit - quad_P;
float u = dot(inplane, quad_u) / dot(quad_u, quad_u) + 0.5f;
if(u < 0.0f || u > 1.0f)
return false;
float v = dot(inplane, quad_v) / dot(quad_v, quad_v) + 0.5f;
if(v < 0.0f || v > 1.0f)
return false;
if(isect_P) *isect_P = hit;
if(isect_t) *isect_t = t;
if(isect_u) *isect_u = u;
if(isect_v) *isect_v = v;
return true;
}
/* projections */
ccl_device_inline float2 map_to_tube(const float3 co)
{
@@ -1647,4 +1513,3 @@ ccl_device_inline int util_max_axis(float3 vec)
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_H__ */

View File

@@ -0,0 +1,158 @@
/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_INTERSECT_H__
#define __UTIL_MATH_INTERSECT_H__
CCL_NAMESPACE_BEGIN
/* Ray Intersection */
ccl_device bool ray_sphere_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 sphere_P, float sphere_radius,
float3 *isect_P, float *isect_t)
{
float3 d = sphere_P - ray_P;
float radiussq = sphere_radius*sphere_radius;
float tsq = dot(d, d);
if(tsq > radiussq) { /* ray origin outside sphere */
float tp = dot(d, ray_D);
if(tp < 0.0f) /* dir points away from sphere */
return false;
float dsq = tsq - tp*tp; /* pythagoras */
if(dsq > radiussq) /* closest point on ray outside sphere */
return false;
float t = tp - sqrtf(radiussq - dsq); /* pythagoras */
if(t < ray_t) {
*isect_t = t;
*isect_P = ray_P + ray_D*t;
return true;
}
}
return false;
}
ccl_device bool ray_aligned_disk_intersect(
float3 ray_P, float3 ray_D, float ray_t,
float3 disk_P, float disk_radius,
float3 *isect_P, float *isect_t)
{
/* aligned disk normal */
float disk_t;
float3 disk_N = normalize_len(ray_P - disk_P, &disk_t);
float div = dot(ray_D, disk_N);
if(UNLIKELY(div == 0.0f))
return false;
/* compute t to intersection point */
float t = -disk_t/div;
if(t < 0.0f || t > ray_t)
return false;
/* test if within radius */
float3 P = ray_P + ray_D*t;
if(len_squared(P - disk_P) > disk_radius*disk_radius)
return false;
*isect_P = P;
*isect_t = t;
return true;
}
ccl_device_inline bool ray_triangle_intersect_uv(
float3 ray_P, float3 ray_D, float ray_t,
float3 v0, float3 v1, float3 v2,
float *isect_u, float *isect_v, float *isect_t)
{
/* Calculate intersection */
float3 e1 = v1 - v0;
float3 e2 = v2 - v0;
float3 s1 = cross(ray_D, e2);
const float divisor = dot(s1, e1);
if(UNLIKELY(divisor == 0.0f))
return false;
const float invdivisor = 1.0f/divisor;
/* compute first barycentric coordinate */
const float3 d = ray_P - v0;
const float u = dot(d, s1)*invdivisor;
if(u < 0.0f)
return false;
/* Compute second barycentric coordinate */
const float3 s2 = cross(d, e1);
const float v = dot(ray_D, s2)*invdivisor;
if(v < 0.0f)
return false;
const float b0 = 1.0f - u - v;
if(b0 < 0.0f)
return false;
/* compute t to intersection point */
const float t = dot(e2, s2)*invdivisor;
if(t < 0.0f || t > ray_t)
return false;
*isect_u = u;
*isect_v = v;
*isect_t = t;
return true;
}
ccl_device bool ray_quad_intersect(float3 ray_P, float3 ray_D, float ray_mint, float ray_maxt,
float3 quad_P, float3 quad_u, float3 quad_v, float3 quad_n,
float3 *isect_P, float *isect_t, float *isect_u, float *isect_v)
{
float t = -(dot(ray_P, quad_n) - dot(quad_P, quad_n)) / dot(ray_D, quad_n);
if(t < ray_mint || t > ray_maxt)
return false;
float3 hit = ray_P + t*ray_D;
float3 inplane = hit - quad_P;
float u = dot(inplane, quad_u) / dot(quad_u, quad_u) + 0.5f;
if(u < 0.0f || u > 1.0f)
return false;
float v = dot(inplane, quad_v) / dot(quad_v, quad_v) + 0.5f;
if(v < 0.0f || v > 1.0f)
return false;
if(isect_P) *isect_P = hit;
if(isect_t) *isect_t = t;
if(isect_u) *isect_u = u;
if(isect_v) *isect_v = v;
return true;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_INTERSECT_H__ */