Fix T41013: OSL and Crash
Fix T40989: Intermittent crash clicking material color selector
Issue was caused by not enough precision for inversion threshold.
Use double precision for this threshold now. We might want to
investigate this code a bit more further, stock implementation
uses doubles for all computation. Using floats might be a reason
of bad rows distribution in theory.
It turns out that the new Beckmann sampling function doesn't work well with
Quasi Monte Carlo sampling, mainly near normal incidence where it can be worse
than the previous sampler. In the new sampler the random number pattern gets
split in two, warped and overlapped, which hurts the stratification, see the
visualization in the differential revision.
Now we use a precomputed table, which is much better behaved. GGX does not seem
to benefit from using a precomputed table.
Disadvantage is that this table adds 1MB of memory usage and 0.03s startup time
to every render (on my quad core CPU).
Differential Revision: https://developer.blender.org/D614
* Anisotropic BSDF now supports GGX and Beckmann distributions, Ward has been
removed because other distributions are superior.
* GGX is now the default distribution for all glossy and anisotropic nodes,
since it looks good, has low noise and is fast to evaluate.
* Ashikhmin-Shirley is now available in the Glossy BSDF.
* Ashikhmin-Shirley anisotropic BSDF was added as closure
* Anisotropic BSDF node now has two distributions
Reviewers: brecht, dingto
Differential Revision: https://developer.blender.org/D549
This gives you "Multiple Importance", "Distance" and "Equiangular" choices.
What multiple importance sampling does is make things more robust to certain
types of noise at the cost of a bit more noise in cases where the individual
strategies are always better.
So if you've got a pretty dense volume that's lit from far away then distance
sampling is usually more efficient. If you've got a light inside or near the
volume then equiangular sampling is better. If you have a combination of both,
then the multiple importance sampling will be better.
* Volume multiple importace sampling support to combine equiangular and distance
sampling, for both homogeneous and heterogeneous volumes.
* Branched path "Sample All Direct Lights" and "Sample All Indirect Lights" now
apply to volumes as well as surfaces.
Implementation note:
For simplicity this is all done with decoupled ray marching, the only case we do
not use decoupled is for distance only sampling with one light sample. The
homogeneous case should still compile on the GPU because it only requires fixed
size storage, but the heterogeneous case will be trickier to get working.
* Added support for uchar4 attributes to Cycles' attribute system.
* This is used for Vertex Colors now, which saves some memory (4 unsigned characters, instead of 4 floats).
* GPU Texture Limit on sm_20 and sm_21 decreased from 95 to 94, because we need a new texture for the uchar4 attributes. This is no problem for sm_30 or newer.
Part of my GSoC 2014.
Instead of pre-calculation and storage, we now calculate the face normal during render.
This gives a small slowdown (~1%) but decreases memory usage, which is especially important for GPUs,
where you have limited VRAM.
Part of my GSoC 2014.
This makes the code a bit easier to understand, and might come in handy
if we want to reuse more Embree code.
Differential Revision: https://developer.blender.org/D482
Code by Brecht, with fixes by Lockal, Sergey and myself.
This means packed images and movies are now supported when using OSL
backend for material shading.
Uses special file name to distinguish whether image is builtin or not.
This part might become a bit smarted or optimized a bit, but it's good
enough with this implementation already.
Now baking does one AA sample at a time, just like final render. There is
also some code for shader antialiasing that solves T40369 but it is disabled
for now because there may be unpredictable side effects.
Instead of 95, we can use 145 images now. This only affects Kepler and above (sm30, sm_35 and sm_50).
This can be increased further if needed, but let's first test if this does not come with a performance impact.
Originally developed during my GSoC 2013.
Expand Cycles to use the new baking API in Blender.
It works on the selected object, and the panel can be accessed in the Render panel (similar to where it is for the Blender Internal).
It bakes for the active texture of each material of the object. The active texture is currently defined as the active Image Texture node present in the material nodetree. If you don't want the baking to override an existent material, make sure the active Image Texture node is not connected to the nodetree. The active texture is also the texture shown in the viewport in the rendered mode.
Remember to save your images after the baking is complete.
Note: Bake currently only works in the CPU
Note: This is not supported by Cycles standalone because a lot of the work is done in Blender as part of the operator only, not the engine (Cycles).
Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Bake
Supported Passes:
-----------------
Data Passes
* Normal
* UV
* Diffuse/Glossy/Transmission/Subsurface/Emit Color
Light Passes
* AO
* Combined
* Shadow
* Diffuse/Glossy/Transmission/Subsurface/Emit Direct/Indirect
* Environment
Review: D421
Reviewed by: Campbell Barton, Brecht van Lommel, Sergey Sharybin, Thomas Dinge
Original design by Brecht van Lommel.
The entire commit history can be found on the branch: bake-cycles