This commit adds a new distribution to the Glossy, Anisotropic and Glass BSDFs that implements the
multiple-scattering microfacet model described in the paper "Multiple-Scattering Microfacet BSDFs with the Smith Model".
Essentially, the improvement is that unlike classical GGX, which only models single scattering and assumes
the contribution of multiple bounces to be zero, this new model performs a random walk on the microsurface until
the ray leaves it again, which ensures perfect energy conservation.
In practise, this means that the "darkening problem" - GGX materials becoming darker with increasing
roughness - is solved in a physically correct and efficient way.
The downside of this model is that it has no (known) analytic expression for evalation. However, it can be
evaluated stochastically, and although the correct PDF isn't known either, the properties of MIS and the
balance heuristic guarantee an unbiased result at the cost of slightly higher noise.
Reviewers: dingto, #cycles, brecht
Reviewed By: dingto, #cycles, brecht
Subscribers: bliblubli, ace_dragon, gregzaal, brecht, harvester, dingto, marcog, swerner, jtheninja, Blendify, nutel
Differential Revision: https://developer.blender.org/D2002
Older OSX has major issues with sincos() function, it's likely a big in OSL
or LLVM. For until we've updated to new versions of this libraries we'll use
a workaround to prevent possible crashes on all the platforms.
Shouldn't be that bad because it's mainly used for anisotropic shader where
angle is usually constant.
This fix is safe for inclusion into final Blender 2.75 release.
This is basically just a wrapper class, which maps the generic call from the OSL spec to our closures.
Example usage:
shader microfacet_osl(
color Color = color(0.8),
int Distribution = 0,
normal Normal = N,
vector Tangent = normalize(dPdu),
float RoughnessU = 0.0,
float RoughnessV = 0.0,
float IOR = 1.4,
int Refract = 0,
output closure color BSDF = 0)
{
if (Distribution == 0)
BSDF = Color * microfacet("ggx", Normal, Tangent, RoughnessU, RoughnessV, IOR, Refract);
else
BSDF = Color * microfacet("beckmann", Normal, Tangent, RoughnessU, RoughnessV, IOR, Refract);
}
Was hooked up last year for testing purposes, as we already had some code for it, but the closure itself is not really good nor really useful, so let's remove it.
* Anisotropic BSDF now supports GGX and Beckmann distributions, Ward has been
removed because other distributions are superior.
* GGX is now the default distribution for all glossy and anisotropic nodes,
since it looks good, has low noise and is fast to evaluate.
* Ashikhmin-Shirley is now available in the Glossy BSDF.
* Ashikhmin-Shirley anisotropic BSDF was added as closure
* Anisotropic BSDF node now has two distributions
Reviewers: brecht, dingto
Differential Revision: https://developer.blender.org/D549
* Henyey-Greenstein scattering closure implementation.
* Rename transparent to absorption node and isotropic to scatter node.
* Volume density is folded into the closure weights.
* OSL support for volume closures and nodes.
* This commit has no user visible changes, there is no volume render code yet.
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
A new hair bsdf node, with two closure options, is added. These closures allow the generation of the reflective and transmission components of hair. The node allows control of the highlight colour, roughness and angular shift.
Llimitations include:
-No glint or fresnel adjustments.
-The 'offset' is un-used when triangle primitives are used.
give a result more similar to the Compatible falloff option. The scale is x2
though to keep the perceived scatter radius roughly the same while changing the
sharpness. Difference with compatible will be mainly on non-flat geometry.
New features:
* Bump mapping now works with SSS
* Texture Blur factor for SSS, see the documentation for details:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Subsurface_Scattering
Work in progress for feedback:
Initial implementation of the "BSSRDF Importance Sampling" paper, which uses
a different importance sampling method. It gives better quality results in
many ways, with the availability of both Cubic and Gaussian falloff functions,
but also tends to be more noisy when using the progressive integrator and does
not give great results with some geometry. It works quite well for the
non-progressive integrator and is often less noisy there.
This code may still change a lot, so unless you're testing it may be best to
stick to the Compatible falloff function.
Skin test render and file that takes advantage of the gaussian falloff:
http://www.pasteall.org/pic/show.php?id=57661http://www.pasteall.org/pic/show.php?id=57662http://www.pasteall.org/blend/23501
to be done in cycles itself to keep compatibility for bytecode too.
Also fix broken button to compile OSL from the text editors, this got broken after
recent change to disable editing of library linked nodes.
* Added Westin Sheen and Westin Backscatter closures for testing, useful for Cloth like effects.
Only available via OSL, added an example OSL shader to the Templates (Text Editor).
well as I would like, but it works, just add a subsurface scattering node and
you can use it like any other BSDF.
It is using fully raytraced sampling compatible with progressive rendering
and other more advanced rendering algorithms we might used in the future, and
it uses no extra memory so it's suitable for complex scenes.
Disadvantage is that it can be quite noisy and slow. Two limitations that will
be solved are that it does not work with bump mapping yet, and that the falloff
function used is a simple cubic function, it's not using the real BSSRDF
falloff function yet.
The node has a color input, along with a scattering radius for each RGB color
channel along with an overall scale factor for the radii.
There is also no GPU support yet, will test if I can get that working later.
Node Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#BSSRDF
Implementation notes:
http://wiki.blender.org/index.php/Dev:2.6/Source/Render/Cycles/Subsurface_Scattering
a size parameter between 0.0 and 1.0 that gives a angle of reflection between
0° and 90°, and a smooth parameter that gives and angle over which a smooth
transition from full to no reflection happens.
These work with global illumination and do importance sampling of the area within
the angle. Note that unlike most other BSDF's these are not energy conserving in
general, in particular if their weight is 1.0 and size > 2/3 (or 60°) they will
add more energy in each bounce.
Diffuse: http://www.pasteall.org/pic/show.php?id=42119
Specular: http://www.pasteall.org/pic/show.php?id=42120
* Moved kernel/osl/nodes to kernel/shaders
* Renamed standard attributes to use geom:, particle:, object: prefixes
* Update stdosl.h to properly reflect the closures we support
* Fix the wrong stdosl.h being used for building shaders
* Add geom:numpolyvertices, geom:trianglevertices, geom:polyvertices attributes