New Animation Import system. Only Mesh object animation import support implemented for now.

This commit is contained in:
Sukhitha Prabhath Jayathilake
2011-06-14 20:42:01 +00:00
parent d8974a60f6
commit f3f3bcc45e
5 changed files with 485 additions and 80 deletions

View File

@@ -57,7 +57,8 @@ void AnimationExporter::exportAnimations(Scene *sce)
if (!ob->adt || !ob->adt->action) return; //this is already checked in hasAnimations()
FCurve *fcu = (FCurve*)ob->adt->action->curves.first;
char * transformName = extract_transform_name( fcu->rna_path );
//if (ob->type == OB_ARMATURE) {
// if (!ob->data) return;
// bArmature *arm = (bArmature*)ob->data;
@@ -74,17 +75,46 @@ void AnimationExporter::exportAnimations(Scene *sce)
//else {
while (fcu) {
transformName = extract_transform_name( fcu->rna_path );
printf("fcu -> rna _path : %s \n transformName : %s\n", fcu->rna_path, transformName);
if ((!strcmp(transformName, "location") || !strcmp(transformName, "scale")) ||
(!strcmp(transformName, "rotation_euler") && ob->rotmode == ROT_MODE_EUL)||
(!strcmp(transformName, "rotation_quaternion")))
dae_animation(ob ,fcu,/* id_name(ob),*/ transformName);
dae_animation(ob ,fcu, transformName );
fcu = fcu->next;
}
//}
}
/*float * AnimationExporter::get_eul_source_for_quat(Object *ob )
{
FCurve *fcu = (FCurve*)ob->adt->action->curves.first;
const int keys = fcu->totvert;
float quat[keys][4];
float eul[keys][3];
while(fcu)
{
transformName = extract_transform_name( fcu->rna_path );
if( !strcmp(transformName, "rotation_quaternion") )
{
for ( int i = 0 ; i < fcu->totvert ; i+=)
{
quat[i][fcu->array_index] = fcu->bezt[i].vec[1][1];
}
}
fcu = fcu->next;
}
for ( int i = 0 ; i < fcu->totvert ; i+=)
{
quat_to_eul(eul[i],quat[i]);
}
return eul;
}*/
std::string AnimationExporter::getObjectBoneName( Object* ob,const FCurve* fcu )
{
//hard-way to derive the bone name from rna_path. Must find more compact method
@@ -99,16 +129,18 @@ void AnimationExporter::exportAnimations(Scene *sce)
return id_name(ob);
}
void AnimationExporter::dae_animation(Object* ob, FCurve *fcu/*, std::string ob_name*/ , char* transformName)
void AnimationExporter::dae_animation(Object* ob, FCurve *fcu/*, std::string ob_name*/ , char* transformName )
{
printf("in dae animation\n");
const char *axis_name = NULL;
char anim_id[200];
bool has_tangents = false;
bool quatRotation = false;
if ( !strcmp(transformName, "rotation_quaternion") )
{
const char *axis_names[] = {"W", "X", "Y", "Z"};
//quatRotation = true;
const char *axis_names[] = {"", "X", "Y", "Z"};
if (fcu->array_index < 4)
axis_name = axis_names[fcu->array_index];
}
@@ -118,8 +150,6 @@ void AnimationExporter::exportAnimations(Scene *sce)
const char *axis_names[] = {"X", "Y", "Z"};
if (fcu->array_index < 3)
axis_name = axis_names[fcu->array_index];
}
std::string ob_name = std::string("null");
if (ob->type == OB_ARMATURE)
@@ -377,7 +407,7 @@ void AnimationExporter::exportAnimations(Scene *sce)
float AnimationExporter::convert_angle(float angle)
{
return COLLADABU::Math::Utils::radToDegF(angle);
return COLLADABU::Math::Utils::degToRadF(angle);
}
std::string AnimationExporter::get_semantic_suffix(COLLADASW::InputSemantic::Semantics semantic)
@@ -414,7 +444,7 @@ void AnimationExporter::exportAnimations(Scene *sce)
if (axis) {
param.push_back(axis);
}
else { //assumes if axis isn't specified all axi are added
else { //assumes if axis isn't specified all axises are added
param.push_back("X");
param.push_back("Y");
param.push_back("Z");
@@ -440,12 +470,12 @@ void AnimationExporter::exportAnimations(Scene *sce)
break;
case COLLADASW::InputSemantic::OUTPUT:
*length = 1;
if (rotation) {
/*if (rotation) {
values[0] = convert_angle(bezt->vec[1][1]);
}
else {
else {*/
values[0] = bezt->vec[1][1];
}
//}
break;
case COLLADASW::InputSemantic::IN_TANGENT:
@@ -454,12 +484,13 @@ void AnimationExporter::exportAnimations(Scene *sce)
if (bezt->ipo != BEZT_IPO_BEZ) {
// We're in a mixed interpolation scenario, set zero as it's irrelevant but value might contain unused data
values[0] = 0;
values[1] = 0;
} else if (rotation) {
values[1] = 0;
}
/* else if (rotation) {
values[1] = convert_angle(bezt->vec[0][1]);
} else {
} else {*/
values[1] = bezt->vec[0][1];
}
//}
break;
case COLLADASW::InputSemantic::OUT_TANGENT:
@@ -469,11 +500,12 @@ void AnimationExporter::exportAnimations(Scene *sce)
// We're in a mixed interpolation scenario, set zero as it's irrelevant but value might contain unused data
values[0] = 0;
values[1] = 0;
} else if (rotation) {
values[1] = convert_angle(bezt->vec[2][1]);
} else {
values[1] = bezt->vec[2][1];
}
/* else if (rotation) {
values[1] = convert_angle(bezt->vec[2][1]);
} else {*/
values[1] = bezt->vec[2][1];
//}
break;
break;
default:
@@ -516,9 +548,8 @@ void AnimationExporter::exportAnimations(Scene *sce)
for (unsigned int i = 0; i < fcu->totvert; i++) {
float values[3]; // be careful!
int length = 0;
get_source_values(&fcu->bezt[i], semantic, is_rotation, values, &length);
for (int j = 0; j < length; j++)
for (int j = 0; j < length; j++)
source.appendValues(values[j]);
}
@@ -526,6 +557,7 @@ void AnimationExporter::exportAnimations(Scene *sce)
return source_id;
}
//Currently called only to get OUTPUT source values ( if rotation and hence the axis is also specified )
std::string AnimationExporter::create_source_from_array(COLLADASW::InputSemantic::Semantics semantic, float *v, int tot, bool is_rot, const std::string& anim_id, const char *axis_name)
{
@@ -676,7 +708,7 @@ void AnimationExporter::exportAnimations(Scene *sce)
std::string AnimationExporter::get_transform_sid(char *rna_path, int tm_type, const char *axis_name, bool append_axis)
{
std::string tm_name;
bool is_rotation =false;
// when given rna_path, determine tm_type from it
if (rna_path) {
char *name = extract_transform_name(rna_path);
@@ -695,9 +727,10 @@ void AnimationExporter::exportAnimations(Scene *sce)
switch (tm_type) {
case 0:
return std::string("rotation_euler.") + std::string(axis_name) + ".ANGLE";
case 1:
return std::string("rotation_quaternion.") + std::string(axis_name) + ".ANGLE";
tm_name = "rotation";
is_rotation = true;
break;
case 2:
tm_name = "scale";
break;
@@ -710,8 +743,8 @@ void AnimationExporter::exportAnimations(Scene *sce)
}
if (tm_name.size()) {
if (append_axis)
return tm_name + std::string(".") + std::string(axis_name);
if (is_rotation)
return tm_name + std::string(axis_name);
else
return tm_name;
}

View File

@@ -111,6 +111,10 @@ protected:
COLLADASW::InputSemantic::Semantics semantic, bool is_rot, const char *axis);
void get_source_values(BezTriple *bezt, COLLADASW::InputSemantic::Semantics semantic, bool rotation, float *values, int *length);
/*float * get_eul_source_for_quat(Object *ob );*/
/*std::string create_source_from_array(COLLADASW::InputSemantic::Semantics semantic, float *v, int tot, const std::string& anim_id, int array_index);*/
std::string create_source_from_fcurve(COLLADASW::InputSemantic::Semantics semantic, FCurve *fcu, const std::string& anim_id, const char *axis_name);

View File

@@ -89,12 +89,15 @@ void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
{
COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues();
// COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
// COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
if( curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ) {
COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
}
float fps = (float)FPS;
size_t dim = curve->getOutDimension();
unsigned int i;
std::vector<FCurve*>& fcurves = curve_map[curve->getUniqueId()];
switch (dim) {
@@ -108,28 +111,42 @@ void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
// fcu->rna_path = BLI_strdupn(path, strlen(path));
fcu->array_index = 0;
//fcu->totvert = curve->getKeyCount();
fcu->totvert = curve->getKeyCount();
// create beztriple for each key
for (unsigned int j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
// intangent
// bez.vec[0][0] = get_float_value(intan, j * 6 + i + i) * fps;
// bez.vec[0][1] = get_float_value(intan, j * 6 + i + i + 1);
// input, output
bez.vec[1][0] = bc_get_float_value(input, j) * fps;
bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
// outtangent
// bez.vec[2][0] = get_float_value(outtan, j * 6 + i + i) * fps;
// bez.vec[2][1] = get_float_value(outtan, j * 6 + i + i + 1);
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
if( curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER )
{
COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
// intangent
bez.vec[0][0] = bc_get_float_value(intan, (j * 2 * dim ) + (2 * i)) * fps;
bez.vec[0][1] = bc_get_float_value(intan, (j * 2 * dim )+ (2 * i) + 1);
// outtangent
bez.vec[2][0] = bc_get_float_value(outtan, (j * 2 * dim ) + (2 * i)) * fps;
bez.vec[2][1] = bc_get_float_value(outtan, (j * 2 * dim )+ (2 * i) + 1);
bez.ipo = BEZT_IPO_BEZ;
//bez.h1 = bez.h2 = HD_AUTO;
}
else
{
bez.h1 = bez.h2 = HD_AUTO;
bez.ipo = BEZT_IPO_LIN;
}
// bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, 0);
}
@@ -147,11 +164,15 @@ void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
unused_curves.push_back(*it);
}
void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
{
for (unsigned int i = 0; i < cu->totvert; i++) {
// TODO convert handles too
cu->bezt[i].vec[1][1] *= M_PI / 180.0f;
/*cu->bezt[i].vec[0][1] *= M_PI / 180.0f;
cu->bezt[i].vec[2][1] *= M_PI / 180.0f;*/
cu->bezt[i].vec[1][0];
}
}
@@ -277,10 +298,11 @@ bool AnimationImporter::write_animation(const COLLADAFW::Animation* anim)
bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* animlist)
{
const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId();
animlist_map[animlist_id] = animlist;
#if 0
// should not happen
if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
return true;
@@ -291,17 +313,18 @@ bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* ani
// what does this AnimationList animate?
Animation& animated = uid_animated_map[animlist_id];
Object *ob = animated.ob;
char rna_path[100];
char joint_path[100];
bool is_joint = false;
// if ob is NULL, it should be a JOINT
if (!ob) {
ob = armature_importer->get_armature_for_joint(animated.node);
if (!ob) {
fprintf(stderr, "Cannot find armature for node %s\n", get_joint_name(animated.node));
// fprintf(stderr, "Cannot find armature for node %s\n", get_joint_name(animated.node));
return true;
}
@@ -309,7 +332,7 @@ bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* ani
is_joint = true;
}
printf("object for animlist: %s found\n", animlist->getUniqueId().toAscii().c_str());
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
switch (animated.tm->getTransformationType()) {
@@ -512,66 +535,361 @@ virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
}
#endif
// prerequisites:
// animlist_map - map animlist id -> animlist
// curve_map - map anim id -> curve(s)
Object *AnimationImporter::translate_animation(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object*>& object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job)
{
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
//Object *AnimationImporter::translate_animation(COLLADAFW::Node *node,
// std::map<COLLADAFW::UniqueId, Object*>& object_map,
// std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
// COLLADAFW::Transformation::TransformationType tm_type,
// Object *par_job)
//{
// bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
// //bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
//}
//sets the rna_path and array index to curve
void AnimationImporter::modify_fcurve(std::vector<FCurve*>* curves , char* rna_path , int array_index )
{
std::vector<FCurve*>::iterator it;
int i;
for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
if (array_index == -1) fcu->array_index = i;
else fcu->array_index = array_index;
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
}
}
void AnimationImporter::find_frames( std::vector<float>* frames , std::vector<FCurve*>* curves)
{
std::vector<FCurve*>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
//
////if transform is rotation the fcurves values must be turned in to radian.
//if (is_rotation)
// fcurve_deg_to_rad(fcu);
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
//creates the rna_paths and array indices of fcurves from animations using transformation and bound animation class of each animation.
void AnimationImporter:: Assign_transform_animations(std::vector<float>* frames,
COLLADAFW::Transformation * transform ,
const COLLADAFW::AnimationList::AnimationBinding * binding,
std::vector<FCurve*>* curves, bool is_joint, char * joint_path)
{
//bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
//Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
//char joint_path[100];
/*if ( is_joint )
armature_importer->get_rna_path_for_joint(animated.node, joint_path, sizeof(joint_path));*/
//bAction * act;
//if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
//else act = ob->adt->action;
//
////Get the list of animation curves of the object
// ListBase *AnimCurves = act->curves;
//
// char* tm_str;
// int array_index;
//curves belonging to the animation
//std::vector<FCurve*> curves = curve_map[bindings[j].animation];
//to check if the no of curves are valid
bool xyz = ((tm_type == COLLADAFW::Transformation::TRANSLATE ||tm_type == COLLADAFW::Transformation::SCALE) && binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves->size());
return;
}
//find key frames of the animation and accumulates them to frames of the transformation.
find_frames (frames , curves );
char rna_path[100];
//char joint_path[100];
switch (tm_type) {
case COLLADAFW::Transformation::TRANSLATE:
case COLLADAFW::Transformation::SCALE:
{
bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
else
BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
switch (binding->animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
modify_fcurve(curves, rna_path, 0 );
//add_fcurves_to_object(ob, curves, rna_path, 0, &animated);
break;
case COLLADAFW::AnimationList::POSITION_Y:
modify_fcurve(curves, rna_path, 1 );
//add_fcurves_to_object(ob, curves, rna_path, 1, &animated);
break;
case COLLADAFW::AnimationList::POSITION_Z:
modify_fcurve(curves, rna_path, 2 );
//add_fcurves_to_object(ob, curves, rna_path, 2, &animated);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
modify_fcurve(curves, rna_path, -1 );
//add_fcurves_to_object(ob, curves, rna_path, -1, &animated);
break;
default:
fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
binding->animationClass, loc ? "TRANSLATE" : "SCALE");
}
break;
}
case COLLADAFW::Transformation::ROTATE:
{
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
else
BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
std::vector<FCurve*>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve* fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
/*if (is_rotation)
fcurve_deg_to_rad(fcu); */
}
COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)transform;
COLLADABU::Math::Vector3& axis = rot->getRotationAxis();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::ANGLE:
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
modify_fcurve(curves, rna_path, 0 );
//add_fcurves_to_object(ob, fcurves, rna_path, 0, &animated);
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
modify_fcurve(curves, rna_path, 1 );
//add_fcurves_to_object(ob, fcurves, rna_path, 1, &animated);
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
modify_fcurve(curves, rna_path, 2 );
//add_fcurves_to_object(ob, fcurves, rna_path, 2, &animated);
}
break;
case COLLADAFW::AnimationList::AXISANGLE:
// TODO convert axis-angle to quat? or XYZ?
default:
fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n",
binding->animationClass);
}
break;
}
case COLLADAFW::Transformation::MATRIX:
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
fprintf(stderr, "Animation of MATRIX, SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
//BLI_addtail(&AnimCurves, curves);
}
void AnimationImporter::translate_Animations_NEW ( COLLADAFW::Node * node ,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
std::map<COLLADAFW::UniqueId, Object*>& object_map )
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
if ( ! is_object_animated(ob,node) ) return ;
char joint_path[200];
if ( is_joint )
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
bAction * act;
if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
else act = ob->adt->action;
//Get the list of animation curves of the object
ListBase *AnimCurves = &(act->curves);
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return NULL;
return;
}
// frames at which to sample
std::vector<float> frames;
float irest_dae[4][4];
float rest[4][4], irest[4][4];
// for each <rotate>, <translate>, etc. there is a separate Transformation
const COLLADAFW::TransformationPointerArray& tms = node->getTransformations();
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
unsigned int i;
Bone *bone = get_named_bone((bArmature*)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
// find frames at which to sample plus convert all rotation keys to radians
for (i = 0; i < tms.getCount(); i++) {
COLLADAFW::Transformation *tm = tms[i];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
if (type == tm_type) {
const COLLADAFW::UniqueId& listid = tm->getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//might not be needed, let's see
std::vector<float> frames;
//all the curves belonging to the transform
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) continue ;
else
{
//transformation has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve*> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
//calculate rnapaths and array index of fcurves according to transformation and animation class
Assign_transform_animations(&frames,transform, &bindings[j], &animcurves, is_joint, joint_path );
std::vector<FCurve*>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve * fcu = *iter;
BLI_addtail(AnimCurves, fcu);
}
}
std::sort(frames.begin(), frames.end());
}
if (is_rotation || is_matrix) {
if (is_joint)
{
bPoseChannel *chan = get_pose_channel(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else
{
ob->rotmode = ROT_MODE_EUL;
}
}
}
}
bool AnimationImporter::is_object_animated ( const Object *ob , const COLLADAFW::Node * node )
{
bool exists = false;
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) continue ;
else
{
exists = true;
break;
}
}
return exists;
}
void AnimationImporter::find_frames_old(std::vector<float> * frames, COLLADAFW::Node * node , COLLADAFW::Transformation::TransformationType tm_type)
{
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
// for each <rotate>, <translate>, etc. there is a separate Transformation
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
unsigned int i;
// find frames at which to sample plus convert all rotation keys to radians
for (i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
if (nodeTmType == tm_type) {
//get animation bindings for the current transformation
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//if transform is animated its animlist must exist.
if (animlist_map.find(listid) != animlist_map.end()) {
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
//for each AnimationBinding get the fcurves which animate the transform
for (unsigned int j = 0; j < bindings.getCount(); j++) {
std::vector<FCurve*>& curves = curve_map[bindings[j].animation];
bool xyz = ((type == COLLADAFW::Transformation::TRANSLATE || type == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
bool xyz = ((nodeTmType == COLLADAFW::Transformation::TRANSLATE || nodeTmType == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
std::vector<FCurve*>::iterator iter;
for (iter = curves.begin(); iter != curves.end(); iter++) {
FCurve *fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
if (is_rotation)
fcurve_deg_to_rad(fcu);
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
if (std::find(frames.begin(), frames.end(), fra) == frames.end())
frames.push_back(fra);
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
@@ -583,7 +901,38 @@ Object *AnimationImporter::translate_animation(COLLADAFW::Node *node,
}
}
}
}
// prerequisites:
// animlist_map - map animlist id -> animlist
// curve_map - map anim id -> curve(s)
Object *AnimationImporter::translate_animation(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object*>& object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job)
{
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return NULL;
}
// frames at which to sample
std::vector<float> frames;
find_frames_old(&frames, node , tm_type);
unsigned int i;
float irest_dae[4][4];
float rest[4][4], irest[4][4];
@@ -664,7 +1013,6 @@ Object *AnimationImporter::translate_animation(COLLADAFW::Node *node,
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
else
strcpy(rna_path, tm_str);
newcu[i] = create_fcurve(axis, rna_path);
#ifdef ARMATURE_TEST

View File

@@ -94,16 +94,35 @@ public:
#if 0
virtual void change_eul_to_quat(Object *ob, bAction *act);
#endif
void translate_Animations_NEW ( COLLADAFW::Node * Node ,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
std::map<COLLADAFW::UniqueId, Object*>& object_map );
bool is_object_animated ( const Object *ob , const COLLADAFW::Node * node ) ;
void Assign_transform_animations(std::vector<float>* frames,
COLLADAFW::Transformation* transform ,
const COLLADAFW::AnimationList::AnimationBinding * binding,
std::vector<FCurve*>* curves, bool is_joint, char * joint_path);
/*void Assign_transform_animations(std::vector<float>* frames,
COLLADAFW::Transformation *transform ,
COLLADAFW::AnimationList::AnimationBinding * binding,
COLLADAFW::Node * node);*/
void modify_fcurve(std::vector<FCurve*>* curves , char* rna_path , int array_index );
// prerequisites:
// animlist_map - map animlist id -> animlist
// curve_map - map anim id -> curve(s)
Object *translate_animation(COLLADAFW::Node *node,
Object * translate_animation(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object*>& object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job = NULL);
void find_frames( std::vector<float>* frames , std::vector<FCurve*>* curves );
void find_frames_old( std::vector<float>* frames, COLLADAFW::Node * node, COLLADAFW::Transformation::TransformationType tm_type );
// internal, better make it private
// warning: evaluates only rotation
// prerequisites: animlist_map, curve_map

View File

@@ -250,8 +250,9 @@ void DocumentImporter::translate_anim_recursive(COLLADAFW::Node *node, COLLADAFW
unsigned int i;
Object *ob;
for (i = 0; i < 4; i++)
ob = anim_importer.translate_animation(node, object_map, root_map, types[i]);
//for (i = 0; i < 4; i++)
//ob =
anim_importer.translate_Animations_NEW(node, root_map, object_map);
COLLADAFW::NodePointerArray &children = node->getChildNodes();
for (i = 0; i < children.getCount(); i++) {