Cycles: Cleanup, mainly line length in random module
Was doing lots of investigation recently, with need to have lots of things side by side.
This commit is contained in:
@@ -20,14 +20,15 @@ CCL_NAMESPACE_BEGIN
|
||||
|
||||
#ifdef __SOBOL__
|
||||
|
||||
/* skip initial numbers that are not as well distributed, especially the
|
||||
/* Skip initial numbers that are not as well distributed, especially the
|
||||
* first sequence is just 0 everywhere, which can be problematic for e.g.
|
||||
* path termination */
|
||||
* path termination.
|
||||
*/
|
||||
#define SOBOL_SKIP 64
|
||||
|
||||
/* High Dimensional Sobol */
|
||||
/* High Dimensional Sobol. */
|
||||
|
||||
/* van der corput radical inverse */
|
||||
/* Van der Corput radical inverse. */
|
||||
ccl_device uint van_der_corput(uint bits)
|
||||
{
|
||||
bits = (bits << 16) | (bits >> 16);
|
||||
@@ -38,58 +39,63 @@ ccl_device uint van_der_corput(uint bits)
|
||||
return bits;
|
||||
}
|
||||
|
||||
/* sobol radical inverse */
|
||||
/* Sobol radical inverse. */
|
||||
ccl_device uint sobol(uint i)
|
||||
{
|
||||
uint r = 0;
|
||||
|
||||
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1)
|
||||
if(i & 1)
|
||||
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1) {
|
||||
if(i & 1) {
|
||||
r ^= v;
|
||||
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* inverse of sobol radical inverse */
|
||||
/* Inverse of sobol radical inverse. */
|
||||
ccl_device uint sobol_inverse(uint i)
|
||||
{
|
||||
const uint msb = 1U << 31;
|
||||
uint r = 0;
|
||||
|
||||
for(uint v = 1; i; i <<= 1, v ^= v << 1)
|
||||
if(i & msb)
|
||||
for(uint v = 1; i; i <<= 1, v ^= v << 1) {
|
||||
if(i & msb) {
|
||||
r ^= v;
|
||||
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* multidimensional sobol with generator matrices
|
||||
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */
|
||||
/* Multidimensional sobol with generator matrices
|
||||
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively.
|
||||
*/
|
||||
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
|
||||
{
|
||||
uint result = 0;
|
||||
uint i = index;
|
||||
|
||||
for(uint j = 0; i; i >>= 1, j++)
|
||||
if(i & 1)
|
||||
for(uint j = 0; i; i >>= 1, j++) {
|
||||
if(i & 1) {
|
||||
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
|
||||
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* lookup index and x/y coordinate, assumes m is a power of two */
|
||||
ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y)
|
||||
/* Lookup index and x/y coordinate, assumes m is a power of two. */
|
||||
ccl_device uint sobol_lookup(const uint m,
|
||||
const uint frame,
|
||||
const uint ex,
|
||||
const uint ey,
|
||||
uint *x, uint *y)
|
||||
{
|
||||
/* shift is constant per frame */
|
||||
/* Shift is constant per frame. */
|
||||
const uint shift = frame << (m << 1);
|
||||
const uint sobol_shift = sobol(shift);
|
||||
/* van der Corput is its own inverse */
|
||||
/* Van der Corput is its own inverse. */
|
||||
const uint lower = van_der_corput(ex << (32 - m));
|
||||
/* need to compensate for ey difference and shift */
|
||||
/* Need to compensate for ey difference and shift. */
|
||||
const uint sobol_lower = sobol(lower);
|
||||
const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */
|
||||
const uint mask = ~-(1 << m) << (32 - m); /* Only m upper bits. */
|
||||
const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
|
||||
/* only use m upper bits for the index (m is a power of two) */
|
||||
/* Only use m upper bits for the index (m is a power of two). */
|
||||
const uint sobol_result = delta | (delta >> m);
|
||||
const uint upper = sobol_inverse(sobol_result);
|
||||
const uint index = shift | upper | lower;
|
||||
@@ -98,11 +104,14 @@ ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, cons
|
||||
return index;
|
||||
}
|
||||
|
||||
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension)
|
||||
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
int sample, int num_samples,
|
||||
int dimension)
|
||||
{
|
||||
#ifdef __CMJ__
|
||||
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
|
||||
/* correlated multi-jittered */
|
||||
/* Correlated multi-jitter. */
|
||||
int p = *rng + dimension;
|
||||
return cmj_sample_1D(sample, num_samples, p);
|
||||
}
|
||||
@@ -113,7 +122,7 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample
|
||||
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
|
||||
return r;
|
||||
#else
|
||||
/* compute sobol sequence value using direction vectors */
|
||||
/* Compute sobol sequence value using direction vectors. */
|
||||
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
|
||||
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
|
||||
|
||||
@@ -130,24 +139,33 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample
|
||||
#endif
|
||||
}
|
||||
|
||||
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy)
|
||||
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
int sample, int num_samples,
|
||||
int dimension,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
#ifdef __CMJ__
|
||||
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
|
||||
/* correlated multi-jittered */
|
||||
/* Correlated multi-jitter. */
|
||||
int p = *rng + dimension;
|
||||
cmj_sample_2D(sample, num_samples, p, fx, fy);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
/* sobol */
|
||||
/* Sobol. */
|
||||
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
|
||||
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
|
||||
}
|
||||
}
|
||||
|
||||
ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
|
||||
ccl_device_inline void path_rng_init(KernelGlobals *kg,
|
||||
ccl_global uint *rng_state,
|
||||
int sample, int num_samples,
|
||||
RNG *rng,
|
||||
int x, int y,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
#ifdef __SOBOL_FULL_SCREEN__
|
||||
uint px, py;
|
||||
@@ -182,29 +200,43 @@ ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_sta
|
||||
#endif
|
||||
}
|
||||
|
||||
ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
|
||||
ccl_device void path_rng_end(KernelGlobals *kg,
|
||||
ccl_global uint *rng_state,
|
||||
RNG rng)
|
||||
{
|
||||
/* nothing to do */
|
||||
}
|
||||
|
||||
#else
|
||||
#else /* __SOBOL__ */
|
||||
|
||||
/* Linear Congruential Generator */
|
||||
|
||||
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension)
|
||||
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
int sample, int num_samples,
|
||||
int dimension)
|
||||
{
|
||||
/* implicit mod 2^32 */
|
||||
*rng = (1103515245*(*rng) + 12345);
|
||||
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
|
||||
}
|
||||
|
||||
ccl_device_inline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy)
|
||||
ccl_device_inline void path_rng_2D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
int sample, int num_samples,
|
||||
int dimension,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
|
||||
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
|
||||
}
|
||||
|
||||
ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
|
||||
ccl_device void path_rng_init(KernelGlobals *kg,
|
||||
ccl_global uint *rng_state,
|
||||
int sample, int num_samples,
|
||||
RNG *rng,
|
||||
int x, int y,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
/* load state */
|
||||
*rng = *rng_state;
|
||||
@@ -220,13 +252,15 @@ ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int
|
||||
}
|
||||
}
|
||||
|
||||
ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
|
||||
ccl_device void path_rng_end(KernelGlobals *kg,
|
||||
ccl_global uint *rng_state,
|
||||
RNG rng)
|
||||
{
|
||||
/* store state for next sample */
|
||||
*rng_state = rng;
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif /* __SOBOL__ */
|
||||
|
||||
/* Linear Congruential Generator */
|
||||
|
||||
@@ -257,49 +291,108 @@ ccl_device uint lcg_init(uint seed)
|
||||
* dimension to avoid using the same sequence twice.
|
||||
*
|
||||
* For branches in the path we must be careful not to reuse the same number
|
||||
* in a sequence and offset accordingly. */
|
||||
* in a sequence and offset accordingly.
|
||||
*/
|
||||
|
||||
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension)
|
||||
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int dimension)
|
||||
{
|
||||
return path_rng_1D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension);
|
||||
return path_rng_1D(kg,
|
||||
rng,
|
||||
state->sample, state->num_samples,
|
||||
state->rng_offset + dimension);
|
||||
}
|
||||
|
||||
ccl_device_inline float path_state_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension)
|
||||
ccl_device_inline float path_state_rng_1D_for_decision(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int dimension)
|
||||
{
|
||||
/* the rng_offset is not increased for transparent bounces. if we do then
|
||||
/* The rng_offset is not increased for transparent bounces. if we do then
|
||||
* fully transparent objects can become subtly visible by the different
|
||||
* sampling patterns used where the transparent object is.
|
||||
*
|
||||
* however for some random numbers that will determine if we next bounce
|
||||
* is transparent we do need to increase the offset to avoid always making
|
||||
* the same decision */
|
||||
int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
|
||||
return path_rng_1D(kg, rng, state->sample, state->num_samples, rng_offset + dimension);
|
||||
* the same decision. */
|
||||
const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
|
||||
return path_rng_1D(kg,
|
||||
rng,
|
||||
state->sample, state->num_samples,
|
||||
rng_offset + dimension);
|
||||
}
|
||||
|
||||
ccl_device_inline void path_state_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy)
|
||||
ccl_device_inline void path_state_rng_2D(KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int dimension,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
path_rng_2D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension, fx, fy);
|
||||
path_rng_2D(kg,
|
||||
rng,
|
||||
state->sample, state->num_samples,
|
||||
state->rng_offset + dimension,
|
||||
fx, fy);
|
||||
}
|
||||
|
||||
ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension)
|
||||
ccl_device_inline float path_branched_rng_1D(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int branch,
|
||||
int num_branches,
|
||||
int dimension)
|
||||
{
|
||||
return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension);
|
||||
return path_rng_1D(kg,
|
||||
rng,
|
||||
state->sample * num_branches + branch,
|
||||
state->num_samples * num_branches,
|
||||
state->rng_offset + dimension);
|
||||
}
|
||||
|
||||
ccl_device_inline float path_branched_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension)
|
||||
ccl_device_inline float path_branched_rng_1D_for_decision(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int branch,
|
||||
int num_branches,
|
||||
int dimension)
|
||||
{
|
||||
int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
|
||||
return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, rng_offset + dimension);
|
||||
const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
|
||||
return path_rng_1D(kg,
|
||||
rng,
|
||||
state->sample * num_branches + branch,
|
||||
state->num_samples * num_branches,
|
||||
rng_offset + dimension);
|
||||
}
|
||||
|
||||
ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension, float *fx, float *fy)
|
||||
ccl_device_inline void path_branched_rng_2D(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int branch,
|
||||
int num_branches,
|
||||
int dimension,
|
||||
float *fx, float *fy)
|
||||
{
|
||||
path_rng_2D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension, fx, fy);
|
||||
path_rng_2D(kg,
|
||||
rng,
|
||||
state->sample * num_branches + branch,
|
||||
state->num_samples * num_branches,
|
||||
state->rng_offset + dimension,
|
||||
fx, fy);
|
||||
}
|
||||
|
||||
/* Utitility functions to get light termination value, since it might not be needed in many cases. */
|
||||
ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state)
|
||||
/* Utitility functions to get light termination value,
|
||||
* since it might not be needed in many cases.
|
||||
*/
|
||||
ccl_device_inline float path_state_rng_light_termination(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state)
|
||||
{
|
||||
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
|
||||
return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE);
|
||||
@@ -307,15 +400,27 @@ ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, RNG
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches)
|
||||
ccl_device_inline float path_branched_rng_light_termination(
|
||||
KernelGlobals *kg,
|
||||
RNG *rng,
|
||||
const ccl_addr_space PathState *state,
|
||||
int branch,
|
||||
int num_branches)
|
||||
{
|
||||
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
|
||||
return path_branched_rng_1D_for_decision(kg, rng, state, branch, num_branches, PRNG_LIGHT_TERMINATE);
|
||||
return path_branched_rng_1D_for_decision(kg,
|
||||
rng,
|
||||
state,
|
||||
branch,
|
||||
num_branches,
|
||||
PRNG_LIGHT_TERMINATE);
|
||||
}
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
ccl_device_inline void path_state_branch(ccl_addr_space PathState *state, int branch, int num_branches)
|
||||
ccl_device_inline void path_state_branch(ccl_addr_space PathState *state,
|
||||
int branch,
|
||||
int num_branches)
|
||||
{
|
||||
/* path is splitting into a branch, adjust so that each branch
|
||||
* still gets a unique sample from the same sequence */
|
||||
@@ -324,14 +429,17 @@ ccl_device_inline void path_state_branch(ccl_addr_space PathState *state, int br
|
||||
state->num_samples = state->num_samples*num_branches;
|
||||
}
|
||||
|
||||
ccl_device_inline uint lcg_state_init(RNG *rng, int rng_offset, int sample, uint scramble)
|
||||
ccl_device_inline uint lcg_state_init(RNG *rng,
|
||||
int rng_offset,
|
||||
int sample,
|
||||
uint scramble)
|
||||
{
|
||||
return lcg_init(*rng + rng_offset + sample*scramble);
|
||||
}
|
||||
|
||||
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
|
||||
{
|
||||
/* implicit mod 2^32 */
|
||||
/* Implicit mod 2^32 */
|
||||
*rng = (1103515245*(*rng) + 12345);
|
||||
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
|
||||
}
|
||||
|
Reference in New Issue
Block a user