math func to find the intersection(s) between a segment and a sphere for C/python.

from python:
  i1, i2 = mathutils.geometry.intersect_line_sphere(l1, l2, sphere, radius)
This commit is contained in:
Campbell Barton
2011-06-26 07:21:19 +00:00
parent 83000d8504
commit 540c2eee56
3 changed files with 142 additions and 0 deletions

View File

@@ -79,6 +79,7 @@ void closest_to_line_segment_v3(float r[3], const float p[3], const float l1[3],
int isect_line_line_v2(const float a1[2], const float a2[2], const float b1[2], const float b2[2]);
int isect_line_line_v2_int(const int a1[2], const int a2[2], const int b1[2], const int b2[2]);
int isect_seg_seg_v2_point(const float v1[2], const float v2[2], const float v3[2], const float v4[2], float vi[2]);
int isect_seg_sphere_v3(const float l1[3], const float l2[3], const float sp[3], const float r, float r_p1[3], float r_p2[3]);
/* Returns the number of point of interests
* 0 - lines are colinear

View File

@@ -349,6 +349,79 @@ int isect_seg_seg_v2_point(const float v1[2], const float v2[2], const float v3[
return -1;
}
int isect_seg_sphere_v3(const float l1[3], const float l2[3],
const float sp[3], const float r,
float r_p1[3], float r_p2[3])
{
/* l1: coordinates (point of line)
* l2: coordinates (point of line)
* sp, r: coordinates and radius (sphere)
* r_p1, r_p2: return intersection coordinates
*/
/* adapted for use in blender by Campbell Barton - 2011
*
* atelier iebele abel - 2001
* atelier@iebele.nl
* http://www.iebele.nl
*
* sphere_line_intersection function adapted from:
* http://astronomy.swin.edu.au/pbourke/geometry/sphereline
* Paul Bourke pbourke@swin.edu.au
*/
const float ldir[3]= {
l2[0] - l1[0],
l2[1] - l1[1],
l2[2] - l1[2]
};
const float a= dot_v3v3(ldir, ldir);
const float b= 2.0f *
(ldir[0] * (l1[0] - sp[0]) +
ldir[1] * (l1[1] - sp[1]) +
ldir[2] * (l1[2] - sp[2]));
const float c=
dot_v3v3(sp, sp) +
dot_v3v3(l1, l1) -
(2.0f * dot_v3v3(sp, l1)) -
(r * r);
const float i = b * b - 4.0f * a * c;
float mu;
if (i < 0.0f) {
/* no intersections */
return 0;
}
else if (i == 0.0f) {
/* one intersection */
mu = -b / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
return 1;
}
else if (i > 0.0) {
const float i_sqrt= sqrt(i); /* avoid calc twice */
/* first intersection */
mu = (-b + i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p1, l1, ldir, mu);
/* second intersection */
mu = (-b - i_sqrt) / (2.0f * a);
madd_v3_v3v3fl(r_p2, l1, ldir, mu);
return 2;
}
else {
/* math domain error - nan */
return -1;
}
}
/*
-1: colliniar
1: intersection

View File

@@ -553,6 +553,73 @@ static PyObject *M_Geometry_intersect_line_plane(PyObject *UNUSED(self), PyObjec
}
}
PyDoc_STRVAR(M_Geometry_intersect_line_sphere_doc,
".. function:: intersect_line_sphere(line_a, line_b, sphere_co, sphere_radius)\n"
"\n"
" Takes a lines (as 2 vectors), a sphere as a point and a radius and\n"
" returns the intersection\n"
"\n"
" :arg line_a: First point of the first line\n"
" :type line_a: :class:`mathutils.Vector`\n"
" :arg line_b: Second point of the first line\n"
" :type line_b: :class:`mathutils.Vector`\n"
" :arg sphere_co: The center of the sphere\n"
" :type sphere_co: :class:`mathutils.Vector`\n"
" :arg sphere_radius: Radius of the sphere\n"
" :type sphere_radius: sphere_radius\n"
" :return: The intersection points as a pair of vectors or None when there is no intersection\n"
" :rtype: A tuple pair containing :class:`mathutils.Vector` or None\n"
);
static PyObject *M_Geometry_intersect_line_sphere(PyObject *UNUSED(self), PyObject* args)
{
PyObject *ret;
VectorObject *line_a, *line_b, *sphere_co;
float sphere_radius;
float isect_a[3];
float isect_b[3];
if(!PyArg_ParseTuple(args, "O!O!O!f:intersect_line_sphere",
&vector_Type, &line_a,
&vector_Type, &line_b,
&vector_Type, &sphere_co,
&sphere_radius)
) {
return NULL;
}
if( BaseMath_ReadCallback(line_a) == -1 ||
BaseMath_ReadCallback(line_b) == -1 ||
BaseMath_ReadCallback(sphere_co) == -1
) {
return NULL;
}
if(ELEM3(2, line_a->size, line_b->size, sphere_co->size)) {
PyErr_SetString(PyExc_RuntimeError, "geometry.intersect_line_sphere(...) can't use 2D Vectors");
return NULL;
}
ret= PyTuple_New(2);
switch(isect_seg_sphere_v3(line_a->vec, line_b->vec, sphere_co->vec, sphere_radius, isect_a, isect_b)) {
case 1:
PyTuple_SET_ITEM(ret, 0, newVectorObject(isect_a, 3, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None);
break;
case 2:
PyTuple_SET_ITEM(ret, 0, newVectorObject(isect_a, 3, Py_NEW, NULL));
PyTuple_SET_ITEM(ret, 1, newVectorObject(isect_b, 3, Py_NEW, NULL));
break;
default:
PyTuple_SET_ITEM(ret, 0, Py_None); Py_INCREF(Py_None);
PyTuple_SET_ITEM(ret, 1, Py_None); Py_INCREF(Py_None);
}
return ret;
}
PyDoc_STRVAR(M_Geometry_intersect_point_line_doc,
".. function:: intersect_point_line(pt, line_p1, line_p2)\n"
"\n"
@@ -917,6 +984,7 @@ static PyMethodDef M_Geometry_methods[]= {
{"intersect_line_line", (PyCFunction) M_Geometry_intersect_line_line, METH_VARARGS, M_Geometry_intersect_line_line_doc},
{"intersect_line_line_2d", (PyCFunction) M_Geometry_intersect_line_line_2d, METH_VARARGS, M_Geometry_intersect_line_line_2d_doc},
{"intersect_line_plane", (PyCFunction) M_Geometry_intersect_line_plane, METH_VARARGS, M_Geometry_intersect_line_plane_doc},
{"intersect_line_sphere", (PyCFunction) M_Geometry_intersect_line_sphere, METH_VARARGS, M_Geometry_intersect_line_sphere_doc},
{"interpolate_bezier", (PyCFunction) M_Geometry_interpolate_bezier, METH_VARARGS, M_Geometry_interpolate_bezier_doc},
{"area_tri", (PyCFunction) M_Geometry_area_tri, METH_VARARGS, M_Geometry_area_tri_doc},
{"normal", (PyCFunction) M_Geometry_normal, METH_VARARGS, M_Geometry_normal_doc},