Goal is to add the length attribute to the Hair Info node, for better control over color gradients or similar along the hair.
Reviewed By: #eevee_viewport, brecht
Differential Revision: https://developer.blender.org/D10481
There was an optimization to remove duplicate storage of normals as attributes
when using normal maps. However for named attributes like this we still need to
store the attribute.
Don't request normal attribute from the normal map node now, instead of skipping it
in the geometry code.
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.
Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.
Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycleshttps://wiki.blender.org/wiki/Source/Render/Cycles
Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)
For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.
Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
Standard attributes are not added to the attributes requests when
shaders only have displacement. This is because nodes are only
considering the case when the surface socket is connected.
To support this, added `Shader.has_surface_link()` which checks for both
cases (`has_surface` and `has_displacement`) and replaces all checks on
`Shader.has_surface`.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D12240
Cycles, Eevee, OSL, Geo, Attribute
This operator provides consistency with the standard math node. Allows users to use a single node instead of two nodes for this common operation.
Reviewed By: HooglyBoogly, brecht
Differential Revision: https://developer.blender.org/D10808
Cycles, Eevee, OSL, Geo, Attribute
Based on outdated refract patch D6619 by @cubic_sloth
`refract` and `faceforward` are standard functions in GLSL, OSL and Godot shader languages.
Adding these functions provides Blender shader artists access to these standard functions.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D10622
Static initialization order was not guaranteed to be correct for node base
types. Now wrap all initialization in accessor functions to ensure the order
is correct.
Did not cause any known bug on Linux/macOS/Windows, but showed up on this
platform.
The "type" sockets on shader nodes were renamed in rB31a620b9420cab to
avoid clashes with the `NodeType type` member from the Node base class,
but the OSL shader compilation was missing those changes.
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various modified methods
on Nodes in favor of Node::is_modified which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various `modified` methods
on Nodes in favor of `Node::is_modified` which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
Problem: the Blender synchronization process creates and tags nodes for usage. It does
this by directly adding and removing nodes from the scene data. If some node is not tagged
as used at the end of a synchronization, it then deletes the node from the scene. This poses
a problem when it comes to supporting procedural nodes who can create other nodes not known
by the Blender synchonization system, which will remove them.
Nodes now have a NodeOwner, which is set after creation. Those owners for now are the Scene
for scene level nodes and ShaderGraph for shader nodes. Instead of creating and deleting
nodes using `new` and `delete` explicitely, we now use `create_node` and `delete_node` methods
found on the owners. `delete_node` will assert that the owner is the right one.
Whenever a scene level node is created or deleted, the appropriate node manager is tagged for
an update, freeing this responsability from BlenderSync or other software exporters.
Concerning BlenderSync, the `id_maps` do not explicitely manipulate scene data anymore, they
only keep track of which nodes are used, employing the scene to create and delete them. To
achieve this, the ParticleSystem is now a Node, although it does not have any sockets.
This is part of T79131.
Reviewed By: #cycles, brecht
Maniphest Tasks: T79131
Differential Revision: https://developer.blender.org/D8540
The Pass struct is now a Node and the passes are moved from the Film
class to the Scene class.
The Pass Node only has `type` and `name` as sockets as those seem to be
the only properties settable by exporters (other properties are implicit
and depend on the pass type).
This is part of T79131.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D8591
The sky will appear brighter than before by default. To compensate for this,
lower exposure in the Film panel. The default altitude was also changed from
90 to 15 degrees.
Patch contributed by Marco with the help of Ryan Jones.
Differential Revision: https://developer.blender.org/D8285
For animation/driver purposes, being able to go outside of the 0-360
range makes things easier.
Differential Revision: https://developer.blender.org/D8091
I'm not sure if the Sky was deliberately left out or was just waiting for a
better moment, but so many I was disappointed that Sky in EEVEE is
completely white.
There are already 2 implementations (osl and gpu) so this is the third one.
Looking at other cases it seems that we are not supposed to share sources
between cycles and the rest? So the new util_sky_model files are just
copies of what is already in cycles, except that the data file uses the RGB
variant of the Hosek/Wilkie model, because we output RGB anyway (but can be
easily changed to XYZ if desired - the results are nearly identical).
I am not sure if it is okay to pass 3*9 float values as 3 mat4 uniforms (I
wanted to use mat3 but it does not work).
Also, should I cache the sky model data between renders if the parameters
do not change?
Reviewed By: fclem, brecht
Differential Revision: https://developer.blender.org/D7108
This commit adds a new model to the Sky Texture node, which is based on a
method by Nishita et al. and works by basically simulating volumetric
scattering in the atmosphere.
By making some approximations (such as only considering single scattering),
we get a fairly simple and fast simulation code that takes into account
Rayleigh and Mie scattering as well as Ozone absorption.
This code is used to precompute a 512x128 texture which is then looked up
during render time, and is fast enough to allow real-time tweaking in the
viewport.
Due to the nature of the simulation, it exposes several parameters that
allow for lots of flexibility in choosing the look and matching real-world
conditions (such as Air/Dust/Ozone density and altitude).
Additionally, the same volumetric approach can be used to compute absorption
of the direct sunlight, so the model also supports adding direct sunlight.
This makes it significantly easier to set up Sun+Sky illumination where
the direction, intensity and color of the sun actually matches the sky.
In order to support properly sampling the direct sun component, the commit
also adds logic for sampling a specific area to the kernel light sampling
code. This is combined with portal and background map sampling using MIS.
This sampling logic works for the common case of having one Sky texture
going into the Background shader, but if a custom input to the Vector
node is used or if there are multiple Sky textures, it falls back to using
only background map sampling (while automatically setting the resolution to
4096x2048 if auto resolution is used).
More infos and preview can be found here:
https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view
Underlying model, implementation and documentation by Marco (@nacioss).
Improvements, cleanup and sun sampling by @lukasstockner.
Differential Revision: https://developer.blender.org/D7896
Since the sampling and evaluation functions handle both cases anyways,
there's not really a point for keeping the distinction in the kernel,
so we might as well cut down the number of CLOSURE_BSDF_MICROFACETs a bit.
Differential Revision: https://developer.blender.org/D7736
Currently in fractal_noise functions, each subsequent octave doubles the
frequency and reduces the amplitude by half. This patch introduces Roughness
input to Noise and Wave nodes. This multiplier determines how quickly the
amplitudes of the subsequent octaves decrease.
Value of 0.5 will be the default, generating identical noise we had before.
Values above 0.5 will increase influence of each octave resulting in more
"rough" noise, most interesting pattern changes happen there. Values below
0.5 will result in more "smooth" noise.
Differential Revision: https://developer.blender.org/D7065
Rather than passing around void pointers, various Blender image sources now
subclass this. OIIO is also just another type of image loader.
Also fixes T67718: Cycles viewport render crash editing point density settings
This is mostly straightforward, but required some refactoring to ensure that
the default volume material does not always turn on the volume feature for GPU
rendering.
The node would render black in this case (but should use the
'active_render' layer choosen in the object data properties -- this is
now in line to how this is handled for e.g. UVs)
This introduces ATTR_STD_VERTEX_COLOR and uses this thoughout, if no
particular layer is specified in the node.
Maniphest Tasks: T73938
Differential Revision: https://developer.blender.org/D6887
This node provides the ability to rotate a vector around a `center` point using either `Axis Angle` , `Single Axis` or `Euler` methods.
Reviewed By: #cycles, brecht
Differential Revision: https://developer.blender.org/D3789
* Direction mode X, Y and Z to align with axes rather than diagonal or
spherical as previously. X is the new default, existing files will
use diagonal or spherical for compatibility.
* Phase offset to offset the wave along its direction, for purposes like
animation and distortion.
https://developer.blender.org/D6382
This adds some extra functions recently added to the float Maths Node.
Not all functions have been ported over in this patch.
Also:
+ Tidy up menu
+ Change node color to match other vector nodes, this helps distinguish vector and float nodes in the tree
+ Move shared OSL functions to new header node_math.h
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D6713
Lacunarity parameter determines scaling of subsequent octaves in fractal
noises. For example, Noise node have this scaling hardcoded to 2.0. Each
octave have twice bigger scale than previous one, resulting in finer details.
By design fractal noises that generate octaves with same seed should not
have Lacunarity set to 1.0, since then it just stacks up identical noises.
Differential Revision: https://developer.blender.org/D6742