Cycles: Cleanup, mainly line length in random module

Was doing lots of investigation recently, with need to have lots of things
side by side.
This commit is contained in:
Sergey Sharybin
2017-04-25 11:42:36 +02:00
parent e353cf8705
commit 1f85a35a3d

View File

@@ -20,14 +20,15 @@ CCL_NAMESPACE_BEGIN
#ifdef __SOBOL__ #ifdef __SOBOL__
/* skip initial numbers that are not as well distributed, especially the /* Skip initial numbers that are not as well distributed, especially the
* first sequence is just 0 everywhere, which can be problematic for e.g. * first sequence is just 0 everywhere, which can be problematic for e.g.
* path termination */ * path termination.
*/
#define SOBOL_SKIP 64 #define SOBOL_SKIP 64
/* High Dimensional Sobol */ /* High Dimensional Sobol. */
/* van der corput radical inverse */ /* Van der Corput radical inverse. */
ccl_device uint van_der_corput(uint bits) ccl_device uint van_der_corput(uint bits)
{ {
bits = (bits << 16) | (bits >> 16); bits = (bits << 16) | (bits >> 16);
@@ -38,58 +39,63 @@ ccl_device uint van_der_corput(uint bits)
return bits; return bits;
} }
/* sobol radical inverse */ /* Sobol radical inverse. */
ccl_device uint sobol(uint i) ccl_device uint sobol(uint i)
{ {
uint r = 0; uint r = 0;
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1) {
for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1) if(i & 1) {
if(i & 1)
r ^= v; r ^= v;
}
}
return r; return r;
} }
/* inverse of sobol radical inverse */ /* Inverse of sobol radical inverse. */
ccl_device uint sobol_inverse(uint i) ccl_device uint sobol_inverse(uint i)
{ {
const uint msb = 1U << 31; const uint msb = 1U << 31;
uint r = 0; uint r = 0;
for(uint v = 1; i; i <<= 1, v ^= v << 1) {
for(uint v = 1; i; i <<= 1, v ^= v << 1) if(i & msb) {
if(i & msb)
r ^= v; r ^= v;
}
}
return r; return r;
} }
/* multidimensional sobol with generator matrices /* Multidimensional sobol with generator matrices
* dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */ * dimension 0 and 1 are equal to van_der_corput() and sobol() respectively.
*/
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension) ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{ {
uint result = 0; uint result = 0;
uint i = index; uint i = index;
for(uint j = 0; i; i >>= 1, j++) {
for(uint j = 0; i; i >>= 1, j++) if(i & 1) {
if(i & 1)
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j); result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
}
}
return result; return result;
} }
/* lookup index and x/y coordinate, assumes m is a power of two */ /* Lookup index and x/y coordinate, assumes m is a power of two. */
ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y) ccl_device uint sobol_lookup(const uint m,
const uint frame,
const uint ex,
const uint ey,
uint *x, uint *y)
{ {
/* shift is constant per frame */ /* Shift is constant per frame. */
const uint shift = frame << (m << 1); const uint shift = frame << (m << 1);
const uint sobol_shift = sobol(shift); const uint sobol_shift = sobol(shift);
/* van der Corput is its own inverse */ /* Van der Corput is its own inverse. */
const uint lower = van_der_corput(ex << (32 - m)); const uint lower = van_der_corput(ex << (32 - m));
/* need to compensate for ey difference and shift */ /* Need to compensate for ey difference and shift. */
const uint sobol_lower = sobol(lower); const uint sobol_lower = sobol(lower);
const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */ const uint mask = ~-(1 << m) << (32 - m); /* Only m upper bits. */
const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask; const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
/* only use m upper bits for the index (m is a power of two) */ /* Only use m upper bits for the index (m is a power of two). */
const uint sobol_result = delta | (delta >> m); const uint sobol_result = delta | (delta >> m);
const uint upper = sobol_inverse(sobol_result); const uint upper = sobol_inverse(sobol_result);
const uint index = shift | upper | lower; const uint index = shift | upper | lower;
@@ -98,11 +104,14 @@ ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, cons
return index; return index;
} }
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension) ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension)
{ {
#ifdef __CMJ__ #ifdef __CMJ__
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) { if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
/* correlated multi-jittered */ /* Correlated multi-jitter. */
int p = *rng + dimension; int p = *rng + dimension;
return cmj_sample_1D(sample, num_samples, p); return cmj_sample_1D(sample, num_samples, p);
} }
@@ -113,7 +122,7 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample
float r = (float)result * (1.0f/(float)0xFFFFFFFF); float r = (float)result * (1.0f/(float)0xFFFFFFFF);
return r; return r;
#else #else
/* compute sobol sequence value using direction vectors */ /* Compute sobol sequence value using direction vectors. */
uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension); uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF); float r = (float)result * (1.0f/(float)0xFFFFFFFF);
@@ -130,24 +139,33 @@ ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample
#endif #endif
} }
ccl_device_forceinline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy) ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension,
float *fx, float *fy)
{ {
#ifdef __CMJ__ #ifdef __CMJ__
if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) { if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
/* correlated multi-jittered */ /* Correlated multi-jitter. */
int p = *rng + dimension; int p = *rng + dimension;
cmj_sample_2D(sample, num_samples, p, fx, fy); cmj_sample_2D(sample, num_samples, p, fx, fy);
} }
else else
#endif #endif
{ {
/* sobol */ /* Sobol. */
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension); *fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1); *fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
} }
} }
ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy) ccl_device_inline void path_rng_init(KernelGlobals *kg,
ccl_global uint *rng_state,
int sample, int num_samples,
RNG *rng,
int x, int y,
float *fx, float *fy)
{ {
#ifdef __SOBOL_FULL_SCREEN__ #ifdef __SOBOL_FULL_SCREEN__
uint px, py; uint px, py;
@@ -182,29 +200,43 @@ ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_sta
#endif #endif
} }
ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng) ccl_device void path_rng_end(KernelGlobals *kg,
ccl_global uint *rng_state,
RNG rng)
{ {
/* nothing to do */ /* nothing to do */
} }
#else #else /* __SOBOL__ */
/* Linear Congruential Generator */ /* Linear Congruential Generator */
ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension) ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension)
{ {
/* implicit mod 2^32 */ /* implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345); *rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF); return (float)*rng * (1.0f/(float)0xFFFFFFFF);
} }
ccl_device_inline void path_rng_2D(KernelGlobals *kg, RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy) ccl_device_inline void path_rng_2D(KernelGlobals *kg,
RNG *rng,
int sample, int num_samples,
int dimension,
float *fx, float *fy)
{ {
*fx = path_rng_1D(kg, rng, sample, num_samples, dimension); *fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
*fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1); *fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
} }
ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy) ccl_device void path_rng_init(KernelGlobals *kg,
ccl_global uint *rng_state,
int sample, int num_samples,
RNG *rng,
int x, int y,
float *fx, float *fy)
{ {
/* load state */ /* load state */
*rng = *rng_state; *rng = *rng_state;
@@ -220,13 +252,15 @@ ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int
} }
} }
ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng) ccl_device void path_rng_end(KernelGlobals *kg,
ccl_global uint *rng_state,
RNG rng)
{ {
/* store state for next sample */ /* store state for next sample */
*rng_state = rng; *rng_state = rng;
} }
#endif #endif /* __SOBOL__ */
/* Linear Congruential Generator */ /* Linear Congruential Generator */
@@ -257,49 +291,108 @@ ccl_device uint lcg_init(uint seed)
* dimension to avoid using the same sequence twice. * dimension to avoid using the same sequence twice.
* *
* For branches in the path we must be careful not to reuse the same number * For branches in the path we must be careful not to reuse the same number
* in a sequence and offset accordingly. */ * in a sequence and offset accordingly.
*/
ccl_device_inline float path_state_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension) ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension)
{ {
return path_rng_1D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension); return path_rng_1D(kg,
rng,
state->sample, state->num_samples,
state->rng_offset + dimension);
} }
ccl_device_inline float path_state_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension) ccl_device_inline float path_state_rng_1D_for_decision(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension)
{ {
/* the rng_offset is not increased for transparent bounces. if we do then /* The rng_offset is not increased for transparent bounces. if we do then
* fully transparent objects can become subtly visible by the different * fully transparent objects can become subtly visible by the different
* sampling patterns used where the transparent object is. * sampling patterns used where the transparent object is.
* *
* however for some random numbers that will determine if we next bounce * however for some random numbers that will determine if we next bounce
* is transparent we do need to increase the offset to avoid always making * is transparent we do need to increase the offset to avoid always making
* the same decision */ * the same decision. */
int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM; const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
return path_rng_1D(kg, rng, state->sample, state->num_samples, rng_offset + dimension); return path_rng_1D(kg,
rng,
state->sample, state->num_samples,
rng_offset + dimension);
} }
ccl_device_inline void path_state_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy) ccl_device_inline void path_state_rng_2D(KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int dimension,
float *fx, float *fy)
{ {
path_rng_2D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension, fx, fy); path_rng_2D(kg,
rng,
state->sample, state->num_samples,
state->rng_offset + dimension,
fx, fy);
} }
ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension) ccl_device_inline float path_branched_rng_1D(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension)
{ {
return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension); return path_rng_1D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension);
} }
ccl_device_inline float path_branched_rng_1D_for_decision(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension) ccl_device_inline float path_branched_rng_1D_for_decision(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension)
{ {
int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM; const int rng_offset = state->rng_offset + state->transparent_bounce * PRNG_BOUNCE_NUM;
return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, rng_offset + dimension); return path_rng_1D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
rng_offset + dimension);
} }
ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches, int dimension, float *fx, float *fy) ccl_device_inline void path_branched_rng_2D(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches,
int dimension,
float *fx, float *fy)
{ {
path_rng_2D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension, fx, fy); path_rng_2D(kg,
rng,
state->sample * num_branches + branch,
state->num_samples * num_branches,
state->rng_offset + dimension,
fx, fy);
} }
/* Utitility functions to get light termination value, since it might not be needed in many cases. */ /* Utitility functions to get light termination value,
ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state) * since it might not be needed in many cases.
*/
ccl_device_inline float path_state_rng_light_termination(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state)
{ {
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) { if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE); return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE);
@@ -307,15 +400,27 @@ ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, RNG
return 0.0f; return 0.0f;
} }
ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg, RNG *rng, const ccl_addr_space PathState *state, int branch, int num_branches) ccl_device_inline float path_branched_rng_light_termination(
KernelGlobals *kg,
RNG *rng,
const ccl_addr_space PathState *state,
int branch,
int num_branches)
{ {
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) { if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
return path_branched_rng_1D_for_decision(kg, rng, state, branch, num_branches, PRNG_LIGHT_TERMINATE); return path_branched_rng_1D_for_decision(kg,
rng,
state,
branch,
num_branches,
PRNG_LIGHT_TERMINATE);
} }
return 0.0f; return 0.0f;
} }
ccl_device_inline void path_state_branch(ccl_addr_space PathState *state, int branch, int num_branches) ccl_device_inline void path_state_branch(ccl_addr_space PathState *state,
int branch,
int num_branches)
{ {
/* path is splitting into a branch, adjust so that each branch /* path is splitting into a branch, adjust so that each branch
* still gets a unique sample from the same sequence */ * still gets a unique sample from the same sequence */
@@ -324,14 +429,17 @@ ccl_device_inline void path_state_branch(ccl_addr_space PathState *state, int br
state->num_samples = state->num_samples*num_branches; state->num_samples = state->num_samples*num_branches;
} }
ccl_device_inline uint lcg_state_init(RNG *rng, int rng_offset, int sample, uint scramble) ccl_device_inline uint lcg_state_init(RNG *rng,
int rng_offset,
int sample,
uint scramble)
{ {
return lcg_init(*rng + rng_offset + sample*scramble); return lcg_init(*rng + rng_offset + sample*scramble);
} }
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng) ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
{ {
/* implicit mod 2^32 */ /* Implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345); *rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF); return (float)*rng * (1.0f/(float)0xFFFFFFFF);
} }